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Abstract. A diffusive intraguild predation model with delay and Beddington-
DeAngelis functional response is considered. Dynamics including stability and
Hopf bifurcation near the spatially homogeneous steady states are investigated
in detail. Further, it is numerically demonstrated that delay can trigger the
emergence of irregular spatial patterns including chaos. The impacts of dif-
fusion and functional response on the model’s dynamics are also numerically
explored.

1. Introduction. Competition and predation are two fundamental ecological re-
lationships among species and have been widely studied [1]. Recently, it is been
recognized that intraguild predation (IGP), which is a combination of competition
and predation, has significant impacts on the distribution, abundance, persistence
and evolution of the species involved [2]. As a result, growing attention has been
paid to IGP models [3, 4, 5, 6, 7, 8, 9].

The general framework of IGP described below was established by Holt and Polis
[5] 




Ṙ(t) = R(ϕ(R)− ρ1(R,N, P )N − ρ2(R,N, P )P ),

Ṅ(t) = N(e1ρ1(R,N, P )R− ρ3(R,N, P )P −m1),

Ṗ (t) = P (e2ρ2(R,N, P )R+ e3ρ3(R,N, P )N −m2),

(1)
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where R(t), N(t), P (t) represent the densities of basal resource, IG prey and IG
predator, respectively. The quantities ρ2(R,N, P )R and ρ3(R,N, P )N are func-
tional responses of the IG predator to the resource and IG prey, respectively;
ρ1(R,N, P )R is the functional response of the IG prey to the basal resource; and
m1 and m2 are density-independent morality rates. The parameters e1 and e2 are
the conversion rates of resource consumption into reproduction for the IG prey
and IG predator, respectively; the parameter e3 denotes the conversion rate of the
IG predator from its consumption of IG prey; Rϕ(R) is recruitment of the basal
resource.

Functional response describes how the consumption rate of individual consumers
varies with respect to resource density and is often used to model predator-prey
interactions. For IGP models, several functional response functions have been stud-
ied. For instance, Velazquez et al. [10] and Hsu et al. [11] investigated the case
with a linear functional response. Abrams and Fung [12] considered Holling type-II
functional response. Verdy and Amarasekare [13] and Freeze et al. [14] investigated
Holling type-II and ratio-dependent functional responses, respectively. Kang and
Wedekin [15] considered Holling-III functional response.

Note that the reproduction of predator following the consumption of prey is
not instantaneous, but rather is mediated by some reaction-time lag required for
gestation. Time delay plays an important role in ecology and it can induce very
complex dynamical behaviors [16, 17, 18, 19, 20, 21, 22]. For IGP models, it has
been shown that a time delay greatly impacts their dynamics [23, 24]. In [24], Shu
et al. investigated the complex dynamics of the following IGP model





Ṙ(t) = rR(t)(1 − R(t)
K

)− c1R(t)N(t)− c2R(t)P (t),

Ṅ(t) = e1c1R(t− τ)N(t− τ) − c3N(t)P (t)−m1N(t),

Ṗ (t) = e2c2R(t)P (t) + e3c3N(t)P (t)−m2P (t),

(2)

where r is the growth rate of R in the absence ofN and P , K is the carrying capacity
of resource. c1 is the predation rate of IG prey for resource, c2 is the predation rate
of IG predator for resource, c3 is the consumption rate of IG predator to IG prey
and all other parameters have the same meanings as those in (1).

Note that for each species, individuals tend to migrate towards regions with lower
population densities. Hence the species are distributed over space and interact with
each other within their spatial domains. To take spatial effects into consideration,
reaction diffusion equations become a natural choice [25, 26, 27, 28, 29, 30, 31, 32,
33, 34, 35, 36]. In this work, we consider a reaction diffusion IGP model with delay
and Beddington-DeAngelis functional response.

Suppose Ω ⊂ R
n is a bounded domain with smooth boundary ∂Ω. Let R(t, x),

N(t, x), P (t, x) represent the densities of basal resource, IG prey and IG predator
at time t and location x, respectively. The basal resource is assumed to grow
logistically. We assume the basal resource is consumed by the IG prey at a rate
c1R(t, x)N(t, x), and the IG prey is consumed by the IG predator is c3N(t, x)P (t, x)
at time t and location x. In this paper, we will assume the functional response takes
the Beddington-DeAngelis (B-D) form, i.e., the consumption of the resource by the

IG predator is characterized by c2P (t,x)R(t,x)
1+a1R(t,x)+a2P (t,x) . The reproduction of IG prey

from consuming the basal resource is e1c1R(t− τ, x)N(t− τ, x), where the time-lag
parameter is introduced in a manner analogous to the treatment in [24]. We further
assume the populations cannot cross the boundary of Ω. Our model then reads as
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Table 1. Parameters definitions in model (3) and their units, where

[resource] indicates basal resource density, [IG prey] indicates IG prey

density, and [IG predator] indicates IG predator density

Symbol Parameter Definition Units

r Basal resource intrinsic growth rate [time]−1

K Basal resource carrying capacity [Basal resource density]

c1 Predation rate of IG prey on resource [IG prey]−1 [time]−1

c2 Predation rate of IG predator on resource [IG predator]−1[time]−1

c3 Predation rate of IG predaotr on IG prey [IG preys][IG predator]−1

[time]−1

e1 Conversion rate from resource to IG prey [IG preys][resource]−1

e2 Conversion rate from resource to IG predator [IG predators][resource]−1

e3 Conversion rate from IG prey to IG predator [IG predators][IG prey]−1

a1 [Half saturation constant]−1 [resource]−1

a2 [Half saturation constant]−1 [IG predator]−1

m1 Mortality rate of IG prey [time]−1

m2 Mortality rate of IG predator [time]−1

d̃1 Diffusion coefficient of resource [length]2[time]−1

d̃2 Diffusion coefficient of IG prey [length]2[time]−1

d̃3 Diffusion coefficient of IG predatior [length]2[time]−1

L The size of spatial domain Ω [length]





∂R(t,x)
∂t

= d̃1∆R+ R
(
r(1 − R

K
)− c1N − c2P

1+a1R+a2P

)
, t > 0, x ∈ Ω

∂N(t,x)
∂t

= d̃2∆N + e1c1N(t− τ, x)R(t− τ, x)− c3NP −m1N, t > 0, x ∈ Ω,
∂P (t,x)

∂t
= d̃3∆P + P

(
e2c2R

1+a1R+a2P
+ e3c3N −m2

)
, t > 0, x ∈ Ω,

∂R
∂ν

= ∂N
∂ν

= ∂P
∂ν

= 0, t > 0, x ∈ ∂Ω,

R(t, x) = φ̃1(t, x) ≥ 0, (t, x) ∈ [−τ, 0]× Ω,

N(t, x) = φ̃2(t, x) ≥ 0, (t, x) ∈ [−τ, 0]× Ω,

P (t, x) = φ̃3(t, x) ≥ 0, (t, x) ∈ [−τ, 0]× Ω,
(3)

where d̃1, d̃2, d̃3 denote the diffusion coefficients of the three species, respectively;
∆ is the Laplacian operator in the n dimensional space, ν is the outward unit
normal vector on ∂Ω, and the homogeneous Neumann boundary conditions reflect
the situation where the population cannot across the boundary of Ω. The meanings
and units of the parameters of model (3) are summarized in Table 1.

For rescalling, we let

u1(t, x) =
R(t, x)

K
,u2(t, x) =

c1N(t, x)

r
, u3(t, x) =

c2P (t, x)

r
, γ1 =

m1

r
, γ2 =

m2

r
,

β1 =
e1c1K

r
, β2 =

e2c2K

r
, α =

c3
c2
, β =

e3c3
c1

, b = a1K, c =
a2r

c2
,

d1 =
d̃1
rL2

, d2 =
d̃2
rL2

, d3 =
d̃3
rL2

, x̂ =
x

L
, t̂ = tr, τ̂ = τr,

φ1(t, x) =
φ̃1(t, x)

K
,φ2(t, x) =

c1φ̃2(t, x)

r
, φ3(t, x) =

c2φ̃3(t, x)

r
.
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Then model (1.3) becomes




∂u1(t,x)
∂t

= d1∆u1(t, x) + f1(u,v), t > 0, x ∈ Ω,
∂u2(t,x)

∂t
= d2∆u2(t, x) + f2(u,v), t > 0, x ∈ Ω,

∂u3(t,x)
∂t

= d3∆u3(t, x) + f3(u,v), t > 0, x ∈ Ω,
∂u1(t,x)

∂ν
= ∂u2(t,x)

∂ν
= ∂u3(t,x)

∂ν
= 0, t > 0, x ∈ ∂Ω,

u1(t, x) = φ1(t, x) ≥ 0, (t, x) ∈ [−τ, 0]× Ω,
u2(t, x) = φ2(t, x) ≥ 0, (t, x) ∈ [−τ, 0]× Ω,
u3(t, x) = φ3(t, x) ≥ 0, (t, x) ∈ [−τ, 0]× Ω,

(4)

where u = (u1(t, x), u2(t, x), u3(t, x)),v = (u1(t− τ, x), u2(t− τ, x)) and

f1(u,v) = u1(t, x)

(
1− u1(t, x)− u2(t, x)−

u3(t, x)

1 + bu1(t, x) + cu3(t, x)

)
,

f2(u,v) = β1u1(t− τ, x)u2(t− τ, x)− αu2(t, x)u3(t, x) − γ1u2(t, x),

f3(u,v) = u3(t, x)

(
β2u1(t, x)

1 + bu1(t, x) + cu3(t, x)
+ βu2(t, x) − γ2

)
.

Throughout the paper, we denote Ω̄ = Ω
⋃
∂Ω, DT = (0, T ]×Ω, D̄T = [0, T ]× Ω̄,

Q0 = [−τ, 0]×Ω, Q̄0 = [−τ, 0]× Ω̄, QT = [−τ, T ]×Ω, Q̄T = [−τ, T ]× Ω̄. Denote by
Cγ(DT ) the space of Hölder continuous functions in DT with exponent γ ∈ (0, 1).
The space of continuous functions in D̄T is denoted by C(D̄T ). For vector-value
functions we use the product spaces

C(D̄T ) ≡ C(D̄T )× C(D̄T )× C(D̄T ), Cγ(D̄T ) ≡ Cγ(D̄T )× Cγ(D̄T )× Cγ(D̄T ).

Denote

X =

{
(u1, u2, u3)

T ∈ H2(Ω)×H2(Ω)×H2(Ω) :
∂u1
∂ν

=
∂u2
∂ν

=
∂u3
∂ν

= 0 on∂Ω

}

with the usual inner product 〈·, ·〉.
The rest of the paper is organized as follows. In Section 2, we study the existence

and uniqueness of solution of (4) and estimate the solution’s priori bounds. In Sec-
tion 3, we discuss the existence of nonnegative spatially homogeneous steady states.
In Section 4, we carry out stability analysis and Hopf bifurcation analysis about
the unique positive spatially homogeneous steady state of System (4). Numerical
simulations are presented in Section 5 to illustrate the impacts of delay, diffusion
and the functional response on the dynamics of our IGP model. We conclude this
paper with a brief summary and discussion in Section 6.

2. Existence of solution of System (4) and priori bound estimation.

Theorem 2.1. Consider System (4), we have the following conclusions.

(i) Given any initial condition (φ1(t, x), φ2(t, x), φ3(t, x)) ∈ Cγ(Q0) with

0 ≤ φi(t, x) ≤ Li, (t, x) ∈ Q0, i = 1, 2, 3, (5)

where Li, i = 1, 2, 3 are positive constants satisfying

1 ≤ L1 ≤ γ1
β1
, L2 <

γ2
β
, L3 ≥ 1

c

[
β2L1

γ2 − βL2
− bL1 − 1

]
, (6)

System (4) admits a unique solution (u1(t, x), u2(t, x), u3(t, x)) satisfying

0 ≤ ui(t, x) ≤ Li, for t > 0, x ∈ Ω, i = 1, 2, 3.
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(ii) For any solution (u1(t, x), u2(t, x), u3(t, x)) of System (4), it holds true that

lim sup
t→∞

u1(t, x) ≤ 1, lim sup
t→∞

∫

Ω

u2(t, x)dx ≤ J1, lim sup
t→∞

∫

Ω

u3(t, x)dx ≤ J2

where J1 = ( β1

4γ1
+ β1)|Ω|, J2 = (β2

4κ + β1β
ακ
J1 + β2)|Ω| with κ = min{γ1, γ2}.

Furthermore, if d1 = d2 = d3 and τ = 0, then for any x ∈ Ω̄,

lim sup
t→∞

u2(t, x) ≤
β2α

4κβ
+
β1
κ
(
β1
4γ1

+ β1) +
β2α

β
,

lim sup
t→∞

u3(t, x) ≤
β2
4κ

+
β1β

ακ
(
β1
4γ1

+ β1) + β2.

Proof. Note that fi(u,v) is mixed quasi-monotone in a subset Λ × Λ∗ of R3 × R
2

for each i = 1, 2, 3, we can apply [27, Therorem 2.2] to establish the existence and
uniqueness of solutions to System (4). To this end, we first need to construct a pair
of coupled upper and lower solutions of System (4), which we denote by (ũ1, ũ2, ũ3)
and (û1, û2, û3), respectively. In view of [27, Definition 2.1], the required upper and
lower solutions should satisfy the boundary-initial inequalities and the following
differential inequalities





∂ũ1

∂t
≥ d1∆ũ1 + ũ1(1− ũ1 − û2 − û3

1+bũ1+cû3
)

∂ũ2

∂t
≥ d2∆ũ2 + β1ũ1ũ2 − αû3ũ2 − γ1ũ2,

∂ũ3

∂t
≥ d3∆ũ3 +

β2ũ1ũ3

1+bũ1+cũ3
+ βũ2ũ3 − γ2ũ3

(7)

and 



∂û1

∂t
≤ d1∆û1 + û1(1− û1 − ũ2 − ũ3

1+bû1+cũ3
)

∂û2

∂t
≤ d2∆û2 + β1û1û2 − αũ3û2 − γ1û2

∂û3

∂t
≤ d3∆û3 +

β2û1û3

1+bû1+cû3
+ βû2û3 − γ2û3.

(8)

Take (û1, û2, û3) = (0, 0, 0) and (ũ1, ũ2, ũ3) = (L1, L2, L3). Clearly, ∂ũi

∂ν
= 0 ≥

0 ≥ 0 = ∂ûi

∂ν
. It follows from (5) and (6) that the pair (û1, û2, û3) = (0, 0, 0)

and (ũ1, ũ2, ũ3) = (L1, L2, L3) are coupled upper and lower solutions of System
(4). It is easy to check that fi(u,v) (i = 1, 2, 3) satisfy the Lipschitz condition for
0 ≤ ui ≤ Mi, 0 ≤ vi ≤ Li, i = 1, 2, 3, and we denote the Lipschitz constants by
Ki, i = 1, 2, 3. By [27, Theorem 2.2], System (4) admits a unique global solution
(u1(t, x), u2(t, x), u3(t, x)), which satisfies

(0, 0, 0) ≤ (u1(t, x), u2(t, x), u3(t, x)) ≤ (L1, L2, L3), t ≥ 0, x ∈ Ω.

This completes the proof of (i).
Next we establish the priori bound of solutions to System (4). To estimate

u1(t, x), we observe that u1(t, x) satisfies
{

∂u1(t,x)
∂t

≤ d1∆u1(t, x) + u1(t, x)(1 − u1(t, x)), t > 0, x ∈ Ω,
∂u1(t,x)

∂n
= 0, t > 0, x ∈ ∂Ω.

It follows from the standard comparison principle [37, Lemma 3.4.2] of parabolic
equations that lim sup

t→∞

u1(t, x) ≤ 1. Thus for any ε > 0, there exists a T1 > 0 such

that u1(t, x) ≤ 1 + ε for t ≥ T1.
To estimate the priori bounds of u2(t, x) and u3(t, x), we set

U1(t) =

∫

Ω

u1(t, x)dx, U2(t) =

∫

Ω

u2(t, x)dx, U3(t) =

∫

Ω

u3(t, x)dx.
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Then

dU1(t)

dt
=

∫

Ω

∂u1
∂t

dx =

∫

Ω

d1∆u1dx+

∫

Ω

[u1(t, x)(1 − u1(t, x) − u2(t, x)−

u3(t, x)

1 + bu1(t, x) + cu3(t, x)
)]dx,

dU2(t)

dt
=

∫

Ω

∂u2
∂t

dx =

∫

Ω

d2∆u2dx+

∫

Ω

[β1u1(t− τ, x)u2(t− τ, x)−

αu2(t, x)u3(t, x)− γ1u2(t, x)]dx,

dU3(t)

dt
=

∫

Ω

∂u3
∂t

dx =

∫

Ω

d3∆u3dx+

∫

Ω

[u3(t, x)(
β2u1(t, x)

1 + bu1(t, x) + cu3(t, x)
+ βu2(t, x) − γ2)]dx.

From the Neumann boundary conditions, we further obtain

d(β1U1(t)+U2(t+τ))
dt

= β1
∫
Ω

∂u1

∂t
dx+

∫
Ω

∂u2(t+τ,x)
∂t

dx

= β1
∫
Ω(u1 − u21)dx−

∫
Ω

β1u1u3

1+bu1+cu3
dx

−
∫
Ω αu2(t+ τ, x)u3(t+ τ, x)dx −

∫
Ω γ1u2(t+ τ, x)dx

≤ β1

4 |Ω|+ γ1β1(1 + ε)|Ω| − γ1(β1U1(t) + U2(t+ τ)), t > T1.

By the comparison principle, we have

lim sup
t→∞

(β1U1(t) + U2(t+ τ)) ≤ β1
4γ1

|Ω|+ β1|Ω| ≡ J1.

Similarly, there exists T2 > T1 such that
∫
Ω u2(t, x)dx = U2(t) ≤ J1 + ε for t ≥ T2.

Thus, for t ≥ T2 + τ, we have

d(β2U1(t) +
β
α
U2(t) + U3(t))

dt

=β2

∫

Ω

(u1 − u21)dx+

∫

Ω

β1β

α
u1(t− τ, x)u2(t− τ, x)dx − βγ1

α

∫

Ω

u2dx− γ2

∫

Ω

u3dx

≤β2
4
|Ω|+ β1β

α
(1 + ε)

∫

Ω

u2(t− τ, x)dx − βγ1
α
U2 − γ2U3

≤β2
4
|Ω|+ β1β

α
(1 + ε)(J1 + ε)|Ω|+ β2κ(1 + ε)|Ω| − κ(β2U1 +

β

α
U2 + U3),

where κ = min{γ1, γ2}. This implies that

lim sup
t→∞

(β2U1 +
β

α
U2 + U3) ≤

β2
4κ

|Ω|+ β1β

ακ
J1|Ω|+ β2|Ω| ≡ J2.

and hence lim sup
t→∞

∫
Ω
u3(t, x)dx = lim sup

t→∞

U3(t) ≤ J2.

For the case with d1 = d2 = d3 = d and τ = 0, we can similarly show that for any
ε > 0, there exists T3 > T1 such that 0 ≤ u1(t, x) ≤ 1+ε and 0 ≤ u2(t, x) ≤ β1

4γ1
+β1

for t > T3. Moreover, let S(t, x) = β2u1(t, x) +
β
α
u2(t, x) + u3(t, x). Then





∂S
∂t

= d∆S + β2(u1 − u21)− β2u1u2 +
ββ1

α
u1u2 − βγ1

α
u2 − γ2u3, t > T3, x ∈ Ω,

∂S
∂ν

= 0, t > T3, x ∈ ∂Ω,

S(T3, x) = β2u1(T3, x) +
β
α
u2(T3, x) + u3(T3, x), x ∈ Ω.
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Thus for t > T3, we have

β2(u1 − u21)− β2u1u2 +
ββ1
α
u1u2 −

βγ1
α
u2 − γ2u3

≤β2
4

+
β1β

α
(1 + ε)(

β1
4γ1

+ β1 + ε) + β2κ(1 + ε)− κS.

Consider the system



∂W
∂t

= d∆W + β2

4 + β1β
α

(1 + ε)( β1

4γ1
+ β1 + ε) + β2κ(1 + ε)− κW, t > T3, x ∈ Ω

∂W
∂ν

= 0, t > T3, x ∈ ∂Ω,

W (T3, x) = β2u1(T3, x) +
β
α
u2(T3, x) + u3(T3, x), x ∈ Ω.

It follows from [37, Theorem 2.4.6] that the solution W (t, x) satisfies

lim
t→∞

W (t, x) =
β2
4κ

+
β1β

ακ
(1 + ε)(

β1
4γ1

+ β1 + ε) + β2(1 + ε).

The comparison argument implies that

lim sup
t→∞

u2(t, x) ≤ lim sup
t→∞

α

β
S(t, x) ≤ β2α

4κβ
+
β1
κ
(
β1
4γ1

+ β1) +
β2α

β

and

lim sup
t→∞

u3(t, x) ≤ lim sup
t→∞

S(t, x) ≤ β2
4κ

+
β1β

ακ
(
β1
4γ1

+ β1) + β2.

This completes the proof.

3. Spatially homogeneous steady states of System (4). Same as in [24], we

denote by Ri = βi

γi
= eiciK

mi
(i = 1, 2) the reproduction numbers for the IG prey

and IG predator, respectively. Consider (4), we easily have the following existence
results on trivial and semi-trivial spatially homogeneous steady states.

Proposition 1. (i) The trivial steady state E0 = (0, 0, 0) always exists.
(ii) There is a weakly semi-trivial steady state in the absence of IG Prey and IG

Predator E1 = (1, 0, 0).
(iii) The IG Prey-only strong semi-trivial steady state E10 := ( 1

R1
, 1− 1

R1
, 0) exists

if and only if R1 > 1.
(iv) The IG Predator-only strong semi-trivial steady state E01 := (û1, 0,R2(1 −

û1)û1) exists if and only if R2 > 1 + b, where

û1 =
−(R2−cR2−b)+

√
(R2−cR2−b)2+4cR2

2cR2
.

System (4) admits a positive steady state E∗ := (u∗1, u
∗
2, u

∗
3) if E∗ is a positive

solution to the following three equations:

1− u1 − u2 −
u3

1 + bu1 + cu3
= 0, (9)

β1u1 − αu3 − γ1 = 0, (10)

β2u1
1 + bu1 + cu3

+ βu2 − γ2 = 0. (11)

It follows from (10) that

u∗1 =
α

β1
u∗3 +

γ1
β1
. (12)

Combining (9), (11) and (12), we obtain

u∗3
2 + pu∗3 + q = 0, (13)
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where

p =
cγ2β

2
1 + bαβ1(γ2 − β) + αβ1(β − β2) + cββ1(γ1 − β1) + ββ2

1 + 2bαβγ1
αβ(bα + cβ1)

,

q =
β2
1(γ2 − β) + bβ1γ1(γ2 − β) + β1γ1(β − β2) + β(bγ21 − β2

1)

αβ(bα+ cβ1)
.

For the distribution of roots of Eq. (13), we have the following results.

Lemma 3.1. (i) If p < 0, p2 − 4q > 0 and q > 0, then Eq. (13) has two positive

roots u∗3± =
−p±

√
p2−4q

2 .

(ii) If p < 0 and p2 − 4q = 0, then Eq. (13) has a unique positive root u∗30 = −p
2 .

(iii) If q < 0, then Eq. (13) has a unique positive root u∗3 = u∗3+.

Remark 1. Set R3 = β
γ2
, then q < 0 provided that R1 > b and R2 > R3 > 1.

According to Lemma 3.1, the following proposition is valid.

Proposition 2. (i) When p2 − 4q > 0, p < 0, q > 0 and

R2 < min

{
(bα+cβ1)(−p+

√
p2−4q)+2(bγ1+β1)

α(−p+
√

p2−4q)+2γ1

,
(bα+cβ1)(−p−

√
p2−4q)+2(bγ1+β1)

α(−p−
√

p2−4q)+2γ1

}
,

System (4) has two positive constant steady states E∗
+ = (u∗1+, u

∗
2+, u

∗
3+) and

E∗
− = (u∗1−, u

∗
2−, u

∗
3−), where u

∗
1+ =

αu∗

3++γ1

β1
, u∗2+ = γ2

β
− β2

β
×

αu∗

3++γ1

(bα+cβ1)u∗

3+
+bγ1+β1

, u∗3+ =
−p+

√
p2−4q

2 and u∗1− =
αu∗

3−+γ1

β1
, u∗2− = γ2

β
− β2

β
×

αu∗

3−+γ1

(bα+cβ1)u∗

3−
+bγ1+β1

, u∗3− =
−p−

√
p2−4q

2 .

(ii) When p2 − 4q = 0, p < 0 and R2 < −(bα+cβ1)p+2(bγ1+β1)
2γ1−αp

, E∗
+ and E∗

−

merge, denoted by E∗
0 = (u∗10, u

∗
20, u

∗
30), where u

∗
10 = − pα

2β1
+ γ1

β1
, u∗20 = γ2

β
−

β2

β
2γ1−pα

2(bγ1+β1)−(bα+cβ1)p
, u∗30 = − p

2 .

(iii) When q < 0 and R2 <
(bα+cβ1)(−p+

√
p2−4q)+2(bγ1+β1)

α(−p+
√

p2−4q)+2γ1

, System (4) has only

one positive constant steady state E∗ = (u∗1, u
∗
2, u

∗
3), where u

∗
1 = u∗1+, u

∗
2 =

u∗2+, u
∗
3 = u∗3+.

Remark 2. There exist parameter values such that Proposition 3.4 holds. For
example, choosing α = 0.68, β = 0.9, β1 = 1.9, β2 = 1.8, γ1 = 0.2, γ2 = 0.76, , b =
2.5, c = 10. A direct calculation yields only one positive steady state
E∗ = (0.1891, 0.7562, 0.2344).

4. Dynamics of System (4). Let 0 = µ1 < µ2 ≤ µ3 ≤ · · · be the eigenva-
lues of −∆ on Ω under no-flux boundary conditions, and E(µi) be the eigen-
space corresponding to µi with multiplicity mi ≥ 1, i ∈ N ≡ {1, 2, · · · }. Set
Xij := {e · φij : e ∈ R

3}, where {φij} is an orthonormal basis of E(µi) for

j = 1, 2, · · · , dimE(µi). For X := {w ∈ C1(Ω̄) : ∂w1

∂ν
= ∂w2

∂ν
= ∂w3

∂ν
= 0 on∂Ω},

we have the following lemma from [37].

Lemma 4.1.

X =

∞⊕

i=1

Xi, whereXi =

dimE(µi)⊕

j=1

Xij .
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4.1. Stability of E0 and E1. In the following, we consider the stability of E0 and
E1.

Theorem 4.2. (i) The trivial steady state E0 is always unstable.
(ii) The semi-trivial steady state E1 is locally asymptotically stable if R1 < 1 and

R2 < 1 + b and unstable if either R1 > 1 or R2 > 1 + b.

Proof. Linearizing System (4) at a constant steady state u⋄ = (u⋄1, u
⋄
2, u

⋄
3) gives

∂u

∂t
= (D∆+ Ĵ1)u+ Ĵ2uτ , (14)

where D =diag{d1, d2, d3},u = (u1(t, x), u2(t, x), u3(t, x)),uτ = (u1(t− τ, x), u2(t−
τ, x), u3(t− τ, x) and

Ĵ1 =




1− 2u⋄1 − u⋄2 −
u⋄

3+cu⋄

3
2

(1+bu⋄

1
+cu⋄

3
)2 −u⋄1 − (1+bu⋄

1)u
⋄

1

(1+bu⋄

1
+cu⋄

3
)2

0 −αu⋄3 − γ1 −αu⋄2
β2(1+cu⋄

3)u
⋄

3

(1+bu⋄

1
+cu⋄

3
)2 βu⋄3

β2u
⋄

1(1+bu⋄

1)
(1+bu⋄

1
+cu⋄

3
)2 + βu⋄2 − γ2


 ,

Ĵ2 =




0 0 0
β1u

⋄
2 β1u

⋄
1 0

0 0 0


 .

From Lemma 4.1, we know that the eigenvalues of the System (4) is confined on the
subspace Xi, and λ is an eigenvalue of (14) on Xi if and only if it is an eigenvalue

of the matrix −µiD+J∗,where J∗ = Ĵ1+ Ĵ2e
−λτ . Then the characteristic equation

of (14) is

det(λI3 + µiD − J∗) = 0, (15)

where I3 stands for the 3× 3 identity matrix.
(i) If u⋄ = E0, then we obtain the following characteristic equation

(λ+ d1µi − 1)(λ+ d2µi + γ1)(λ + d3µi + γ2) = 0,

which gives three sets of eigenvalues, namely, λ1i = −d1µi + 1, λ2i = −d2µi −
γ1, λ3i = −d3µi − γ2, i = 1, 2, · · · . Clearly, for i = 1, λ11 = 1 > 0. From [40,
Corollary 1.11], the trivial steady state E0 is unstable.

(ii) If u⋄ = E1, then we obtain the following characteristic equation

(λ + d1µi + 1)(λ+ d2µi − β1e
−λτ + γ1)(λ+ d3µi −

β2
1 + b

+ γ2) = 0,

which gives the eigenvalues λ1i = −d1µi − 1, λ3i = −d3µi +
β2

1+b
− γ2 and λ2i

is determined by λ2i + d2µi + γ1 − β1e
−λ2iτ = 0. Clearly, λ1i < 0 for all µi. If

R2 < 1 + b, we get λ3i < 0 for all µi. If R1 < 1, then we have β1 < γ1 + d2µi for
all µi. Thus it follows from [24, Lemma 6] that the eigenvalues λ2i have negative
real parts for all µi. It follows from [40, Corollary 1.11] that the equilibrium E1 is
locally asymptotically stable for R1 < 1 and R2 < 1 + b. If R1 > 1 then there
exists µ1 = 0 such that d2µ1 + γ1 < β1, so it follows from the [24, Lemma 6] that
at least one of the eigenvalues λ2i has a positive real part. If R2 > 1+ b then there
exists µ1 = 0 such that λ31 > 0. From [40, Corollary 1.11], the steady state E1 is
unstable in either case.

Theorem 4.3. Suppose that R1 < 1,R2 < 1 + b and 1 − γ2

β
> 1

c
. Then E1 is

globally asymptotically stable.
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Proof. Let (û1, û2, û3) = (ε, 0, 0) and (ũ1, ũ2, ũ3) = (M1,M2,M3), where M1 = 1+

ε < γ1

β1
,M2 = γ2

β
− ε > 0, M3 = 1

c
( β2M1

γ2−βM2
− bM1− 1) = 1

c

(
β2(1+ε)

βε
− b(1 + ε)− 1

)

> 0 and ε is arbitrary small positive constant.
We claim that (û1, û2, û3) = (ε, 0, 0) and (ũ1, ũ2, ũ3) = (M1,M2,M3) are also

coupled upper and lower solutions of System (4). In fact, it follows from 1− γ2

β
> 1

c

that 1 − γ2

β
> M3

1+cM3
, and thus we get ε(1− ε− (γ2

β
− ε)− M3

1+bε+cM3
) ≥ 0. Hence,

we obtain û1(1 − û1 − ũ2 − ũ3

1+bû1+cũ3
) ≥ 0. It is easy to check that (û1, û2, û3) =

(ε, 0, 0) and (ũ1, ũ2, ũ3) = (M1,M2,M3) satisfy the differential inequalities in (7)

and (8). Thus the claim holds. Define the iterated sequences (ū
(m)
1 , ū

(m)
2 , ū

(m)
3 ) and

(u
(m)
1 , u

(m)
2 , u

(m)
3 ) as follows:

ū
(m)
1 = ū

(m−1)
1 +

1

K1

[
ū
(m−1)
1

(
1− ū

(m−1)
1 − u

(m−1)
2 − u

(m−1)
3

1 + bū
(m−1)
1 + cu

(m−1)
3

)]
,

u
(m)
1 = u

(m−1)
1 +

1

K1

[
u
(m−1)
1

(
1− u

(m−1)
1 − ū

(m−1)
2 − ū

(m−1)
3

1 + bu
(m−1)
1 + cū

(m−1)
3

)]
,

ū
(m)
2 = ū

(m−1)
2 +

1

K2

[
ū
(m−1)
2

(
β1ū

(m−1)
1 − αu

(m−1)
3 − γ1

)]
,

u
(m)
2 = u

(m−1)
2 +

1

K2

[
u
(m−1)
2

(
β1u

(m−1)
1 − αū

(m−1)
3 − γ1

)]
,

ū
(m)
3 = ū

(m−1)
3 +

1

K3

[
ū
(m−1)
3

(
β2ū

(m−1)
1

1 + bū
(m−1)
1 + cū

(m−1)
3

+ βū
(m−1)
2 − γ2

)]
,

u
(m)
3 = u

(m−1)
3 +

1

K3

[
u
(m−1)
3

(
β2u

(m−1)
1

1 + bu
(m−1)
1 + cu

(m−1)
3

+ βu
(m−1)
2 − γ2

)]
,

where m = 1, 2, · · · , (ū(0)1 , ū
(0)
2 , ū

(0)
3 ) = (M1,M2,M3), (u

(0)
1 , u

(0)
2 , u

(0)
3 ) = (ε, 0, 0)

and Ki, i = 1, 2, 3 are the Lipschitz constants in Theorem 2.1. It is easy to see that
f(u,v) ≡ (f1(u,v), f2(u,v), f3(u,v)) is a C1 function of u,v and is mixed quasi-
monotone in a subset Λ×Λ∗ of R3×R

2. We can deduce from the induction method
that

û ≤ u(m) ≤ u(m+1) ≤ ū(m+1) ≤ ū(m) ≤ ũ. (16)

It follows from (16) that the limits

lim
m→∞

ū
(m)
1 = ū1, lim

m→∞
ū
(m)
2 = ū2, lim

m→∞
ū
(m)
3 = ū3,

lim
m→∞

u
(m)
1 = u1, lim

m→∞
u
(m)
2 = u2, lim

m→∞
u
(m)
3 = u3

(17)

exist and satisfy the following equations

f1(ū1, u2, u3) = 0, f2(ū1, ū2, u3) = 0, f3(ū1, ū2, ū3) = 0, (18)

f1(u1, ū2, ū3) = 0, f2(u1, u2, ū3) = 0, f3(u1, u2, u3) = 0, (19)

where

û = (û1, û2, û3),u
(m) = (u

(m)
1 , u

(m)
2 , u

(m)
3 ),u(m+1) = (u

(m+1)
1 , u

(m+1)
2 , u

(m+1)
3 ),

ū(m+1) = (ū
(m+1)
1 , ū

(m+1)
2 , ū

(m+1)
3 ), ū(m) = (ū

(m)
1 , ū

(m)
2 , ū

(m)
3 ), ũ = (ũ1, ũ2, ũ3).

Since u
(0)
2 = 0 and u

(0)
3 = 0, we get u

(m)
2 = 0 and u

(m)
3 = 0. It follows from (17)

that u2 = u3 = 0. Thus, it follows from the first equality of (18) that ū1 = 1.
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Substituting ū1 = 1 into the second equality of (18) and noting that R1 < 1

yields ū2 = 0. In view of the third equality of (18), we have ū3

(
β2

1+b+cū3
− γ2

)
=

0. Since R2 < 1 + b, we obtain β2

1+b+cū3
− γ2 < 0. This implies that ū3 = 0.

Hence, it follows from the first equality of (19) that u1 = 1. Therefore, we have
(ū1, ū2, ū3) = (1, 0, 0) = (u1, u2, u3). It follows from [27, Theorem 3.2] that for any
initial function φ = (φ1(t, x), φ2(t, x), φ3(t, x)) satisfying û ≤ φ ≤ ũ in Q0, the
solution u ≡ (u1(t, x), u2(t, x), u3(t, x)) of System (4) satisfies lim

t→∞
u = (1, 0, 0).

This completes the proof.

4.2. Stability of E10 and E01. Next, we consider the stability of the two strong
semi-trivial steady states: E10 and E01. For the IG prey-only strong semi-trivial
steady state E10, we have the following result.

Theorem 4.4. Consider System (4) with R1 > 1.

(i) If − β2

R1+b
− β(1− 1

R1
) + γ2 < 0, then E10 is unstable.

(ii) If − β2

R1+b
− β(1− 1

R1
)+ γ2 > 0 and 1 < R1 ≤ 3, then E10 is locally asymptot-

ically stable for all τ ≥ 0.
(iii) If − β2

R1+b
−β(1− 1

R1
)+γ2 > 0 and R1 > 3, then there exists τ00 > 0 such that

E10 is locally asymptotically stable for τ ∈ [0, τ00) and is unstable for τ > τ00.

Further there exists a sequence of delays, {τ ji }+∞

j=0 for i = 1, 2, · · · , N1, at

which E10 undergoes Hopf bifurcations. Here, τ00 and τ ji are given in the
proof of this theorem.

Proof. For E10, the characteristic equation is

m1(λ)[g1(λ) + h1(λ)e
−λτ ] = 0, (20)

withm1(λ) = λ+d3µi− β2

R1+b
−β(1− 1

R1
)+γ2, h1(λ) = −(λ+d1µi+

1
R1

) β1

R1
+ β1

R1
(1−

1
R1

), and g1(λ) = (λ+d1µi+
1
R1

)(λ+d2µi+γ1).Note that− β2

R1+b
−β(1− 1

R1
)+γ2 < 0,

there exists µ1 = 0 such that −d3µ1 +
β2

R1+b
+ β(1− 1

R1
)− γ2 > 0 holds. Therefore,

m1(λ) has at least one zero with a positive real part and the characteristic Eq. (20)
has at least one positive root with a positive real part. The proof of (i) is complete.

Denote

Ē1 = d1µi +
1

R1
> 0, L̄1 = d2µi > 0, J̄1 = γ1(1−

1

R1
) > 0.

Then we have

g1(λ) + h1(λ) = λ2 + (Ē1 + L̄1)λ+ Ē1L̄1 + J̄1. (21)

Since Ē1 + L̄1 > 0 and Ē1L̄1+ J̄1 > 0, it is easy to see that Eq. (21) has no positive
zeros for all µi.

Define

G(u) ≡ | g1(i
√
u) |2 − | h1(i

√
u) |2

=u2 + (L̄2
1 + 2L̄1γ1 + Ē2

1 )u+ Ē2
1 L̄

2
1 + 2Ē2

1 L̄1γ1 − J̄2
1 + 2Ē1γ1J̄1.

(22)

Since L̄2
1 + 2L̄1γ1 + Ē2

1 is positive for all µi, if F(µi) ≡ Ē2
1 L̄

2
1 + 2Ē2

1 L̄1γ1 − J̄2
1 +

2Ē1γ1J̄1 > 0 then G(u) has no positive zeros.

Next, we discuss the distribution of positive zeros of G(u). Clearly F(0) =
β2
1

R2
1

(1−
1
R1

)( 3
R1

− 1). If 1 < R1 ≤ 3, then F(0) ≥ 0. Since F(µi) = (d1µi +
1
R1

)2d22µ
2
i +

2(d1µi +
1
R1

)2d2µiγ1 +
β1

R1
(1− 1

R1
)[2(d1µi +

1
R1

) β1

R1
− β1

R1
(1− 1

R1
)] is increasing in
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µi, we obtain F(µi) ≥ 0 for all µi. Thus, G(u) has no positive zeros for all µi. It
follows from [24, Lemma 11] that E10 is locally asymptotically stable for all τ ≥ 0.
This completes the proof of (ii).

If R1 > 3, then F(0) < 0. Since F(µi) is increasing in µi and lim
i→∞

F(µi) = ∞,

there exists a constant n ∈ N such that

F(µi) ≥ 0 for i > N1, and F(µi) < 0 for i ≤ N1.

This implies that (22) has no positive root for i > N1, has N1 positive roots for

i ≤ N1, denoted by u1, u2, · · · , uN1
. From (22), we get ui = ω2

i =
−Tri+

√
Tr2

i
−4δi

2 ,

where Tri = L̄2
1 + 2L̄1γ1 + Ē2

1 , δi = Ē2
1 L̄

2
1 + 2Ē2

1 L̄1γ1 − J̄2
1 + 2Ē1J̄1γ1. Similar to

the argument of [24], we obtain

τ ji =
1

ωi

{
arccos

(
B1i√

B2
1i + C2

1i

)
+ 2jπ

}
, i = 1, 2, · · · , N1, j = 0, 1, 2, · · · ,

where

B1i =(
β1
R1

)d1µi +
β1
R2

1

− β1
R1

(1 − 1

R1
)((d1µi +

1

R1
)(d2µi + γ1)− ω2

i )+

β1
R1

ω2
i (d1µi + d2µi +

1

R1
+ γ1),

C1i =− (
β1
R1

d1µi +
β1
R2

1

− β1
R1

(1− 1

R1
))(d1µi + d2µi +

1

R1
+ γ1)ωi+

β1
R1

ωi((d1µi +
1

R1
)(d2µi + γ1)− ω2

i ).

Denote

τ00 = min
i=1,2,··· ,N1

{τ0i }.

It follows easily from − β2

R1+b
−β(1− 1

R1
)+γ2 > 0 that d3µi− β2

R1+b
−β(1− 1

R1
)+γ2 >

0 for all µi. Then all zeros of m1(λ) have negative real parts. Since all zeros
of g1(λ) + h1(λ) have negative real parts, we conclude that all zeros of Eq. (20)
have negative real parts for τ = 0. Since τ00 is the minimum value of τ so that
Eq. (20) has purely imaginary roots, applying Lemma 1.1 of [39], we get E10 is
locally asymptotically stable for τ ∈ [0, τ00) and is unstable for τ > τ00. From (22),
we obtain G′(ui) > 0 for i = 1, 2, · · · , N1. Thus, E10 undergoes a sequence of Hopf

bifurcations as τ increases through τ ji for i = 1, 2, · · · , N1, j = 0, 1, 2, · · · . This
completes the proof of (iii).

For the IG predator-only strong semi-trivial steady state E01, we have the fol-
lowing result.

Theorem 4.5. Consider System (4) with R2 > 1 + b.

(i) If αR2û1(1− û1) + γ1 < β1û1, then E01 is unstable.
(ii) If αR2û1(1− û1) + γ1 > β1û1 and b < û1(R2 + b), then E01 is locally asymp-

totically stable for all τ ≥ 0. Here û1 is defined in Proposition 3.1.

Proof. For u⋄ = (û1, 0,R2(1− û1)û1), we get the characteristic equation

m2(λ)g2(λ) = 0, (23)

with

m2(λ) = (λ+ d2µi + αû3 + γ1 − β1û1e
−λτ ),
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and

g2(λ) =(λ+ d1µi + û1 −
bû1û3

(1 + bû1 + cû3)2
)(λ+ d3µi + γ2 −

β2û1(1 + bû1)

(1 + bû1 + cû3)2
)+

β2û1û3(1 + bû1)(1 + cû3)

(1 + bû1 + cû3)4
,

where

û1 =
−(R2 − cR2 − b) +

√
(R2 − cR2 − b)2 + 4cR2

2cR2
, û3 = R2(1− û1)û1.

Since αR2û1(1− û1)+γ1 < β1û1 and û3 = R2û1(1− û1) then there exists µ1 = 0
such that d2µ1 +αû3 + γ1 < β1û1 holds. Hence, it follows from [24, Lemma 6] that
m2(λ) has at least one zero with a positive real part. The proof of (i) is complete.

Denote

Ē2 = d1µi + û1 −
bû1û3

(1 + bû1 + cû3)2
, L̄2 = d3µi + γ2 −

β2û1(1 + bû1)

(1 + bû1 + cû3)2
,

J̄2 =
β2û1û3(1 + bû1)(1 + cû3)

(1 + bû1 + cû3)4
.

Then we have

g2(λ) = λ2 + (Ē2 + L̄2)λ+ Ē2L̄2 + J̄2.

Since Ē2+ L̄2 = d1µi+d3µi+ û1− bû1û3

(1+bû1+cû3)2
+γ2− β2û1(1+bû1)

(1+bû1+cû3)2
and Ē2L̄2+ J̄2 =

(d1µi+û1− bû1û3

(1+bû1+cû3)2
)(d3µi+γ2− β2û1(1+bû1)

(1+bû1+cû3)2
)+ β2û1û3(1+bû1)(1+cû3)

(1+bû1+cû3)2
. Obviously,

γ2 = β2û1

1+bû1+cû3
> β2û1(1+bû1)

(1+bû1+cû3)2
. Since b < û1(R2 + b), we have bû3 < R2

2û
2
1.

Noting that R2û1 = 1 + bû1 + cû3, we obtain bû3

(1+bû1+cû3)2
< 1. This implies

û1 >
bû1û3

(1+bû1+cû3)2
. Thus g2(λ) has no nonnegative zeros for all τ ≥ 0. It follows

from αR2û1(1 − û1) + γ1 > β1û1 that all roots of m2(λ) have negative real parts.
Thus all zeros of Eq. (23) have negative real parts for all µi, and hence E01 is locally
asymptotically stable. This completes the proof of (ii).

4.3. Stability of the unique positive spatially homogenous steady state
E∗.

4.3.1. Stability and Hopf bifurcation. In this subsection, by taking τ as the bifur-
cation parameter, we investigate the stability and the Hopf bifurcation near the
unique positive spatially homogeneous steady state E∗. For this purpose, we always
assume

(H1) q < 0 and R2 <
(bα+cβ1)(−p+

√
p2−4q)+2(bγ1+β1)

α(−p+
√

p2−4q)+2γ1

.

The above assumption guarantees the uniqueness of the positive spatially ho-
mogeneous steady state E∗. For the spatially homogeneous positive steady state
E∗ = (u∗1, u

∗
2, u

∗
3), the characteristic equation is given below:

λ3 + b2iλ
2 + b1iλ+ b0i + e−λτ (c2λ

2 + c1iλ+ c0i) = 0, (24)

where

b2i = d1µi + d2µi + d3µi + u∗1 − bA3 + β1u
∗

1 + cβ2A3,

b1i = (d1µi + u∗1 − bA3)(d2µi + β1u
∗

1 + d3µi + cβ2A3)+

(d2µi + β1u
∗

1)(d3µi + cβ2A3) + αβu∗2u
∗

3 +A1A2β2u
∗

1u
∗

3,
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b0i = (d1µi + u∗1 − bA3)(d2µi + β1u
∗
1)(d3µi + cβ2A3) + (d1µi + u∗1 − bA3)αβu

∗
2u

∗
3

−αβ2A2u
∗
1u

∗
2u

∗
3 + (d2µi + β1u

∗
1)A1A2β2u

∗
1u

∗
3,

c2 = −β1u∗1,
c1i = β1u

∗
1u

∗
2 − β1u

∗
1(d1µi + d3µi + u∗1 − bA3 + cβ2A3),

c0i = −d1d3β1u∗1µ2
i + d3µiβ1u

∗
1u

∗
2 − d1µicβ2A3β1u

∗
1 − d3µi(u

∗
1 − bA3)β1u

∗
1+

(cβ2A3 +A1βu
∗
3)β1u

∗
1u

∗
2 − (u∗1 − bA3)cβ2A3β1u

∗
1 −A1A2β2u

∗
1u

∗
3β1u

∗
1,

A1 =
1+bu∗

1

(1+bu∗

1
+cu∗

3
)2 , A2 =

1+cu∗

3

(1+bu∗

1
+cu∗

3
)2 , A3 =

u∗

1u
∗

3

(1+bu∗

1
+cu∗

3
)2 .

DenoteM1 = u∗1−bA3,M2 = β1u
∗
1,M3 = cβ2A3,M4 = αβu∗2u

∗
3,M5 = A1A2β2u

∗
1u

∗
3,

M6 = αβ2A2u
∗
1u

∗
2u

∗
3,M7 = A1βu

∗
2u

∗
3. Clearly, Mi > 0 for i = 2, 3, 4, 5, 6, 7.

Furthermore, we assume that
(H2) M1 > 0.
(H3) M6 −M2M7 > 0.
(H4)M1M4 +M2M3u

∗
2 +M2M7 −M6 > 0.

(H ′
3) M6 −M2M7 ≤ 0.

(H ′
4) M1(M1M3 +M5 + u∗2M2) +M3(M1M3 +M4 +M5) +M6 −M2M7 > 0.

Theorem 4.6. (i) Assume that (H1) − (H4) hold. Then the spatially homoge-
neous positive steady state E∗ of System (4) with τ = 0 is locally asymptotically
stable.

(ii) Assume that (H1) − (H2) and (H ′
3) − (H ′

4) hold. Then the spatially homoge-
neous positive steady state E∗ of System (4) with τ = 0 is locally asymptotically
stable.

Proof. When τ = 0, (24) reduces to the following equation

λ3 + (b2i + c2)λ
2 + (b1i + c1i)λ+ b0i + c0i = 0. (25)

Since M1 > 0, a direct calculation yields

b2i + c2 = (d1 + d2 + d3)µi +M1 +M3 > 0.

b1i + c1i =(d1d2 + d1d3 + d2d3)µ
2
i + (M3d1 +M3d2 +M1d2 +M1d3)µi +M1M3+

M4 +M5 + u∗2M2 > 0.

b0i + c0i =d1d2d3µ
3
i + (M3d1d2 +M1d2d3)µ

2
i+

(M2u
∗

2d3 +M1M3d2 +M4d1 +M5d2)µi +M1M4 +M2M3u
∗

2+

M2M7 −M6.

(b2i + c2)(b1i + c1i)− (b0i + c0i) =d1µi(b1i + c1i − d2d3µ
2
i −M3d2µi −M4)+

d3µi(b1i + c1i − u∗2M2)+

d2µi(b1i + c1i −M1d3µi −M1M3 −M5)+

M1(b1i + c1i −M4) +M3(b1i + c1i − u∗2M2)+

M6 −M2M7.

Since b1i + c1i − d2d3µ
2
i −M3d2µi −M4 > 0, b1i + c1i − u∗2M2 > 0, b1i + c1i −

M1d3µi −M1M3 −M5 > 0, b1i + c1i −M4 > 0, b1i + c1i − u∗2M2 > 0, it follows from
(H3) that (b2i + c2)(b1i + c1i)− (b0i + c0i) > 0 for all µi.

It follows from (H2) and (H4) that b0i + c0i > 0 for all µi. Thus, by the Routh-
Hurwitz stability criterion, all the roots of (25) have negative real parts. This
completes the proof of part (i). Similarly, noting that (b2i+c2)(b1i+c1i)−(b0i+c0i)
is increasing in µi under (H2), we can prove part (ii).
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Next, we discuss the effect of the delay τ 6= 0 on the stability of the positive
steady state E∗ . We first determine critical values of τ at which a pair of simple
purely imaginary eigenvalues appears.

Let λ = iω (ω > 0) be a root of Eq. (24). Substituting λ = iω into Eq. (24) yields

−iω3 − b2iω
2 + ib1iω + b0i + (−c2ω2 + iωc1i + c0i)e

−iωτ = 0,

which implies that

b2iω
2 − b0i = (c0i − c2ω

2) cosωτ + c1iω sinωτ, (26)

− ω3 + b1iω = (c0i − c2ω
2) sinωτ − c1iω cosωτ. (27)

It follows from (26) and (27) that

ω6 + (b22i − 2b1i − c22)ω
4 + (b21i − 2b0ib2i + 2c0ic2 − c21i)ω

2 + b20i − c20i = 0. (28)

Let ω2 = s, and denote pi = b22i−2b1i−c22, qi = b21i−2b0ib2i+2c0ic2−c21i, ri = b20i−c20i.
Then (28) is reduced to

h(s) ≡ s3 + pis
2 + qis+ ri = 0. (29)

From (24), we get

pi =(d21 + d22 + d23)µ
2
i + 2(M1d1 +M2d2 +M3d3)µi+

M2
1 +M2

3 − 2M4 − 2M5,

b0i − c0i =d1d2d3µ
3
i + (d1d2M3 + d2d3M1 + 2d1d3M2)µ

2
i+

(2d1M2M3 + d2M1M3 + 2d3M1M2 + d1M4 + d2M5 − d3u
∗

2M2)µi+

2M1M2M3 + 2M2M5 +M1M4 − u∗2M2M3 −M2M7 −M6.

In the following, we need to seek conditions required for Eq. (29) to have at least
one positive root. For this purpose, we further make the following hypotheses: (H5)
2M1M2M3 + 2M2M5 +M1M4 − u∗2M2M3 −M2M7 −M6 < 0.

(H6) 2d1M2M3 + d2M1M3 + 2d3M1M2 + d1M4 + d2M5 − d3u
∗
2M2 ≥ 0.

Since b0i − c0i is increasing in µi under (H2) and (H6), it follows from (H5) that
there exists N2 ∈ N such that

b0i − c0i < 0 for 1 ≤ i ≤ N2 and b0i − c0i ≥ 0 for i ≥ N2 + 1, i ∈ N.

According to the above analysis, we have the following lemma.

Lemma 4.7. (i) Assume that (H2),(H4)− (H6) hold. Then Eq. (29) has at least
one positive root for each i ∈ {1, 2, · · · , N2}.

(ii) Assume that and (H2), (H
′
3) and (H5)− (H6) hold. Then Eq. (29) has at least

one positive root for each i ∈ {1, 2, · · · , N2}.
Proof. It follows from (H2) and (H4) that b0i + c0i > 0 for all i ∈ N. Thus ri < 0
if and only if b0i − c0i < 0. It follows from (H2), (H5) and (H6) that there exists
µi (i = 1, 2, · · · , N2) such that ri < 0. Since lim

s→∞
h(s) = ∞ for fixed µi, then (29)

has at least one positive root for each i ∈ {1, 2, · · · , N2}. This completes proof of
part (i). Similarly, we can prove part (ii).

Remark 3. From Lemma 4.2, without loss of generality, for each i, 1 ≤ i ≤ N2,
we may assume that it has three positive roots, which are denoted by s1,i, s2,i, s3,i,
respectively. Then for each i, 1 ≤ i ≤ N2, (18) has three positive roots ωk,i =√
sk,i, k = 1, 2, 3. By (26) and (27), we get
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cosωk,iτk,i =
(c1i − b2ic2)ω

4
k,i + (b2ic0i + b0ic2 − c1ib1i)ω

2
k,i − b0ic0i

(c0i − c2ω2
k,i)

2 + c21iω
2
k,i

.

Let

τ ik,j =

(
arccos

(
(c1i−b2ic2)ω

4
k,i+(b2ic0i+b0ic2−c1ib1i)ω

2
k,i−b0ic0i

(c0i−c2ω
2
k,i

)2+c2
1i
ω2

k,i

)
+ 2jπ

)

ωk,i

(30)

for 1 ≤ i ≤ N2, k = 1, 2, 3, j = 0, 1, 2, · · · . Then ±iωk,i is a pair of purely imaginary
roots of (28) with τ = τ ik,j . Define

τ∗ = τ i0k0,0
= min

k=1,2,3, i=1,2,··· ,N2

τ ik,0, ω∗ = ωk0,i0 . (31)

Lemma 4.8. Let λ(τ) = α(τ)± iβ(τ) be the roots of Eq. (14) near τ = τ∗ satisfying
α(τ∗) = 0, β(τ∗) = ω∗. Suppose that h′((ω∗)2) > 0. Then ±iω∗ is a pair of simple
purely imaginary roots of Eq. (24). Moreover, the following transversality condition
holds:

sign

{
d(Reλ(τ))

dτ

}

τ=τ∗,λ=iω∗

> 0.

Proof. We denote P (λ) = λ3 + b2iλ
2 + b1iλ + b0i, Q(λ) = c2λ

2 + c1iλ + c0i. Then
(24) can be rewritten as

P (λ) +Q(λ)e−λτ = 0. (32)

It is easy to know (26) and (27) are equivalent to the following equations

ReP (iω) = −ReQ(iω) cosωτ − ImQ(iω) sinωτ,

ImP (iω) = ReQ(iω) sinωτ − ImQ(iω) cosωτ.

Thus

h(ω2) = (ReP (iω))2 + (ImP (iω))2 − ((ReQ(iω))2 + (ImQ(iω))2). (33)

Differentiating both sides of (33) with respect to ω yields

2ωh′(ω2) = i[P ′(iω)P̄ (iω)− P̄ ′(iω)P (iω)−Q′(iω)Q̄(iω) + Q̄′(iω)Q(iω)]. (34)

Substituting iω∗ into (32) yields

|P (iω∗)| = |Q(iω∗)|. (35)

If iω∗ is not simple, then iω∗ must satisfy P ′(iω∗)+[Q′(iω∗)−τ∗Q(iω∗)]e−iω∗τ∗

= 0.

Note that e−iω∗τ∗

= −P (iω∗)/Q(iω∗), we obtain τ∗ = Q′(iω∗)
Q(iω∗) − P ′(iω∗)

P (ω∗) . Using (34)

and (35), we have

Imτ∗ =Im

[
Q′(iω∗)

Q(iω∗)
− P ′(iω∗)

P (iω∗)

]
= Im

[
Q′(iω∗)Q̄(iω∗)

Q(iω∗)Q̄(iω∗)
− P ′(iω∗)P̄ (iω∗)

P (iω∗)P̄ (iω∗)

]

=
1

Q(iω∗)Q̄(iω∗)
Im
[
Q′(iω∗)Q̄(iω∗)− P ′(iω∗)P̄ (iω∗)

]

=
Q′(iω∗)Q̄(iω∗)− P ′(iω∗)P̄ (iω∗)− Q̄′(iω∗)Q(iω∗) + P̄ ′(iω∗)P (iω∗)

2i|Q(iω∗)|2

=
ω∗h′((ω∗)2)

|Q(iω∗)|2 .

This is a contradiction. Thus ±iω∗ is a pair of simple purely imaginary roots of
Eq. (24).
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Since ±iω∗ are simple purely imaginary roots and

P ′(iω∗) + [Q′(iω∗)− τ∗Q(iω∗)]e−iω∗τ∗ 6= 0,

we may consider λ = λ(τ) to be a differentiable function. Differentiating (22) with
respect to τ yields

dλ(τ)

dτ
=

λQ(λ)

P ′(λ)eλτ +Q′(λ) − τQ(λ)
.

Using (32) again, we obtain

(
dλ(τ)

dτ

)−1

= − P ′(λ)

λP (λ)
+
Q′(λ)

λQ(λ)
− τ

λ
. (36)

Thus, from (36), we have

sign

{
d(Reλ(τ))

dτ

}

τ=τ∗,λ=iω∗

=sign

{
Re

[
− P ′(λ)

λP (λ)
+
Q′(λ)

λQ(λ)
− τ

λ

]}

τ=τ∗,λ=iω∗

=sign
{
Reλ̄

[
Q′(λ) ¯Q(λ) − P ′(λ) ¯P (λ)

]}
λ=iω∗

=sign
{
(ω∗)2h′((ω∗)2)

}
> 0.

This completes the proof.

When τ ∈ [0, τ∗), we know that (24) has no roots on the imaginary axis. By
the eigenvalue theory of [39], the sum of orders of the zeros of Eq. (24) for τ ∈
[0, τ∗) is equal to Eq. (25). Then Eq. (24) only has negative real part roots for
τ ∈ [0, τ∗), which implies that (u∗1, u

∗
2, u

∗
3) is locally asymptotically stable for τ ∈

[0, τ∗). Combining Theorem 4.6, Lemma 4.7 and Lemma 4.8, we arrive the following
theorem.

Theorem 4.9. Assume that either (H1)−(H6) or (H1), (H2), (H
′
3), (H

′
4), (H5), (H6)

hold. We have the following results

(i) The spatially homogeneous positive steady state E∗ = (u∗1, u
∗
2, u

∗
3) of System

(4) is locally asymptotically stable for τ ∈ [0, τ∗) and unstable when τ > τ∗,
where τ∗ is difined in (31).

(ii) Furthermore, suppose that h′((ω∗)2) > 0. Then System (4) undergoes Hopf
bifurcation at the positive steady state E∗ = (u∗1, u

∗
2, u

∗
3) when τ = τ ik,j , i.e., a

family of spatially periodic solutions bifurcate from E∗ = (u∗1, u
∗
2, u

∗
3) when τ

crosses through the critical values τ ik,j , where τ
i
k,j is defined in (30).

Remark 4. There exist parameter values such that hypotheses (H1)− (H6) hold.
For example, we choose parameter values α = 0.7, β = 0.9, β1 = 1.95, β2 = 1.8, γ1 =
0.2, γ2 = 0.8, b = 2.5, c = 12, d1 = 0.25, d2 = 0.28, d3 = 0.2. Using any CAS, it is
easy to check that hypotheses (H1)− (H6) are satisfied.

4.3.2. Properties of Hopf bifurcations. In this section, we investigate the direction
of Hopf bifurcation and the stability of bifurcated periodic solutions by using the
normal form theory and center manifold reduction. For convenience, for fixed k ∈
{1, 2, 3}, j = 0, 1, 2, · · · , we denote τ ik,j(1 ≤ i ≤ N2) by τ̂ , and denote ωk,i(1 ≤ i ≤
N2) by ω̂.

Let τ = τ̂+µ, µ ∈ R and ũ1(t, ·) = u1(τt, ·)−u∗1, ũ2(t, ·) = u2(τt, ·)−u∗2, ũ3(t, ·) =
u3(τt, ·)− u∗3 and Ũ(t) = (ũ1(t, ·), ũ2(t, ·), ũ3(t, ·)) as u1 − u∗1, u2 − u∗2, u3 − u∗3, then
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drop the tildes for simplicity. System (1.4) can be rewritten in the phase space
C = C([−1, 0], X) as

U̇(t) = τ̂D△U(t) + L(τ̂ )(Ut) + F (Ut, µ), (37)

where D = diag{d1, d2, d3}, L(δ)(·) : C → X and F : C ×R → X are given by

L(δ)φ = δ




(
bu∗

1u
∗

3

(1+bu∗

1
+cu∗

3
)2 − u∗1)φ1(0)− u∗1φ2(0)−

(1+bu∗

1)u
∗

1

(1+bu∗

1
+cu∗

3
)2φ3(0)

β1u
∗
2φ1(−1) + β1u

∗
1φ2(−1)− β1u

∗
1φ2(0)− αu∗2φ3(0)

β2(1+cu∗

3)u
∗

3

(1+bu∗

1
+cu∗

3
)2φ1(0) + βu∗3φ2(0)−

cβ2u
∗

1u
∗

3

(1+bu∗

1
+cu∗

3
)2φ3(0)




and

F (φ, µ) = µD∆φ(0) + L(µ)φ+ f(φ, µ),

where

f(φ, µ) =(τ̂ + µ)×



(φ1(0) + u∗1)(−φ1(0)− φ2(0)− φ3(0)+u∗

3

1+b(φ1(0)+u∗

1
)+c(φ3(0)+u∗

3
)+

u∗

3

1+bu∗

1
+cu∗

3

)− ((
bu∗

1u
∗

3

(1+bu∗

1
+cu∗

3
)2 − u∗1)φ1(0)− u∗1φ2(0)−

(1+bu∗

1)u
∗

1

(1+bu∗

1
+cu∗

3
)2φ3(0))

β1φ1(−1)φ2(−1)− αφ2(0)φ3(0)

(φ3(0) + u∗3)(
β2(φ1(0)+u∗

1)
1+b(φ1(0)+u∗

1
)+c(φ3(0)+u∗

3
) + βφ2(0)− β2u

∗

1

1+bu∗

1
+cu∗

3

)

−(
β2(1+cu∗

3)u
∗

3

(1+bu∗

1
+cu∗

3
)2φ1(0) + βu∗3φ2(0)−

cβ2u
∗

1u
∗

3

(1+bu∗

1
+cu∗

3
)2φ3(0))




for φ = (φ1, φ2, φ3) ∈ C. Let A to be the infinitesimal generator of the semigroup
induced by the solution of the linearized equation of (37)

U̇(t) = τ̂D△U(t) + L(τ̂ )(Ut).

Thus Eq. (37) can be written in the following abstract form

dUt

dt
= AUt +X0F (Ut, µ),

where X0(θ) =

{
0, θ ∈ [−1, 0),
I, θ = 0.

Recall that the Banach space decomposition X =
⊕∞

i=0 Xi. In view of the Resiz representation theorem, there exists a 3 × 3 matrix
function η(θ, τ̂ ) (−1 ≤ θ ≤ 0), whose entries are bounded variation such that

−τ̂Dµiφ(0) + L(τ̂ )(φ) =

∫ 0

−1

d[η(θ, τ̂ )]φ(θ),

for φ ∈ C([−1, 0], R3). We can choose

η(θ, τ̂ ) =τ̂




−d1µi +
bu∗

1u
∗

3

(1+bu∗

1
+cu∗

3
)2 − u∗1 −u∗1 − (1+bu∗

1)u
∗

1

(1+bu∗

1
+cu∗

3
)2

0 −d2µi − β1u
∗
1 −αu∗2

β2(1+cu∗

3)u
∗

3

(1+bu∗

1
+cu∗

3
)2 βu∗3 −d3µi − cβ2u

∗

1u
∗

3

(1+bu∗

1
+cu∗

3
)2




× δ(θ) + τ̂




0 0 0
−β1u∗2 −β1u∗1 0

0 0 0


 δ(θ + 1),

where δ is a Dirac delta function.
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Let us define C∗ = C([0, 1],R3∗), where R
3∗ is the 3−dimensional vector space

of row vectors, A∗ with domain dense in C∗ and range in C∗. Let P and P∗ be the
center subspace, that is, the generalized eigenspace of A and A∗ associated with
Λ∗ = {iω̂τ̂ ,−iω̂τ̂}.

For Φ ∈ C([−1, 0], R3),Ψ ∈ C([0, 1], R3∗), we define

A(Φ(θ)) =

{
dΦ(θ)
dθ

, θ ∈ [−1, 0),∫ 0

−1[dη(θ, τ̂ )]Φ(θ), θ = 0,

and

A∗(Ψ(s)) =

{
− dΨ(s)

ds
, s ∈ (0, 1],∫ 0

−1 Ψ(−θ)[dη(θ, τ̂ )], s = 1.

Then A∗ is the formal adjoint of A under the bilinear pairing

〈ψ, φ〉 =ψ(0)φ(0)−
∫ 0

−1

∫ θ

0

ψ(ξ − θ)d[η(θ, τ̂ )]φ(ξ)dξ

=ψ̄(0)φ(0) + τ̂

∫ 0

−1

ψ̄(ξ + 1)




0 0 0
β1u

∗
2 β1u

∗
1 0

0 0 0


φ(ξ)dξ,

for φ ∈ C([−1, 0], R3), ψ ∈ C([0, 1], R3∗).
In view of the definition of the two infinitesimal generators A and A∗, we have

the following conclusions.

Lemma 4.10. Let

η1 =
(d3µi +M3)(G

2
2 +H2

2 )− βu∗3(G1G2 +H1H2)

u∗3β2A2(G2
2 +H2

2 )
+

i
(ω̂(G2

2 +H2
2 )− βu∗3(G2H1 −G1H2))

u∗3β2A2(G2
2 +H2

2 )
,

η∗1 =
−αu∗2(G3G4 +H3H4)− (d3µi +M3)(G

2
4 +H2

4 )

u∗1A1(G2
4 +H2

4 )
−

i
αu∗2(G4H3 −G3H4) + ω̂(G2

4 +H2
4 )

u∗1A1(G2
4 +H2

4 )
,

η2 =
G1G2 +H1H2 + i(G2H1 −G1H2)

G2
2 +H2

2

, η∗2 =
G3G4 +H3H4 + i(G4H3 −G3H4)

G2
4 +H2

4

,

where Gi, Hi (i = 1, 2, 3, 4) are defined as follows
G1 =M5 − ω̂ + (d1µi +M1)(d3µi +M3), H1 = ω̂(d1µi +M1 + d3µi +M3),
G2 = βu∗3d1µi + βM1u

∗
3 − β2u

∗
1u

∗
3A2, H2 = βu∗3ω̂,

G3 = −M5−(d3µi+M3)(d1µi+M1)+(ω̂)2, H3 = −ω̂(d3µi+M3)−ω̂(d1µi+M1),
G4 = u∗2A1M2 cos ω̂τ̂ + αu∗2(d1µi +M1), H4 = −u∗2A1M2 sin ω̂τ̂ + αu∗2ω̂.
Then
p(θ) = eiω̂τ̂θ(η1, η2, 1)

T is the eigenfunction of A with respect to iω̂τ̂ ;
p∗(s) = e−iω̂τ̂s(η∗1 , η

∗
2 , 1) is the eigenfunction of A∗ with respect to iω̂τ̂ .

Proof. The proof is standard and we omit it here.

Clearly, from Lemma 4.10, we know the center subspace of Eq. (37) is

P = span{p(θ), ¯p(θ)},P∗ = span{p∗(s), ¯p∗(s)}.
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Then C can be decomposed as C = P ⊕Q, where

Q = {ψ ∈ C : 〈ψ̂, ψ〉 = 0 for all ψ̂ ∈ P∗}.

It follows from Lemma 4.12 that

〈p∗(s), p(θ)〉 = ¯p∗(0)p(0)+

τ̂

∫ 0

−1

e−iω̂τ̂(ξ+1)(η̄∗1 , η̄
∗
2 , 1)




0 0 0
β1u

∗
2 β1u

∗
1 0

0 0 0


 (η1, η2, 1)

T eiω̂τ̂ξdξ

=η̄∗1η1 + η̄∗2η2 + 1 + β1u
∗

2τ̂ e
−iω̂τ̂η1η̄∗2 + β1u

∗

1τ̂ e
−iω̂τ̂η2η̄∗2 .

Thus we choose D = 1/(η̄∗1η1 + η̄∗2η2 + 1+ β1u
∗
2τ̂ e

−iω̂τ̂η1η̄∗2 + β1u
∗
1τ̂ e

−iω̂τ̂η2η̄∗2). Let

Φ = (p(θ), ¯p(θ)),Ψ = D(p∗(s), ¯p∗(s))T ≡ (q(s), ¯q(s))T , then 〈Ψ,Φ〉 = I, where I is
the identity matrix in R

2×2.
In what follows, in order to determine the bifurcation direction and stability, we

compute the coordinates to describe the center manifold C0. As the formulas to be
developed for the bifurcation direction and stability are all relative to µ = 0 only,
we set µ = 0 in Eq. (4.24) and obtain a center manifold

W (z, z̄)(θ) =W20(θ)
z2

2
+W11(θ)zz̄ +W02(θ)

z̄2

2
+ · · · (38)

with the range in Q. The flow of Eq. (4.24) on the center manifold can be written
as

Ut = Φ · (z(t), ¯z(t))T +W (z(t), ¯z(t)). (39)

Moreover, from (39), z satisfies

ż(t) =
d

dt
〈q(s), Ut〉 = 〈q(s),AUt〉+ 〈q(s), X0F (Ut, 0)〉

=iω̂τ̂ z + ¯q(0)f(W (z, z̄) + 2Re{zp(θ)}, 0)
=iω̂τ̂ z + g(z, z̄),

(40)

where

g(z, z̄) = g20
z2

2
+ g11zz̄ + g02

z̄2

2
+ g21

z2z̄

2
+ · · ·.

By the Taylor expansion

v + v∗

1 + b(u+ u∗) + c(v + v∗)
=

v∗

1 + bu∗ + cv∗
− bv∗u

(1 + bu∗ + cv∗)2
+

(1 + bu∗)v

(1 + bu∗ + cv∗)2

+ C11u
2 + C12uv + C13v

2 + C14u
2v + C15uv

2+

C16u
3 + C17v

3 +O(4),

u+ u∗

1 + b(u+ u∗) + c(v + v∗)
=

u∗

1 + bu∗ + cv∗
+

(1 + cv∗)u

(1 + bu∗ + cv∗)2
− cu∗v

(1 + bu∗ + cv∗)2

+ C21u
2 + C22uv + C23v

2 + C24u
2v + C25uv

2+

C26u
3 + C27v

3 +O(4),

(41)
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where

C11 =
b2v∗

(1 + bu∗ + cv∗)3
, C12 =

bcv∗ − b(1 + bu∗)

(1 + bu∗ + cv∗)3
, C13 = − c(1 + bu∗)

(1 + bu∗ + cv∗)3
,

C14 =
b2(1 + bu∗ − 2cv∗)

(1 + bu∗ + cv∗)4
, C15 =

bc(2(1 + bu∗)− cv∗)

(1 + bu∗ + cv∗)4
, C16 =

−b3v∗
(1 + bu∗ + cv∗)4

,

C17 =
c3(1 + bu∗)

(1 + bu∗ + cv∗)4
, C21 = − b(1 + cv∗)

(1 + bu∗ + cv∗)3
, C22 =

bcu∗ − c(1 + cv∗)

(1 + bu∗ + cv∗)3
,

C23 =
c2u∗

(1 + bu∗ + cv∗)3
, C24 =

bc(2(1 + cv∗)− bu∗)

(1 + bu∗ + cv∗)4
, C25 =

c2(1 + cv∗ − 2bu∗)

(1 + bu∗ + cv∗)4
,

C26 =
b3(1 + cv∗)

(1 + bu∗ + cv∗)4
, C27 = − c3u∗

(1 + bu∗ + cv∗)4
.

Noting that (40), we get

g(z, z̄) = D̄(η̄∗1 , η̄
∗
2 , 1)f(W (z, z̄) + zp(θ) + z̄ ¯p(θ), 0). (42)

Substituting (38) into (42) and combining (41) yield

g20 =2D̄τ̂ [η̄∗1
(
(bA3/u

∗

1 − C11u
∗

1 − 1)η21 − η1η2 − C13u
∗

1 − (A1 + C12u
∗

1)η1
)
+

η̄∗2(β1η1η2e
−2iω̂τ̂ − αη2) + η̄∗3(u

∗

3β2C21η
2
1 + C23u

∗

3β2 −M3/u
∗

3+

(β2A2 + β2C22u
∗

3)η1 + βη2)],

g11 =D̄τ̂ [η̄∗1(2(bA3/u
∗

1 − C11u
∗

1 − 1)η1η̄1 − (η1η̄2 + η2η̄1)− 2C13u
∗

1−
(A1 + C12u

∗

1)(η1 + η̄1)) + η̄∗2(β1(η1η̄2 + η̄1η2)− α(η2 + η̄2))+

η̄∗3(2u
∗

3β2C21η1η̄1 + 2(C23u
∗

3β2 −M3/u
∗

3)+

(β2A2 + β2C22u
∗

3)(η1 + η̄1) + β(η2 + η̄2))],

g21 =2D̄τ̂ [η̄∗1(2(bA3/u
∗

1 − C11u
∗

1 − 1)(η1W
(1)
11 (0) +

η̄1
2
W

(1)
20 (0))− (

W
(1)
20 (0)

2
η̄2+

W
(2)
11 (0)η1 +W

(1)
11 (0)η2 +

W
(2)
20 (0)

2
η̄1)− 2C13u

∗

1(W
(3)
11 (0) +

W
(3)
20 (0)

2
)−

(A1 + C12u
∗

1)(
W

(1)
20 (0)

2
+W

(1)
11 (0) +W

(3)
11 (0)η1 +

W
(3)
20 (0)

2
η̄1)−

3(C11 + C16u
∗

1)η1η1η̄1 − (C12 + C14u
∗

1)(η1η1 + η1η̄1 + η̄1η1)− 3C17u
∗

1−

(C13 + C15u
∗

1)(2η1 + η̄1)) + η̄∗2(β1η1W
2
11(−1)e−iω̂τ̂ + β1η̄1e

iω̂τ̂ W
2
20(−1)

2
+

β1η̄2e
iω̂τ̂W

1
20(−1)

2
+ β1η2W

1
11(−1)e−iω̂τ̂ − αη2W

(3)
11 (0)− αη̄2

W
(3)
20 (0)

2
−

α
W

(2)
20 (0)

2
− αW

(2)
11 (0)) + η̄∗3(2u

∗

3β2C21(W
(1)
11 (0)η1 +

η̄1
2
W

(1)
20 (0))+

2(C23u
∗

3β2 −M3/u
∗

3)(W
(3)
11 (0) +

W
(3)
20 (0)

2
) + (β2A2 + β2C22u

∗

3)(
W

(1)
20 (0)

2
+

η1W
(3)
11 (0) + η̄1

W
(3)
20 (0)

2
+W

(1)
11 (0)) + β(η2W

(3)
11 (0) + η̄2

W
(3)
20 (0)

2
+
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W
(2)
20 (0)

2
+W

(2)
11 (0)) + 3C26u

∗

3β2η1η1η̄1 + 3(C23β2 + u∗3β2C27)+

(C21β2 + u∗3β2C24)(η
2
1 + 2η1η̄1) + (C22β2 + u∗3β2C25)(2η1 + η̄1))],

g02 = 2 ¯g20D̄/D.

Since W (z(t), ¯z(t)) satisfies the following equation

Ẇ =AW +X0f(Φ · (z, z̄)T +W (z, z̄), 0)− ΦΨ(0)f(Φ · (z, z̄)T +W (z, z̄), 0)

=AW +H20
z2

2
+H11zz̄ +H02

z̄2

2
+ · · ·

(43)

we obtain




(2iω̂τ̂ −A)W20 = H20,
−AW11 = H11,
(−2iω̂τ̂ −A)W02 = H02.

(44)

Since A has only two eigenvalues ±iω̂τ̂ , then Eq. (44) has only a unique solution
Wij .

We first compute Hij(θ), θ ∈ [−1, 0]. From (43), we know that for −1 ≤ θ < 0,

H(z, z̄) = −ΦΨ(0)f(Φ · (z, z̄)T +W (z, z̄), 0).

Therefore, by comparing the coefficients, and notice that

H(z, z̄)(0) = f(Φ · (z, z̄)T +W (z, z̄), 0)− ΦΨ(0)f(Φ · (z, z̄)T +W (z, z̄), 0),

we obtain

H20(θ) =



−(g20p(θ) + ¯g02 ¯p(θ)), θ ∈ [−1, 0),

2τ̂




(bA3/u
∗
1 − C11u

∗
1 − 1)η21 − η1η2 − C13u

∗
1 − (A1 + C12u

∗
1)η1

β1η1η2e
−2iω̂τ̂ − αη2

u∗3β2C21η
2
1 + C23u

∗
3β2 −M3/u

∗
3 + (β2A2 + β2C22u

∗
3)η1 + βη2




−[g20p(0) + ¯g02 ¯p(0)], θ = 0.

H11(θ) =



−(g11p(θ) + ¯g11 ¯p(θ)), θ ∈ [−1, 0),

2τ̂




( bA3

u∗

1

− C11u
∗
1 − 1)η1η̄1 − Re{η1η̄2} − C13u

∗
1 − (A1 + C12u

∗
1)Re{η1}

β1Re{η1η̄2} − αRe{η2}
u∗3β2C21η1η̄1 + C23u

∗
3β2 − M3

u∗

3

+ (β2A2 + β2C22u
∗
3)Re{η1}+ βRe{η2}




−[g11p(0) + ¯g11 ¯p(0)], θ = 0.

It follows from (44) and the definition of A that

Ẇ20(θ) = 2iωnτ̂W20(θ) + [g20p(θ) + ¯g02p̄(θ)],−1 ≤ θ ≤ 0,

− Ẇ11(θ) = −[g11p(θ) + ¯g11 ¯p(θ)],−1 ≤ θ ≤ 0.

Noting that p(θ) = p(0)eiω̂τ̂θ,−1 ≤ θ ≤ 0, we have

W20(θ) = [
ig20
ω̂τ̂

p(θ) +
i ¯g02
3ω̂τ̂

¯p(θ)] + E1e
2iω̂τ̂θ,

W11(θ) = [
−ig11
ω̂τ̂

p(θ) +
i ¯g11
ω̂τ̂

¯p(θ)] + E2.

(45)
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Utilizing the definition of A, (44) and (45) yields

E1 = 2




(bA3/u
∗
1 − C11u

∗
1 − 1)η21 − η1η2 − C13u

∗
1 − (A1 + C12u

∗
1)η1

β1η1η2e
−2iω̂τ̂ − αη2

u∗3β2C21η
2
1 + C23u

∗
3β2 −M3/u

∗
3 + (β2A2 + β2C22u

∗
3)η1 + βη2


×




2iω̂ + d1µi +M1 u∗1 u∗1A1

−β1u∗2e−2iω̂τ̂ 2iω̂ + d2µi +M2(1− e−2iω̂τ̂ ) αu∗2
−β2A2u

∗
3 −βu∗3 2iω̂ + d3µi +M3



−1

and

E2 =2



d1µi + u∗1 − bA3 u∗1 u∗1A1

−β1u∗2 d2µi αu∗2
−β2A2u

∗
3 −βu∗3 d3µi + cβ2A3



−1

×




( bA3

u∗

1

− C11u
∗
1 − 1)η1η̄1 − Re{η1η̄2} − C13u

∗
1 − (A1 + C12u

∗
1)Re{η1}

β1Re{η1η̄2} − αRe{η2}
u∗3β2C21η1η̄1 + C23u

∗
3β2 − M3

u∗

3

+ (β2A2 + β2C22u
∗
3)Re{η1}+ βRe{η2}


 .

Now, we can compute the following values

c1(0) =
i

2ω̂τ̂
(g20g11 − 2|g11|2 −

|g02|2
3

) +
g21
2
, ν2 = −Re(c1(0))

Re(λ′(τ̂ ))
,

β2 = 2Re(c1(0)), T2 = − Im(c1(0)) + ν2Im(λ′(τ̂ ))

ω̂τ̂
,

which determine the properties of bifurcating periodic solutions at critical value
τ̂ , that is, ν2 determines the directions of the Hopf bifurcation; β2 determines the
stability of the bifurcating periodic solutions; T2 determines the period of bifurcating
periodic solutions. Moreover, by Hassard [41], we have the following result.

Theorem 4.11. Assume that the conditions of Theorem 4.5 are satisfied, we have

(i) If ν2 > 0 (< 0), then the direction of the Hopf bifurcation is forward (back-
ward).

(ii) If β2 < 0 (> 0), then the bifurcating periodic solutions are orbitally stable
(unstable).

(iii) If T2 > 0 (< 0), then the period of the bifurcating periodic solutions increases
(decreases).

5. Numerical simulations.

5.1. The spatiotemporal dynamics in one-dimensional space. In this sub-
section, we numerically explore the dynamic behavior of System (4) with one-

dimensional space, namely n = 1,∆ = ∂2

∂x2 and we take Ω = (0, π).
For the choice of the parameter values in System (4), we refer to [10, 11, 12, 15]

and choose parameter values as follows
(P1) : α = 0.7, β = 0.9, β1 = 1.95, β2 = 1.8, γ1 = 0.2, γ2 = 0.8, b = 2.5, c = 5.5, d1 =
0.4, d2 = 0.3, d3 = 0.2
and the initial conditions as
(IC1) : φ1(t, x) = 0.1717 + 0.001 cosx, φ2(t, x) = 0.7509 + 0.001 cosx, φ3(t, x) =
0.1926 + 0.001 cosx.

With these parameter values, System (4) admits a unique positive spatially ho-
mogeneous steady state E∗ = (u∗1, u

∗
2, u

∗
3) ≈ (0.1717, 0.7509, 0.1926). It is easy to
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Figure 1. Numerical solutions of (4) with τ = 0.7 < τ∗ ≈ 0.7895
(only the u1 component is plotted here): the positive spatially
homogeneous steady state is locally stable.

Figure 2. Numerical solutions of (4) with τ = 1.2 > τ∗ ≈ 0.7895:
a periodic solution bifurcates from the positive spatially homoge-
neous steady state E∗.

check that the hypotheses (H1) − (H6) hold and h′((ω∗)2) = 0.0938 > 0. By
Theorem 4.9, local Hopf bifurcation occurs at τ∗ ≈ 0.7859. We use the forward
Euler method to find numerical solutions to System (4) with τ = 0.7 < τ∗ and
τ = 1.2 > τ∗, respectively. As illustrated in Figures 1 and 2, when τ = 0.7 < τ∗,
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Figure 3. Numerical solutions of the temporal model (left) and
numerical solutions of the spatiotemporal model (right) with τ = 1,
(P2) and (IC2). Here, for the spatiotemporal model (4), average
population density for each species is plotted.
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Figure 4. Numerical solutions of the temporal model (left) and
numerical solutions of the spatiotemporal model (right) with τ =
1.5, (P2) and (IC′

2). Here, periodic oscillations are observed for the
temporal model and chaotic behavior is observed for the spatiotem-
poral model.

solutions of (4) approach the steady state E∗, while when τ > τ∗, sustained oscilla-
tions are observed. Calculations give c1(0) = −4.2942− 30.9399i, ν2 = 83.06, β2 =
−8.5884, T2 = 185.7969. Thus the Hopf bifurcation is forward and the bifurcated
periodic solutions from E∗ are stable and the period of bifurcated periodic solution
increases in τ for τ > τ∗.

5.2. The spatiotemporal dynamics in two-dimensional space. Consider Sys-

tem (4) with u1 = u1(t, x, y), u2 = u2(t, x, y), u3 = u3(t, x, y) and ∆ = ∂2

∂x2 + ∂2

∂y2 .

For this purpose, the domain of System (4) is confined to a fixed spatial domain
Ω = [0, L]× [0, L] ⊂ R2 with L = 400. we solve System (4) on a grid with 400× 400
sites by a simple Euler method with a time step size of δt = 0.01 and a space step
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Figure 5. Snapshots of contour maps of the basal resource u1
for the temporal model (left) and spatiotemporal model (right) at
t = 2000 with τ = 1.5, (P2) and (IC′

2).

size of δx = δy = 1. The discretization of the Laplacian term takes the form

∆u|(i,j) =
1

s2
[Al(i, j)u(i− 1, j) +Ar(i, j)u(i+ 1, j)+

Ad(i, j)u(i, j − 1) +Au(i, j)u(i, j + 1)− 4u(i, j)],

where (i, j) denote the lattice sites and s = 1 is the lattice constant. The ma-
trix elements of Al, Ar, Ad, Au are unity except at the boundary. When (i, j) lies
on the left boundary, that is i = 0, we define Al(i, j)u(i − 1, j) ≡ u(i + 1, j),
which guarantees zero-flux of individuals in the left boundary. Similarly we define
Ar(i, j), Ad(i, j), Au(i, j) such that the zero-flux boundary condition is satisfied.

With the given Neumann boundary conditions, the eigenvalues of −∆ on Ω are

µi =
π2

L2 (n
2 +m2), n,m ∈ Z, where Z represents the integer set. In order to discuss

the impacts of delay and diffusion on the dynamics of System (4), we will compare
the temporal model (that is, System (4) without diffusion) with System (4). We
take parameters as

(P2) : α = 0.7, β = 0.9, β1 = 1.95, β2 = 1.85, γ1 = 0.2, γ2 = 0.8, b = 2.5, c =
5, d1 = 1, d2 = 2, d3 = 4.

We consider two types of different initial conditions:
(IC2) : φ1(t, x, y) = u∗1 + 0.001 sinx sin y, φ2(t, x, y) = u∗2 + 0.001 sinx sin y,
φ3(t, x, y) = u∗3 + 0.001 sinx sin y,
and

(IC′

2) :





u1(t, x, y) = 0.1754− ε1(x− 0.1y − 225)(x− 0.1y − 675),
u2(t, x, y) = 0.7419− ε2(x− 450)− ε3(y − 150),
u3(t, x, y) = 0.2029− ε4(x− 350)− ε5(y − 200)

for (t, x, y) ∈ [−τ, 0]× Ω. Here ε1 = 2× 10−7, ε2 = 3 × 10−5, ε3 = 1.2× 10−3, ε4 =
6× 10−5, ε5 = 3× 10−5.

Under (P2) and (IC2), it is easy to check that all conditions of Theorem 4.9 are
satisfied and there is a unique positive steady state E∗ ≈ (0.1754, 0.7419, 0.2029).
The corresponding Hopf bifurcation value is computed as τ11,0 ≈ 0.8028.

Figure 3 depicts the population dynamics of the temporal model and the spa-
tiotemporal model at τ = 1. Both the temporal model and the spatiotemporal
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Figure 6. Snapshots of contour maps of the time evolution of the
specie u1 at t = 200, 500, 1000, 1200, 1500, 2500 with τ = 1.5
under (P2) and (IC′

2).

model undergo periodic oscillations. However, the temporal model exhibits irregu-
lar transient oscillations initially.

If we increase τ to τ = 1.5 and use initial condition (IC′
2), as shown in Figure

4, the temporal model still exhibits regular oscillations, while the spatiotempo-
ral model exhibits irregular oscillations and the calculated Lyapunov exponent is
0.0011 > 0 (By the method proposed in [42]), which indicates the occurrence of
chaos.

Figure 5 depicts the snapshots of the contour maps of specie u1 for the temporal
model and the spatiotemporal model at time t = 5000. The temporal model exhibits
the spiral wave pattern. However, the spatiotemporal model presents the chaotic
wave pattern. To have a better understanding on the evolution process of the
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Figure 7. Snapshots of contour maps of the time evolution of
the basal resource u1 with different values of τ at time t = 1500
under (P2) and (IC′

2). (i) τ = 0.86; (ii) τ = 1; (iii) τ = 1.2; (iv) τ =
1.4; (v) τ = 1.6; (vi) τ = 1.9.
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Figure 8. Snapshots of contour maps of the basal resource u1 at
time t = 1500 with different diffusion coefficients, τ = 1.5, under
(P2) and (IC′

2).

spatiotemporal pattern, in Figure 6, we present the snapshots of contour maps of the
basal resource u1 at t=200,500, 1000, 1200, 1500, 2500, respectively. As pointed out
in [43], the spirals are usually observed under suitable parametric conditions near
Turing-Hopf bifurcation threshold. In addition, in the spatially extended system
the existence of a stable limit cycle normally results in the formation of chaotic
spatiotemporal patterns [44]. As can be seen from Figure 6, as time t increases, an
chaotic wave spatial pattern is gradually formed starting from a regular spiral wave
pattern.

5.2.1. The effect of delay. To explore the impact of delay, in Figure 7, we take the
snapshots of the contour maps of specie u1 at time t = 1500 for several different
values of τ . As can be seen in Figure 7, the time delay can lead to the formation
of an irregular spatial pattern from a regular spiral pattern in the whole domain as
the time delay increases and surpasses some critical value.

5.2.2. The effect of diffusion. As seen from Figure 6, System (4) has a regular spiral
wave pattern when τ = 1.5, d1 = 1, d2 = 2 and d3 = 4 at t = 1500. To numerically
examine how the diffusion affects the pattern, we take the snapshots of contour
maps of u1 at t = 1500 with several different choices of the diffusion coefficients. As
shown in Figure 8, spiral wave pattern emerges firstly when d1 = d2 = d3 = 0, then
as the three diffusion coefficients change to d1 = d2 = 0.01, d3 = 0.04, the spiral
wave structure disappears around the center of the spirals wave, with the increase
in these diffusion coefficients, it grows steadily, and eventually the chaotic wave
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Figure 9. Snapshots of contour maps of the time evolution of the
basal resource u1 with different values of b and parameter values
α = 0.7, β = 0.9, β1 = 1.95, β2 = 1.85, γ1 = 0.2, γ2 = 0.8, c = 5 at
times t = 1500 and τ = 1.5 under(IC′

2).

pattern dominates the whole domain. Differing from the instability mechanism in
Figure 7, the spirals wave loses its stability due to the Doppler effect [45].

5.2.3. The impact of the prey saturation constant b. Figure 9 demonstrates how
the prey saturation constant constant b affects the pattern formation of the basal
resource u1 at time t = 1500 with τ = 1.5 : when b is small, we observe a pattern
with stripes firstly; as the constant b increases, the spiral wave pattern emerges, then
it grows steadily, as b goes beyond a certain value, chaotic wave pattern appears.

5.2.4. The impact of the predator interference constant c. To see how the predator
interference constant c influences the spatiotemporal pattern, we numerically sim-
ulation (4) with different values of c and plot the snapshots of the contour maps
of the basal resource u1 at t = 1500 in Figure 10. It is illustrated in Figure 10
that the predator interference constatn c can also lead to the formation of chaotic
wave spatial pattern, which can be preceded from the evolution of a regular spiral
patterns as the predator interference constant c decreases.

6. A summary and discussion. In this work, we have investigated the spatiotem-
poral dynamics of a diffusive IGP model with delay and the Beddington-DeAngelis
functional response. we have established locally asymptotically stability results of
the trivial, semi-trivial and strong semi-trivial steady states. In the case that there
is a unique positive spatially homogeneous steady state E∗, we have carried out
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Figure 10. Snapshots of contour maps of the time evolution of the
basal resource u1 with different values of c and parameter values
α = 0.7, β = 0.9, β1 = 1.95, β2 = 1.85, γ1 = 0.2, γ2 = 0.8, b = 2.5 at
times t = 1500 and τ = 1.5 under (IC′

2).

the Hopf bifurcation analysis. Unlike competition models with monotone response
functions ([17]) where delay does not induce sustained oscillations, in our IGP mod-
els, delay promotes complex dynamics including bistability, and the emergence of
spiral wave pattern and chaotic wave pattern.

Compared with the temporal model in [24], we also observe bistability is possible
in System (4). In addition, the diffusion also has impacts on the formation of
spatiotemporal patterns as it can change the distribution of characteristic roots of
the corresponding characteristic equations, and hence has an important effect on
the dynamics for the constant steady state of System (4). This has been illustrated
via numerical simulations as well (See Figure 8). Moreover, we have observed that
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the functional response can also influence the formation of complex patterns. As
demonstrated in Figures 9 and 10, the functional responses can also trigger the
emergence of spiral wave pattern and chaotic wave spatial pattern.
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