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Abstract. When mathematical models of infectious diseases are used to in-

form health policy, an important first step is often to calibrate a model to

disease surveillance data for a specific setting (or multiple settings). It is in-
creasingly common to also perform sensitivity analyses to demonstrate the ro-

bustness, or lack thereof, of the modeling results. Doing so requires the modeler
to find multiple parameter sets for which the model produces behavior that is

consistent with the surveillance data. While frequently overlooked, the calibra-

tion process is nontrivial at best and can be inefficient, poorly communicated
and a major hurdle to the overall reproducibility of modeling results.

In this work, we describe a general approach to calibrating infectious disease

models to surveillance data. The technique is able to match surveillance data to
high accuracy in a very efficient manner as it is based on the Newton-Raphson

method for solving nonlinear systems. To demonstrate its robustness, we use

the calibration technique on multiple models for the interacting dynamics of
HIV and HSV-2.

1. Introduction. In order to take a mathematical model of infectious disease from
a theoretical construct to a practical tool for informing health policy in a specific
setting, an important initial step is model calibration. The terms “model calibra-
tion”, “model fitting” and “model parameterization” all describe the process of
estimating values for the parameters used within a mathematical model so that its
output is relevant to the situation of interest. Despite its importance, calibration
is commonly overlooked as a part of the modeling process with its details often
relegated to appendices or supporting materials. Insufficient communication of the
calibration process presents a significant obstacle to the overall reproducibility of
modeling work.

In this work we present an exact approach to calibrating infectious disease models
to surveillance data that aims to streamline the process while increasing efficiency
and reducing reliance on computational methods. At its core, the approach reserves
specified model parameters to be used as fitting variables where the number of
fitting variables is determined by the number of calibrating conditions to be satisfied.
Estimates for the remaining model parameters are established from empirical studies
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and/or previous modeling studies. Once a set of values has been specified for non-
fitting parameters, values of the fitting variables are found so that the mathematical
model exactly matches the given calibration conditions.

The structure of the paper is as follows: in the next section we describe three gen-
eral approaches to model calibration. In Section 3, we outline our general approach
to exact model calibration and illustrate it with a simple toy model. Focusing our
attention to the calibration of models for the interaction of HIV and HSV-2 (genital
herpes) for illustration, we then demonstrate our calibration approach for multiple
mathematical models of varying complexity: a 4-compartment SI-type model for
the interaction of HIV and HSV-2 in Section 4, the Granich et al. model [11] for
HIV in Section 5, an HIV/HSV-2 coinfection model with behavioral response in
Section 6 and some extensions to the calibration approach in Section 7. Finally,
in Section 8 we provide a summary of the approach and discuss generalizations,
strengths and weaknesses.

2. Background. When parameterizing a model, the subset of parameters that will
be allowed to vary in order to achieve a desirable fit to data is identified. We refer
to these as calibration or fitting parameters. In an ideal situation, reliable estimates
and/or ranges of values exist for the remaining model parameters. Model calibration
or fitting is then the process a specifying values for the calibration parameters.
While many techniques for doing so exist, we emphasize three general approaches.

While easy to overlook as a method, manual calibration is quite possibly the
most ubiquitous approach to model fitting. We use the term “manual calibration”
to loosely refer to scenarios in which a modeler simply plays with parameter values
until a satisfactory fit is achieved. Despite its lack of rigor, the hands-on approach
of adjusting parameter values and observing the effects offers the researcher an
opportunity to gain valuable insights and familiarity with a model. Of course,
obvious downsides for the manual approach include the facts that the process can
be inefficient, produce less than desirable calibration results and can be difficult to
reproduce.

A more formal, yet still intuitive, approach involves obtaining random samples of
parameter sets and finding those that adequately fit the data. In this approach, one
begins by specifying probability distributions for the parameters of interest. Multi-
ple random parameter sets are then sampled from these distributions (often using a
Latin Hypercube Sampling technique) with the model simulated for each parameter
set. Parameter sets that do not produce model behavior that adequately fits the
given data are then filtered out leaving only those that are relevant. The remaining
parameter sets then represent the result of the calibration process. Such a cali-
bration is conducive to uncertainty and sensitivity analysis as variation in multiple
model parameters is included in the parameter sets. However, a drawback of the
approach is its ultimate reliance on sophisticated statistical techniques (e.g. partial
rank correlation coefficients, logistic regression, etc.) to demonstrate relationships
between model parameters and behaviors of interest. The required familiarity with
these techniques (including their appropriateness in the given situation and their
metrics) can impede clear understanding of the modeling results for some readers.
Lastly, the fact that parameters are randomly sampled means that, although the
qualitative behavior should be the same, the modeling results are not completely
reproducible.

The last and most formal approach to calibration is to use a numerical fitting
algorithm. In this approach, optimal parameter values are found that minimize a
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specified metric of error (e.g. absolute or squared error between model simulation
and data). Numerical fitting algorithms can be deterministic (e.g. Nelder-Meade
simplex method and Levenburg-Marquardt method) or involve a stochastic search
component (e.g. Markov chain Monte Carlo search and genetic algorithms) and are
often quite computationally demanding. The benefit of such rigorous methods is
that they reproducibly produce the very best fit possible for a given model. The
price for their performance is that the details are complicated and hidden within
subroutines of many proprietary software packages. Consequently, the process of
model calibration is hidden within a “black box” for many practitioners.

3. Illustration of the exact approach to model calibration. The goal of this
work is to introduce an exact approach to model calibration. Our approach is not
intended to replace those described above but rather as an alternative that may be
preferable in certain situations or could be used in conjunction with other methods
in others.

For example, it is often the case that one wishes to calibrate an epidemiological
model to disease surveillance data (i.e. standardized estimates of disease prevalence,
incidence and other important indicators) such as those contained in WHO Global
TB database and the UNAIDS/WHO Global HIV/AIDS Online Database. More
specifically, assume that we are examining an infectious disease in a particular
setting for which disease prevalence is at or near endemic equilibrium.

As a simple illustrative example of the overall approach, consider calibrating a
basic SI infectious disease model, given by

S′ = Λ− βSI − µS,
I ′ = βSI − µI,

to disease prevalence at endemic equilibrium. We must first identify the calibration
parameter. In general, we note that disease transmission coefficients are particu-
larly well-suited for this role as reliable estimates for transmission coefficients rarely
exist and because transmission coefficients incorporate a multitude of factors that
can vary significantly among different settings and populations (e.g. biological and
environment factors, human behavior, effect of interventions, etc.). Using β as
our calibration parameter, we note that the model yields a disease prevalence of
P ∗ = 1 − µ/β at endemic equilibrium. Hence, when values for the other model
parameters are established, the transmission coefficient β can be used to exactly
calibrate to a specified disease prevalence, P ∗, using the fact that β = µ/(1− P ∗).

Of course, calibration in this simple example is greatly facilitated by an analytic
expression for disease prevalence at equilibrium that will not be available for more
detailed models. In following sections, we show how the construction of a calibration
system of equations that is then solved by Newton’s Method can overcome this
hurdle for models of varying complexity.

4. Four-compartment SI-type HIV/HSV-2 coinfection model. In this sec-
tion, we consider the simplest framework for the interacting dynamics of HIV and
HSV-2. The model includes only four classes of individuals: susceptible to infection
by both HIV and HSV-2, infected with HSV-2 only, infected with HIV only, and co-
infected with both HIV and HSV-2. To model the epidemics of the two infections,
we incorporate the multiples ways that HIV and HSV-2 interact.
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Many epidemiological studies [9, 21, 14, 5, 15] have shown that infection with
HSV-2 increases an individual’s susceptibility to infection with HIV. The mech-
anisms behind this increased susceptibility are that genital ulcers resulting from
HSV-2 infection provide passage to HIV viruses through epithelial cell layers to
the more vulnerable cell layers beneath and that HSV-2 infection promotes the re-
cruitment of HIV target cells to the genital region. In our model, HIV-negative
individuals that are infected with HSV-2 are more likely to become infected with
HIV than those not infected with HSV-2. Higher HIV infectivity has also been ob-
served for individuals that are coinfected with HIV and HSV-2 compared to those
infected with only HIV [12, 4] due to increased HIV viral load and/or increased
access through mucosal membranes via herpetic lesions. Consequently, we model
HIV-positive individuals that are also HSV-2 infected as more infectious than those
that are only infected with HIV. Lastly, it has also been shown that infection with
HIV increases HSV-2 infectivity of coinfected individuals by increasing the duration
of HSV-2 shedding episodes and increases the frequency of such episodes [1].

4.1. The model. The interacting dynamics of HIV and HSV-2 infection are mod-
eled using the following system:

S′ = Λ− βS(A+ r2C)

N
− σS(H + r3C)

N
− µS,

H ′ =
σS(H + r3C)

N
− r1βH(A+ r2C)

N
− µH,

A′ =
βS(A+ r2C)

N
− σA(H + r3C)

N
− (µ+ µA)A,

C ′ =
r1βH(A+ r2C)

N
+
σA(H + r3C)

N
− (µ+ µA)C,

(1)

where S is the number of fully susceptible individuals (i.e. infected with neither
HIV nor HSV-2); H is the number of individuals infected with HSV-2 only; A is
the number of individuals infected with HIV only; C is the number of individuals
infected with both HIV and HSV-2; and N = S + H + A + C is the total size
of the population. We assume a background mortality rate of µ and that disease
mortality is only induced by HIV infection and is modeled at a rate of µA. The
model incorporates the most important aspects of the interaction between HIV
and HSV-2 infection. Namely, being infected with HSV-2 renders an individual
more susceptible to HIV infection (by a factor of r1); co-infected individuals are
more infectious and likely to spread both HIV and HSV-2 (r2 and r3, respectively).
Consequently, we have that ri ≥ 1 for i = 1, 2, 3. For detailed descriptions of
how the empirical findings on the interaction of HIV and HSV-2 infection from
[9, 21, 14, 5, 15, 9, 21, 14, 5, 15, 12, 4] are transformed into transmission cofactors
for mathematical modeling, see [10, 1]. The flow diagram for the model is depicted
in Figure 4.

4.2. Calibration to HIV and HSV-2 prevalence at equilibrium. As in Sec-
tion 3, we will consider the situation where we wish to parameterize the current
model in (1) for a setting with specified HIV and HSV-2 prevalence levels (which

we denote as Â and Ĥ, respectively) assuming both diseases are at equilibrium. To
achieve the two prevalence conditions, we use the transmission coefficient for HIV,
β, and that for HSV-2, σ, as fitting parameters. We assume that values for the
remaining model parameters have been established (e.g. fixed from the literature).
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Figure 1. Flow diagram of the four-compartment SI-type
HIV/HSV-2 coinfection model. N = S +H +A+ C.

It is worth noting that despite the relative simplicity and small dimension of the
model in (1), finding an explicit expression for the its endemic equilibrium is in-
tractable via direct methods due to the highly nonlinear nature of the system; even
when using modern computer algebra systems (CAS).

Our calibration approach is facilitated by rescaling the state variables of the
model so that s = S

N , h = H
N , a = A

N and c = C
N . Hence, state variables of the

rescaled model represent proportions of the total population rather than numbers
of individuals. Noting that s = 1− h− a− c, the full model (1) reduces to

h′ = σ(1− h− a− c)(h+ r3c)− r1βh(a+ r2c)− µh,
a′ = β(1− h− a− c)(a+ r2c)− σa(h+ r3c)− (µ+ µA)a,

c′ = r1βh(a+ r2c) + σa(h+ r3c)− (µ+ µA)c.

(2)

If the endemic equilibrium is denoted by (h∗, a∗, c∗) and we calibrate to the preva-
lence data

Â : overall HIV prevalence at endemic equilibrium,

Ĥ : overall HSV-2 prevalence at endemic equilibrium,
(3)

it follows that Â = a∗ + c∗ and Ĥ = h∗ + c∗. At endemic equilibrium, it must be
the case that h′ = a′ = c′ = 0. Including our calibration conditions, we arrive at
our calibration system of equations

0 = σ∗(1− h∗ − a∗ − c∗)(h∗ + r3c
∗)− r1β∗h∗(a∗ + r2c

∗)− µh∗, (4)

0 = β∗(1− h∗ − a∗ − c∗)(a∗ + r2c
∗)− σ∗a∗(h∗ + r3c

∗)− (µ+ µA)a∗, (5)

0 = r1β
∗h∗(a∗ + r2c

∗) + σ∗a∗(h∗ + r3c
∗)− (µ+ µA)c∗, (6)

0 = a∗ + c∗ − Â, (7)

0 = h∗ + c∗ − Ĥ, (8)

where the first three equations impose the equilibrium conditions and the last two
impose the calibration conditions on disease prevalence.

4.2.1. Newton’s Method. Introduced in many first semester Calculus courses, New-
ton’s Method is perhaps the most famous numerical method because of its efficiency
and elegance. In the one-dimensional case, the method finds successively better ap-

proximations to the solution of f(x) = 0 using the iteration xn+1 = xn − f(xn)
f ′(xn)

.
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f(xn)
slope = f 0(xn)

Figure 2. Visual illustration of Newton’s Method in 1-dimension
for finding the solution of f(x) = 0. As illustrated, the iteration

xn+1 = xn− f(xn)
f ′(xn)

results from finding the root of the tangent line

at the current iteration (xn, f(xn)).

As seen in Figure 2, Newton’s Method essentially approximates the root of a func-
tion using the root of its first order approximation (i.e. its tangent line in the

1-dimensional case). In n−dimensions where we wish to solve f(~x) = ~0, New-
ton’s Method can be written as ~xn+1 = ~xn − [Df(~xn)]−1f(~xn), where Df(~x) is
the Jacobian matrix of f evaluated at ~x. As matrix inverses are computationally
unstable, the typical iteration is ~xn+1 = ~xn + ∆~x where ∆x is the solution to
Df(~xn)∆~x = −f(~xn). As long as the initial approximation ~x0 is close enough to
the actual root and the Jacobian is nonsingular, Newton’s Method converges quickly
to the desired root.

Unfortunately, there is no theoretical result dictating how close is “close enough”
to guarantee convergence and one must often experiment with initial approxima-
tions until a suitable one is found [6]. To use Newton’s Method to solve of our
calibration system (8), it turns out that finding an initial approximation close
enough to the actual solution is not terribly demanding. In fact, using the sim-
plifying assumption that HIV and HSV-2 infection are independent produces an
adequate initial approximation in every scenario tested. Specifically, we let

c0 = ÂĤ, a0 = Â− ÂĤ, h0 = Ĥ − ÂĤ, (9)

and solve (4) and (6) for σ and β to obtain initial estimates

σ0 =
(µ+ µA) c0 + µh0

(c0r3 + h0) (1− c0 − h0)
=

ÂµA + µ(
1− Ĥ

)(
1− (1− r3) Â

) , (10)

β0 =
(µ+ µA) (1− a0 − h0 − c0) c0 − a0h0µ

h0r1 (1− c0 − h0) (c0r2 + a0)
=

µA(
1− (1− r2) Ĥ

)
r1
. (11)

Given its prominence among numerical methods, a form of Newton’s Method should
be available in all computing platforms. In most software, Newton’s Method is at the
core of the default root-finding function. Among options for the required precision
of the solution, maximum iterations, etc., most implementations can compute an
automatic numerical approximation to Jacobian matrix. Alternatively, the user can
choose to supply the exact Jacobian function to increase efficiency and accuracy.
In every scenario tested, automatic approximations to the Jacobian have performed
admirably.
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4.3. Demonstration of calibration to HIV and HSV-2 prevalence. In this
section, we demonstrate the performance of our calibration technique. We begin
with two specific examples that illustrate the convergence of the numerical iteration
for our calibration parameters in Section 4.3.1. We then demonstrate the robustness
of the approach by calibrating the model for 50 independent, randomly sampled
parameter sets and calibration conditions in Section 4.3.2. In Table 1, we summarize
model parameters and calibration conditions as well as establish baseline values
and/or ranges to be used in both demonstrations.

Table 1. Model parameters and calibration conditions for the
four-compartment SI-type HIV/HSV-2 coinfection model. † Val-
ues used in the high HIV burden example; South Africa. ‡ Values
used in the low HIV burden example; United Kingdom.

Symbol Baseline Range References

Model Parameters

Average time in sexually active population (years) 1/µ 35 30 – 40
Recruitment rate into the sexually active population (/yr) Λ 1

35
1
40 – 1

30
Diseased-induced mortality due to HIV infection (/yr) µA

1
20
†, 1

100
‡ 1

100 – 1
20

Cofactor for increased HIV susceptibility due to HSV-2 infection r1 1.80 1.4 – 2.4 [9, 21, 13, 1]
Cofactor for increased HIV infectivity due to HSV-2 infection r2 1.45 1.2 – 1.7 [1, 12, 17, 4]
Cofactor for increased HSV-2 infectivity due to HIV infection r3 1.30 1.2 – 1.5 [1]

Calibration Conditions

HIV prevalence at endemic equilibrium (%) Â 17†, 0.3‡ 0.3 – 17 [18]

HSV-2 prevalence at endemic equilibrium (%) Ĥ 50†, 4‡ 4 – 50 [2, 16, 22, 20]

Calibration Parameters

Transmission coefficient for HIV β determined by calibration procedure

Transmission coefficient for HSV-2 σ determined by calibration procedure

4.3.1. Specific examples. To demonstrate the performance of our calibration ap-
proach for a high HIV prevalence setting, we consider the case of South Africa.
Data from the World Bank [18] shows that, like in many sub-Saharan African coun-
tries, HIV prevalence has stabilized over last several years. Figure 3 shows HIV
prevalence among South Africans aged 15-49 from 1990-2013. Given that HSV-2

1990 1992 1994 1996 1998 2000 2002 2004 2006 2008 2010 2012

0
5

10
15

20

Year

H
IV

 P
re

va
le

nc
e 

(%
)

Figure 3. HIV prevalence in South Africa (% of population ages
15-49 infected with HIV) from 1990-2013. Data from the World
Bank, World Development Indicators [18].

was prevalent in human populations long before HIV, it is reasonable to assume



160 DAVID J. GERBERRY

that HSV-2 prevalence would have also be at or near endemic equilibrium. While
more uncertainty exists in estimates of HSV-2 prevalence than HIV prevalence, data
suggests an HSV-2 prevalence of roughly 50% [2, 16, 22].

For the South Africa example, we use the baseline parameter values from Table 1
which includes three values specific to South Africa (i.e. µA = 1

20 to incorporate the

impact of HIV on life expectancy in South Africa, Â = 0.17 and Ĥ = 0.50.). Our
initial approximation to the solution of the calibration system of equations (4)–(8)
is found using (9)–(11) to get

c0 = 0.085, a0 = 0.085, h0 = 0.415, σ0 = 0.0705, β0 = 0.0367.

Table 2 shows the iterations of Newton’s Method to complete the calibration. We
note that the method converges after only 3 iterations.

We use data from the United Kingdom as an example of low HIV prevalence
setting. Clearly, calibrating the unstructured model from (1) to HIV prevalence
in the general population is not appropriate for making policy decisions regarding
HIV in the UK given the concentrated nature of infection among particular risk
groups. Given such low HIV burden, it is also difficult to argue that prevalence is
at or near equilibrium. Here, we use this extreme example simply to illustrate the
robust nature of our calibration approach. For this example, we assume an HIV
prevalence of 0.3% [18] and an HSV-2 prevalence of 4.0% [20].

For the United Kingdom example, we use the baseline parameter values from
Table 1 which includes three parameters values specific to the United Kingdom
(i.e. µA = 1

100 to reflect that life expectancy of HIV-infected individuals is near

that of uninfected individuals in the United Kingdom, Â = 0.003 and Ĥ = 0.04.).
Our initial approximation to the solution of the calibration system of equations (4)–
(8) is found using (9)–(11) to get

c0 = 0.00012, a0 = 0.00288, h0 = 0.03988, σ0 = 0.029766, β0 = 0.035352.

As shown in Table 2, convergence to the solution of the calibration system is
achieved in only 2 iterations of Newton’s Method.

4.3.2. Robustness of calibration approach. In this section, we calibrate the four-
compartment SI-type HIV/HSV-2 coinfection model for a range of randomly sam-
pled model parameters and calibration conditions. Specifically, we obtain 50 in-
dependent samples of model parameters and calibration conditions from uniform
distributions over the ranges given in Table 1. The calibration system (4)–(8) was
then solved using Newton’s Method with initial approximation given by (9)–(11).
For each sample, the calibrated value of β and σ was noted along with the result-
ing HIV and HSV-2 prevalence at endemic equilibrium and the necessary number
of iterations of Newton’s Method. The results are shown in Table 3. For all 50
simulations, the calibration approach successfully matched the calibration condi-
tions (i.e. HIV and HSV-2 prevalence) while requiring no more than 4 iterations of
Newton’s Method.

5. Granich et al. HIV model. In this section, we consider an HIV-only model
based on that of Granich et al. [11]. This highly influential modeling work, which
appeared in The Lancet, sparked considerable interest among the HIV community
in the strategy of “Treatment as Prevention” which is essentially the idea that
providing early antiretroviral treatment (ART) to HIV-infected individuals reduces
their HIV viral load (and consequently their infectiousness) thus preventing future
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Table 2. Calibration of the four-compartment SI-type HIV/HSV-
2 coinfection model for a high prevalence and low prevalence set-
ting; South Africa and the United Kingdom, respectively. Note
that i = 0 the “0th iteration” refers to our initial approxima-
tion to the solution of the calibration system (4)–(8). HIV and
HSV-2 prevalence at the endemic equilibrium that results from us-

ing the ith approximations for β and σ are denoted Âi and Ĥi,
respectively. Precision is measured by average absolute value
of the calibration system (4)–(8) evaluated at the current ap-

proximation (i.e. ||f(hi,ai,ci,σi,βi)||1
5 ). A stopping criteria of

max{|βi − βi−1|, |σi − σi−1|} < 10−9 is used for Newton’s Method.

i βi σi Âi Ĥi precisioni

South Africa (HIV prevalence 15%, HSV-2 prevalence 50%)

0 0.0367143341 0.0705450591 0.0000000447 0.5949903301 3.10× 10−3

1 0.0528598059 0.0770336930 0.1775025497 0.4988482844 2.77× 10−4

2 0.0522429752 0.0764216142 0.1700166525 0.5000125340 1.44× 10−6

3 0.0522423466 0.0764181115 0.1700000000 0.5000000000 3.38× 10−11

United Kingdom (HIV prevalence 0.3%, HSV-2 prevalence 4%)

0 0.0353517304 0.0297663650 0.0000221420 0.0401412229 5.78× 10−6

1 0.0359324850 0.0297727618 0.0033368789 0.0399611984 1.86× 10−8

2 0.0359185167 0.0297727520 0.0030000000 0.0400000000 1.10× 10−13

Table 3. Robustness of calibrating the four-compartment SI-type
HIV/HSV-2 coinfection model to HIV and HSV-2 prevalence at the
endemic equilibrium. For each sample j = 1, 2, ..., 50, the result-
ing values of the calibration parameters (β∗, σ∗) and the resulting

disease prevalences at equilibrium (Â∗, Ĥ∗) are given. The number
of iterations of Newton’s Method required to achieve a stopping
criterion of max{|βi − βi−1|, |σi − σi−1|} < 10−9 is denoted by m.

Sampled parameter values and calibration conditions Calibration results

j Λ µ µA r1 r2 r3 Â Ĥ β∗ σ∗ Â∗ Ĥ∗ m
1 0.026 0.028 0.037 1.98 1.65 1.24 0.088 0.276 0.043 0.045 0.088 0.276 4
2 0.033 0.027 0.015 2.39 1.23 1.22 0.146 0.164 0.039 0.035 0.146 0.164 4
3 0.028 0.027 0.022 1.55 1.25 1.23 0.007 0.340 0.037 0.042 0.007 0.340 3
4 0.025 0.032 0.042 2.39 1.52 1.50 0.025 0.275 0.043 0.046 0.025 0.275 3
5 0.025 0.028 0.016 2.24 1.33 1.36 0.145 0.291 0.034 0.042 0.145 0.291 4
6 0.032 0.027 0.021 2.01 1.51 1.28 0.123 0.294 0.034 0.042 0.123 0.294 4
7 0.031 0.033 0.033 1.89 1.57 1.41 0.065 0.290 0.043 0.049 0.065 0.290 4
8 0.031 0.030 0.020 1.67 1.67 1.48 0.110 0.330 0.034 0.046 0.110 0.330 4
9 0.027 0.028 0.030 2.19 1.29 1.45 0.016 0.409 0.033 0.048 0.016 0.409 3
10 0.029 0.028 0.029 1.84 1.67 1.47 0.170 0.134 0.054 0.038 0.170 0.134 4
11 0.025 0.030 0.035 1.66 1.40 1.47 0.147 0.477 0.046 0.066 0.147 0.477 4
12 0.032 0.028 0.022 1.56 1.24 1.37 0.143 0.176 0.050 0.037 0.143 0.176 4
13 0.026 0.028 0.040 1.59 1.54 1.38 0.026 0.419 0.041 0.050 0.026 0.419 3
14 0.027 0.028 0.048 2.14 1.41 1.33 0.025 0.152 0.059 0.036 0.025 0.152 3
15 0.031 0.027 0.044 1.69 1.47 1.43 0.121 0.312 0.055 0.048 0.121 0.312 4
16 0.029 0.033 0.045 1.43 1.42 1.44 0.162 0.354 0.067 0.061 0.162 0.354 4
17 0.028 0.029 0.033 1.54 1.31 1.48 0.118 0.234 0.056 0.042 0.118 0.234 4
18 0.028 0.029 0.012 1.59 1.58 1.32 0.027 0.377 0.026 0.047 0.027 0.377 3
19 0.026 0.029 0.029 1.87 1.24 1.37 0.074 0.315 0.044 0.045 0.074 0.315 4
20 0.033 0.031 0.021 2.39 1.41 1.49 0.145 0.127 0.047 0.037 0.145 0.127 4
21 0.030 0.031 0.017 1.60 1.38 1.39 0.024 0.054 0.046 0.033 0.024 0.054 3
22 0.025 0.032 0.010 1.46 1.46 1.30 0.098 0.412 0.031 0.055 0.098 0.412 4
23 0.029 0.028 0.046 1.64 1.59 1.30 0.150 0.256 0.060 0.049 0.150 0.256 4
24 0.031 0.026 0.044 2.16 1.57 1.50 0.040 0.360 0.038 0.044 0.040 0.360 4
25 0.028 0.030 0.022 2.05 1.54 1.24 0.132 0.093 0.051 0.038 0.132 0.093 4

Sampled parameter values and calibration conditions Calibration results

j Λ µ µA r1 r2 r3 Â Ĥ β∗ σ∗ Â∗ Ĥ∗ m
26 0.033 0.027 0.019 1.64 1.54 1.35 0.140 0.384 0.033 0.048 0.140 0.384 4
27 0.033 0.028 0.025 2.12 1.23 1.43 0.125 0.488 0.034 0.058 0.125 0.488 4
28 0.026 0.030 0.024 2.06 1.20 1.46 0.050 0.497 0.033 0.062 0.050 0.497 3
29 0.028 0.032 0.021 2.35 1.65 1.26 0.117 0.419 0.027 0.059 0.117 0.419 4
30 0.032 0.027 0.014 2.15 1.45 1.40 0.007 0.336 0.023 0.041 0.007 0.336 3
31 0.029 0.028 0.021 2.30 1.32 1.24 0.007 0.416 0.026 0.048 0.007 0.416 3
32 0.031 0.032 0.028 1.98 1.46 1.34 0.143 0.166 0.054 0.044 0.143 0.166 4
33 0.025 0.030 0.012 2.31 1.67 1.36 0.160 0.044 0.045 0.032 0.160 0.044 4
34 0.027 0.025 0.018 1.66 1.25 1.24 0.122 0.099 0.045 0.031 0.122 0.099 3
35 0.029 0.032 0.024 2.00 1.36 1.38 0.141 0.197 0.049 0.044 0.141 0.197 4
36 0.029 0.031 0.012 2.01 1.20 1.45 0.006 0.367 0.027 0.049 0.006 0.367 3
37 0.026 0.028 0.047 2.07 1.60 1.37 0.155 0.070 0.076 0.041 0.155 0.070 4
38 0.032 0.027 0.027 1.84 1.60 1.42 0.161 0.397 0.036 0.051 0.161 0.397 4
39 0.033 0.032 0.043 1.88 1.32 1.38 0.021 0.412 0.047 0.055 0.021 0.412 3
40 0.026 0.033 0.037 1.83 1.66 1.34 0.022 0.390 0.038 0.055 0.022 0.390 3
41 0.033 0.032 0.035 1.86 1.24 1.26 0.073 0.049 0.068 0.038 0.073 0.049 3
42 0.027 0.026 0.031 2.14 1.37 1.33 0.113 0.069 0.057 0.033 0.113 0.069 3
43 0.033 0.027 0.022 1.95 1.41 1.28 0.126 0.217 0.041 0.039 0.126 0.217 4
44 0.030 0.026 0.014 2.34 1.39 1.22 0.119 0.317 0.027 0.041 0.119 0.317 4
45 0.029 0.028 0.021 2.06 1.38 1.22 0.048 0.480 0.026 0.055 0.048 0.480 4
46 0.026 0.027 0.031 1.77 1.67 1.25 0.143 0.439 0.036 0.057 0.143 0.439 4
47 0.029 0.032 0.031 2.09 1.23 1.40 0.030 0.337 0.042 0.050 0.030 0.337 3
48 0.028 0.029 0.025 1.67 1.22 1.35 0.160 0.303 0.049 0.047 0.160 0.303 4
49 0.033 0.033 0.040 1.83 1.62 1.47 0.041 0.375 0.042 0.055 0.041 0.375 4
50 0.029 0.030 0.045 2.23 1.22 1.39 0.044 0.101 0.067 0.037 0.044 0.101 3

infection. Subsequent clinical trials motivated in large part by the modeling study
have confirmed the prevention benefit of early initiation of ART, showing up to a
96% reduction in HIV transmission [7, 3, 19, 8].

5.1. The model. We consider a modified version of the Granich et al. model which
tracks the number of susceptible individuals, S, and infected individuals I1, I2, I3, I4
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Figure 4. Flow diagram of the modified Granich et al. HIV
model. I = I1 + I2 + I3 + I4, N = S + I1 + I2 + I3 + I4 and
P = I

N .

as follows:

dS

dt
= Λ− λe−αP

n

SI

N
− µS,

dI1
dt

=
λe−αP

n

SI

N
− ρI1 − µI1,

dI2
dt

= ρI1 − ρI2 − µI2,

dI3
dt

= ρI2 − ρI3 − µI3,

dI4
dt

= ρI3 − ρI4 − µI4,

(12)

where I = I1 + I2 + I3 + I4 is total number of HIV-infected individuals, N =
S + I1 + I2 + I3 + I4 is the total population size and P = I/N is the prevalence
of HIV. We have modified the original model of Granich et al. by replacing density
depending recruitment with constant recruitment, Λ, and by neglecting classes of
individuals on ART.

Notably, infectivity is the same in each of the four infectious classes. Hence, the
infectious classes do not represent the stages of HIV infection (e.g. primary, chronic
and AIDS) but rather are used to produce a gamma distribution for the survival of
HIV-infected individuals that approximates the Weibull survival distribution that
has been observed in data [11].

Another defining characteristic of the Granich et al. model is the transmission
term given by λe−αP

n

where P is the prevalence of HIV infection at a given time.
As Granich et al. describe, this allows for the population’s risk behavior to decrease
as disease prevalence increases. Figure 5 illustrates the form of the population’s
response to disease prevalence. In [11], λ, α and n are referred to as the “ini-
tial value”, “location” and “shape” of the transmission term, respectively. From
a practical modeling perspective, this formulation allows the model to exhibit the
rapid initial takeoff of the epidemic observed in several sub-Saharan African settings
(e.g. R0 ≈ 8), followed by a relatively modest disease prevalence at endemic equi-
librium (e.g. < 20%). In a standard formulation with fixed transmission coefficient,
prevalence at endemic equilibrium is typically 1− 1/R0.

5.2. Calibration to HIV prevalence at equilibrium. We begin by calibrating
the model in (12) to a given HIV prevalence at endemic equilibrium which we denote

by Â. To satisfy this single calibration condition, we use the initial value of the
transmission term, λ, as a calibration parameter. We assume that values for the
remaining model parameters have been established.
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Figure 5. Illustration of population’s behavioral response to HIV
prevalence in the Granich et al. model via the transmission term
e−αP

n

. Notably, if n = 1 sexual risk behavior decreases exponen-
tially as a function of HIV prevalence. As n → ∞, the decline in
sexual risk behavior approaches a step function.

As in our calibration of the four compartment HIV/HSV-2 model in Section 4.2,
we begin by rescaling the state variables to represent proportions of the total popula-
tion by letting s = S

N , i1 = I1
N , i2 = I2

N , i3 = I3
N and i4 = I4

N . As s = 1−i1−i2−i3−i4,
the model (12) reduces to

di1
dt

= λe−αi
n

(1− i)i− ρi1 − µi1,

di2
dt

= ρi1 − ρi2 − µi2,

di3
dt

= ρi2 − ρi3 − µi3,

di4
dt

= ρi3 − ρi4 − µi4,

(13)

where i = i1 + i2 + i3 + i4. Combing the four conditions that ensure the disease
is at equilibrium (14)–(17) with a calibration condition (18), we have the following
calibration system of equations

0 = λe−αi
n

(1− i)i− ρi1 − µi1, (14)

0 = ρi1 − ρi2 − µi2, (15)

0 = ρi2 − ρi3 − µi3, (16)

0 = ρi3 − ρi4 − µi4, (17)

0 = i1 + i2 + i3 + i4 − Â. (18)

To complete our calibration, we use Newton’s Method to find the solution (i∗1, i
∗
2, i
∗
3,

i∗4, λ
∗) of the calibration system (14)–(18) using the following initial approximation:

i1,0 =
Â

4
, i2,0 =

Â

4
, i3,0 =

Â

4
, i4,0 =

Â

4
, λ0 =

µ+ ρ

4e−αÂn(1− Â)
.

(19)
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Here, our initial estimate λ0 results from solving (14) with the initial approximations

i = Â and of i1 = Â/4.

5.2.1. Demonstration of calibration to HIV prevalence. In this section, we use our
calibration technique to parameterize the Granich et al. HIV model to HIV preva-
lence at equilibrium. In Table 4(a), we summarize model parameters and establish
baseline values and ranges. Baseline values are those from [11] that resulted from
fitting the full version of the model to South Africa’s HIV epidemic. To demonstrate
the robustness of our approach, we calibrate the model for random sets of model
parameters and calibration conditions. Specifically, we obtain 50 independent sam-
ples of parameters and calibration conditions from uniform distributions over the
ranges given in Table 4(a). The calibration system given by (14)–(18) was then
solved using Newton’s Method using the initial conditions in (19).

For each sample, the calibrated value of λ was noted along with the resulting HIV
prevalence and the necessary number of iterations of Newton’s Method. The results
are shown in Table 4(b). For all 50 samples, the calibration approach successfully
matched the calibration condition (i.e. HIV prevalence) while requiring no more
than 2 iterations of Newton’s Method.

6. HIV/HSV-2 coinfection model with behavioral response. In this section,
we consider an HIV/HSV-2 coinfection model that combines the interactions of HIV
and HSV-2 infection from the model in Section 4.1 and the behavioral response to
the HIV epidemic of the Granich et al. model described in Section 5.1.

6.1. The model. The model includes ten classes of individuals: S, susceptible to
infection by both HIV and HSV-2; H, infected with HSV-2 only; A1, A2, A3, A4,
infected with HIV only; C1, C2, C3, C4, co-infected with both HIV and HSV-2. The
model equations are given by

dS

dt
= Λ− ΩS −ΨS − µS,

dH

dt
= ΨS − r1ΩH − µH,

dA1

dt
= ΩS −ΨA1 − ρA1 − µA1,

dA2

dt
= ρA1 −ΨA2 − ρA2 − µA2,

dA3

dt
= ρA2 −ΨA3 − ρA3 − µA3,

dA4

dt
= ρA3 −ΨA4 − ρA4 − µA4,

dC1

dt
= r1ΩH + ΨA1 − ρC1 − µC1,

dC2

dt
= ρC1 + ΨA2 − ρC2 − µC2,

dC3

dt
= ρC2 + ΨA3 − ρC3 − µC3,

dC4

dt
= ρC3 + ΨA4 − ρC4 − µC4,

(20)
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Table 4. Calibration of Granich et al. model to HIV prevalence.

(a) Model parameters and calibration conditions for parameterizing the Granich et al. model with

behavioral response to HIV prevalence at endemic equilibrium. †Baseline value taken from [11];
range is modeling assumption of this work. ‡Recruitment rate range is same as background mortality

to give a total population of 1 in the absence of HIV, without loss of generality.

Symbol Baseline Range References

Model Parameters

Background mortality rate (/yr) µ 0.018 1
60 −

1
30 [11]†

Recruitment rate into the population (/yr) Λ 0.018 1
60 −

1
30

‡

Location of transmission term α 0.055 0.05 – 50 [11]†

Shape of transmission term n 0.996 0.90 – 30 [11]†

Rate of HIV progression (/yr) ρ 0.303 0.1 – 0.4 [11]†

Calibration Condition

HIV prevalence at endemic equilibrium Â 17 0.3 – 17 [18]

Calibration Parameter

Initial value of transmission term (/yr) λ determined by calibration procedure

(b) Results of calibrating the Granich et al. model to 50 independent sets of parameters and

calibration conditions (randomly sampled from ranges above). For each sample j = 1, 2, ..., 50,
the resulting values of the calibration parameter (λ∗) and the resulting HIV prevalence at

equilibrium (Â∗) are given. The number of iterations of Newton’s Method required to achieve
a stopping criterion of |λi − λi−1| < 10−9 is denoted by m.

Sampled parameters and calibration condition Calibration results

j Λ µ α n Â λ∗ Â∗ m
1 0.018 0.021 34.3 29.1 0.115 0.104 0.115 2
2 0.028 0.024 31.7 14.6 0.019 0.065 0.019 2
3 0.022 0.025 5.8 4.9 0.126 0.066 0.126 2
4 0.021 0.019 30.2 6.1 0.142 0.044 0.142 2
5 0.028 0.017 35.9 5.7 0.006 0.097 0.006 2
6 0.026 0.028 8.7 22.0 0.015 0.049 0.015 2
7 0.031 0.018 6.0 27.3 0.061 0.087 0.061 2
8 0.030 0.019 29.9 17.2 0.014 0.077 0.014 2
9 0.024 0.026 32.4 6.3 0.073 0.078 0.073 2
10 0.022 0.022 47.6 18.5 0.125 0.098 0.125 2
11 0.022 0.030 25.0 19.3 0.160 0.124 0.160 2
12 0.023 0.030 49.1 10.6 0.114 0.059 0.114 2
13 0.032 0.017 17.4 14.4 0.061 0.041 0.061 2
14 0.025 0.030 9.0 3.0 0.140 0.063 0.140 2
15 0.020 0.022 8.3 14.9 0.093 0.126 0.093 2
16 0.024 0.028 24.0 23.0 0.060 0.077 0.060 2
17 0.029 0.032 8.0 24.5 0.023 0.108 0.023 2
18 0.025 0.025 25.3 15.1 0.119 0.109 0.119 2
19 0.018 0.031 18.8 29.1 0.126 0.084 0.126 2
20 0.031 0.026 41.9 24.7 0.075 0.107 0.075 2
21 0.027 0.018 22.6 18.3 0.131 0.102 0.131 2
22 0.027 0.019 23.9 12.6 0.106 0.094 0.106 2
23 0.031 0.026 28.6 10.0 0.086 0.095 0.086 2
24 0.019 0.027 45.3 6.9 0.067 0.075 0.067 2
25 0.025 0.033 42.0 7.9 0.040 0.102 0.040 2

Sampled parameters and calibration condition Calibration results

j Λ µ α n Â λ∗ Â∗ m
26 0.020 0.027 36.7 21.5 0.112 0.085 0.112 2
27 0.020 0.020 24.4 7.2 0.088 0.049 0.088 2
28 0.021 0.026 49.6 25.3 0.154 0.123 0.154 2
29 0.030 0.026 9.8 12.5 0.100 0.072 0.100 2
30 0.021 0.019 2.4 22.5 0.058 0.106 0.058 2
31 0.022 0.026 4.6 23.2 0.098 0.101 0.098 2
32 0.026 0.022 46.7 17.7 0.108 0.090 0.108 2
33 0.029 0.024 5.8 9.6 0.120 0.125 0.120 2
34 0.023 0.030 9.5 17.1 0.027 0.087 0.027 2
35 0.025 0.024 0.7 23.5 0.111 0.117 0.111 2
36 0.021 0.030 16.0 21.0 0.023 0.101 0.023 2
37 0.027 0.018 29.4 6.3 0.165 0.123 0.165 2
38 0.025 0.033 48.2 6.1 0.071 0.096 0.071 2
39 0.027 0.030 12.0 22.4 0.057 0.071 0.057 2
40 0.025 0.033 43.6 4.3 0.017 0.059 0.017 2
41 0.031 0.031 1.7 13.0 0.151 0.075 0.151 2
42 0.031 0.031 26.1 11.1 0.041 0.077 0.041 2
43 0.022 0.024 39.9 16.9 0.100 0.100 0.100 2
44 0.029 0.022 17.7 13.2 0.103 0.061 0.103 2
45 0.023 0.024 6.7 21.4 0.158 0.117 0.158 2
46 0.028 0.023 4.2 10.5 0.082 0.051 0.082 2
47 0.023 0.031 13.1 18.4 0.022 0.084 0.022 2
48 0.031 0.022 46.3 28.3 0.058 0.118 0.058 2
49 0.020 0.025 42.7 27.7 0.077 0.112 0.077 2
50 0.024 0.030 46.1 2.2 0.082 0.085 0.082 2

where Ω = λe−αP
n A+r2C

N , Ψ = κe−αP
n H+r3C

N , A = A1 + A2 + A3 + A4 is the
number of people infected with HIV only, C = C1 + C2 + C3 + C4 is the number
of coinfected individuals, N = S + H + A + C is the size of the total population
and P = A+C

N is the prevalence of HIV. A flow diagram of the model is given in
Figure 6.

An important implicit assumption is made by using the same transmission for-
mulation for HIV and HSV-2 (i.e. Ω = λe−αP

n A+r2C
N and Ψ = κe−αP

n H+r3C
N ).

Specifically, we assume that the behavioral response only occurs in response to
the HIV epidemic (i.e. e−αP

n

term depends only on HIV prevalence) and that
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Figure 6. Flow diagram of the HIV/HSV-2 coinfection model
with behavioral response. The rate of transmission for HIV is given
by Ω = λe−αP

n A+r2C
N where A = A1 +A2 +A3 +A4 is the number

of people infected with HIV only, C = C1 + C2 + C3 + C4 is the
number of coinfected individuals, N = S+H +A+C is the size of
the total population and P = A+C

N is the prevalence of HIV. The

rate of transmission for HSV-2 is given by Ψ = κe−αP
n H+r3C

N .

the behavioral response to the HIV epidemic (condom use, partner reduction and
other safe-sex practices) would have a corresponding effect on HSV-2 transmission
(i.e. e−αP

n

is included in the HSV-2 transmission terms as well).

6.2. Calibration to HIV and HSV-2 prevalence at equilibrium. In this
section, we calibrate the expanded HIV/HSV-2 coinfection model with behavioral
response to match both HIV and HSV-2 prevalence at the endemic equilibrium
(as was done for the four-compartment confection model in Section 4.2) using the
initial values of the HIV and HSV-2 transmission terms (λ and κ, respectively) as
calibration parameters. The calibration conditions are given by

Â = HIV prevalence at endemic equilibrium,

Ĥ = HSV-2 prevalence at endemic equilibrium.

As in our previous calibration efforts, we begin by rescaling the state variables
to represent proportions of the total population by letting s = S

N , h = H
N , a1 =

A1

N , a2 = A2

N , a3 = A3

N , a4 = A4

N , c1 = C1

N , c2 = C2

N , c3 = C3

N and c4 = C4

N . Cor-
respondingly, we will let a = a1 + a2 + a3 + a4 and c = c1 + c2 + c3 + c4. As
s = 1− h− a− c, we can reduce the dimension of the in model (20) to get

dh

dt
= Ψ(1− h− a− c)− r1Ωh− µh,

da1
dt

= Ω(1− h− a− c)−Ψa1 − ρa1 − µa1,

da2
dt

= ρa1 −Ψa2 − ρa2 − µa2,

da3
dt

= ρa2 −Ψa3 − ρa3 − µa3,

da4
dt

= ρa3 −Ψa4 − ρa4 − µa4,
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dc1
dt

= r1Ωh+ Ψa1 − ρc1 − µc1,

dc2
dt

= ρc1 + Ψa2 − ρc2 − µc2,

dc3
dt

= ρc2 + Ψa3 − ρc3 − µc3,

dc4
dt

= ρc3 + Ψa4 − ρc4 − µc4,

(21)

where the transmission terms have become Ω = λe−αP
n

(a+r2c) and Ψ = κe−αP
n

(h+
r3c).

Combing the nine conditions that ensure the disease is at equilibrium in (22)–
(30) with the HIV and HSV-2 prevalence conditions in (31) and (32), respectively,
we have the following calibration system

0 = Ψ(1− h− a− c)− r1Ωh− µh, (22)

0 = Ω(1− h− a− c)−Ψa1 − ρa1 − µa1, (23)

0 = ρa1 −Ψa2 − ρa2 − µa2, (24)

0 = ρa2 −Ψa3 − ρa3 − µa3, (25)

0 = ρa3 −Ψa4 − ρa4 − µa4, (26)

0 = r1Ωh+ Ψa1 − ρc1 − µc1, (27)

0 = ρc1 + Ψa2 − ρc2 − µc2, (28)

0 = ρc2 + Ψa3 − ρc3 − µc3, (29)

0 = ρc3 + Ψa4 − ρc4 − µc4, (30)

0 = a1 + a2 + a3 + a4 + c1 + c2 + c3 + c4 − Â, (31)

0 = h+ c1 + c2 + c3 + c4 − Ĥ. (32)

In order to complete the calibration, we use Newton’s Method to find the solution
(h∗, a∗1, a

∗
2, a
∗
3, a
∗
4, c
∗
1, c
∗
2, c
∗
3, c
∗
4, λ
∗, κ∗) of the calibration system (22)–(32). For the

initial approximation to the solution of the calibration system required by Newton’s
Method, we again make the simplifying assumption that HIV and HSV-2 infection

are independent (i.e. that the total number of coinfected people is c0 = ÂĤ, total

number infected with HIV alone is a0 = Â − ÂĤ and the total number infected
with HSV-2 alone is h0 = Ĥ − ÂĤ) and distribute HIV-infected individuals evenly
among the four infected stages. To obtain initial approximations for λ and κ, we
solve the 2-dimensional system given by (22) and (23) for λ and κ. The resulting
initial approximation is given by:

h0 = Ĥ−ÂĤ, a1,0 =a2,0 =a3,0 =a4,0 =
Â−ÂĤ

4
, c1,0 =c2,0 =c3,0 =c4,0 =

ÂĤ

4
,

(33)

λ0 =
a1,0 (µ+ρ−a0µ−a0ρ−c0µ−c0ρ−h0ρ) eαÂ

n(
a02−a1,0h0r1+2a0c0+2a0h0+c02+2c0h0+h0

2−2a0−2c0−2h0+1
)
(r2c0+a0)

(34)
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and

κ0 =
−h0 (−a1,0µr1−a1,0r1ρ+a0µ+c0µ+µh0−µ) eαÂ

n(
a02−a1,0h0r1+2a0c0+2a0h0+c02+2c0h0+h0

2−2a0−2c0−2h0+1
)
(r3c0+h0)

.

(35)

6.3. Demonstration of calibration to HIV and HSV-2 prevalence. In this
section, we show the robustness of our calibration technique to parameterize the
HIV/HSV-2 coinfection model with behavioral response to HIV and HSV-2 preva-
lence at equilibrium. In Table 5(a), we summarize model parameter values and
ranges. Demonstrating the robustness of our approach, we again calibrate the
model for random sets of model parameters and calibration conditions. Specifically,
we obtain 50 independent samples of parameters and calibration conditions from
uniform distributions over the ranges given in Table 5(a). The calibration system
given by (22)–(32) is then solved using Newton’s Method with initial conditions
determined by (33)–(35).

For each sample, the calibrated value of λ and κ is noted along with the resulting
HIV prevalence and the necessary number of iterations of Newton’s Method. The
results are shown in Table 7(b). For all 50 samples, the calibration approach suc-
cessfully matched the calibration conditions (i.e. HIV and HSV-2 prevalence) while
requiring no more than 4 iterations of Newton’s Method.

7. Extensions of the calibration approach. In the previous demonstrations of
our calibration approach, the mathematical model at hand was always calibrated
to disease prevalence at endemic equilibrium. Fortunately, the approach can be
generalized to achieve additional calibration conditions. In this section, we show
how conditions that relate to the transient phase of an epidemic (the magnitude
and timing of peak disease incidence, specifically) can be incorporated into our
calibration.

7.1. Exact calibration of Granich et al. model to HIV prevalence at equi-
librium, peak HIV incidence and timing of peak HIV incidence. In Sec-
tion 5.2, we calibrated the Granich et al. model as stated in (12) to HIV prevalence
at equilibrium using λ as a calibration parameter and assuming that values for
α and n had been established a priori (recall the transmission term of λe−αP

n

).
As α and n determine the shape of the population’s behavioral response to HIV
prevalence (see Figure 5), they can be used to incorporate additional detail into our
calibration. In this section, we will describe the calibration of the model in (12) to
the following three conditions:

Â = HIV prevalence at endemic equilibrium,

Î = peak HIV incidence,

P̂ = HIV prevalence at time of peak HIV incidence.

To do so, we use the initial value, location and shape of the HIV transmission term
(i.e. λ, α and n) as calibration parameters. If the Granich et al. model explicitly
included time (i.e. was nonautonomous), we could calibrate the system so that
peak HIV incidence occurs at a specific time t∗. Since the Granich et al. model

is autonomous, we use HIV prevalence at the time of peak HIV incidence, P̂ , as
a proxy for the time of peak incidence to calibrate to different types of epidemic
curves (e.g. early, mid or late peaking epidemics).
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Table 5. Calibration of HIV/HSV-2 coinfection model with be-
havioral response to HIV and HSV-2 prevalence.

(a) Model parameters and calibration conditions for parameterizing the HIV/HSV-2 coinfection model with

behavioral response to HIV and HSV-2 prevalence at endemic equilibrium. ‡Recruitment rate range is same
as background mortality to give a total population of 1 in the absence of HIV, without loss of generality.

Symbol Range References

Model Parameters

Background mortality rate (/yr) µ 1
60 −

1
30 [11]

Recruitment rate into the population (/yr) Λ 1
60 −

1
30

‡

Location of HIV transmission term α 0.05 – 50 [11]
Shape of HIV transmission term n 0.90 – 30 [11]
Rate of HIV progression (/yr) ρ 0.1 – 0.4 [11]

Calibration Conditions

HIV prevalence at endemic equilibrium (/yr) Â 0.3 – 17 [18]

HSV-2 prevalence at endemic equilibrium (/yr) Ĥ 4 – 50 [2, 16, 22, 20]

Calibration Parameters

Initial value of HIV transmission term (/yr) λ determined by calibration procedure

Initial value of HSV-2 transmission term (/yr) κ determined by calibration procedure

(b) Results of calibrating the HIV/HSV-2 confection model with behavioral response to 50 in-
dependent sets of parameters and calibration conditions (randomly sampled from ranges above).

For each sample j = 1, 2, ..., 50, the resulting values of the calibration parameters (λ∗, κ∗) and

the resulting diseases prevalences at equilibrium (Â∗, Ĥ∗) are given. The number of iterations of
Newton’s Method required to achieve a stopping criterion of max{|λi−λi−1|, |κi−κi−1|} < 10−9

is denoted by m.
Sampled parameters and calibration condition Calibration results

j Λ µ ρ α n Â Ĥ λ∗ κ∗ Â∗ Ĥ∗ m
1 0.033 0.030 0.136 25.388 7.775 0.100 0.429 0.040 0.057 0.100 0.429 4
2 0.026 0.025 0.294 25.452 10.004 0.061 0.433 0.057 0.053 0.061 0.433 4
3 0.022 0.032 0.268 9.053 18.416 0.065 0.333 0.066 0.055 0.065 0.333 4
4 0.027 0.022 0.159 30.943 15.777 0.107 0.286 0.042 0.038 0.107 0.286 4
5 0.020 0.032 0.184 35.273 19.612 0.025 0.484 0.033 0.063 0.025 0.484 4
6 0.019 0.017 0.363 46.871 29.933 0.081 0.050 0.105 0.029 0.081 0.050 4
7 0.021 0.026 0.164 35.976 10.444 0.050 0.437 0.034 0.050 0.050 0.437 4
8 0.017 0.023 0.149 45.299 27.869 0.013 0.349 0.031 0.035 0.013 0.349 4
9 0.018 0.022 0.122 2.960 2.103 0.161 0.067 0.050 0.031 0.161 0.067 4
10 0.020 0.025 0.210 47.955 15.737 0.099 0.044 0.072 0.034 0.099 0.044 4
11 0.018 0.021 0.120 22.432 23.321 0.114 0.424 0.028 0.042 0.114 0.424 4
12 0.032 0.023 0.155 27.625 4.781 0.107 0.234 0.044 0.037 0.107 0.234 4
13 0.029 0.027 0.324 36.150 6.654 0.087 0.303 0.063 0.051 0.087 0.303 4
14 0.018 0.020 0.144 29.338 26.770 0.008 0.357 0.027 0.032 0.008 0.357 4
15 0.019 0.032 0.377 42.820 16.166 0.168 0.403 0.084 0.086 0.168 0.403 4
16 0.028 0.017 0.126 15.874 24.707 0.160 0.237 0.041 0.030 0.160 0.237 4
17 0.021 0.024 0.275 14.494 1.718 0.097 0.111 0.111 0.047 0.097 0.111 4
18 0.032 0.026 0.254 14.086 11.617 0.085 0.231 0.053 0.044 0.085 0.231 4
19 0.020 0.030 0.300 18.883 1.811 0.022 0.358 0.054 0.051 0.022 0.358 4
20 0.024 0.024 0.274 5.479 9.004 0.161 0.068 0.091 0.043 0.161 0.068 4
21 0.033 0.024 0.149 26.541 10.778 0.003 0.325 0.032 0.035 0.003 0.325 4
22 0.024 0.031 0.173 0.848 2.736 0.019 0.206 0.050 0.040 0.019 0.206 4
23 0.017 0.020 0.147 35.029 14.683 0.102 0.117 0.046 0.028 0.102 0.117 4
24 0.026 0.030 0.121 23.521 10.510 0.114 0.340 0.036 0.049 0.114 0.340 4
25 0.029 0.030 0.169 35.260 8.151 0.122 0.496 0.035 0.070 0.122 0.496 4

Sampled parameters and calibration condition Calibration results

j Λ µ ρ α n Â Ĥ λ∗ κ∗ Â∗ Ĥ∗ m
26 0.028 0.031 0.357 19.775 5.288 0.086 0.101 0.094 0.049 0.086 0.101 4
27 0.019 0.030 0.312 8.664 27.919 0.126 0.219 0.080 0.055 0.126 0.219 4
28 0.024 0.021 0.357 4.805 29.623 0.009 0.469 0.056 0.041 0.009 0.469 4
29 0.030 0.020 0.259 32.938 28.889 0.099 0.436 0.052 0.049 0.099 0.436 4
30 0.018 0.017 0.182 4.482 2.045 0.027 0.288 0.041 0.026 0.027 0.288 4
31 0.028 0.026 0.164 26.525 25.949 0.117 0.084 0.058 0.035 0.117 0.084 4
32 0.023 0.020 0.372 39.113 5.546 0.136 0.443 0.075 0.064 0.136 0.443 4
33 0.032 0.022 0.353 1.944 19.318 0.082 0.353 0.084 0.047 0.082 0.353 4
34 0.029 0.031 0.110 2.429 4.162 0.059 0.432 0.026 0.056 0.059 0.432 4
35 0.027 0.024 0.165 47.290 21.058 0.041 0.089 0.051 0.029 0.041 0.089 4
36 0.025 0.022 0.348 17.164 26.863 0.063 0.455 0.076 0.052 0.063 0.455 4
37 0.017 0.024 0.361 9.553 7.454 0.027 0.054 0.103 0.029 0.027 0.054 3
38 0.027 0.022 0.222 46.392 21.362 0.167 0.320 0.051 0.051 0.167 0.320 4
39 0.028 0.018 0.247 21.006 7.505 0.115 0.465 0.046 0.048 0.115 0.465 4
40 0.018 0.026 0.143 34.607 19.392 0.022 0.103 0.046 0.030 0.022 0.103 4
41 0.021 0.033 0.203 46.859 24.756 0.139 0.184 0.068 0.049 0.139 0.184 4
42 0.028 0.021 0.251 22.415 11.566 0.026 0.043 0.072 0.025 0.026 0.043 4
43 0.021 0.020 0.390 14.424 26.982 0.078 0.408 0.079 0.049 0.078 0.408 4
44 0.018 0.017 0.113 4.843 4.594 0.037 0.277 0.028 0.026 0.037 0.277 4
45 0.020 0.028 0.376 2.375 17.141 0.054 0.302 0.083 0.048 0.054 0.302 4
46 0.029 0.023 0.125 2.299 25.985 0.052 0.456 0.024 0.044 0.052 0.456 4
47 0.028 0.033 0.353 34.218 7.959 0.010 0.207 0.081 0.042 0.010 0.207 4
48 0.018 0.033 0.222 38.289 27.674 0.134 0.430 0.046 0.072 0.134 0.430 4
49 0.030 0.022 0.272 25.403 9.279 0.021 0.315 0.054 0.035 0.021 0.315 4
50 0.023 0.030 0.119 2.163 27.532 0.135 0.126 0.051 0.037 0.135 0.126 4

To create our calibration system, we note that HIV incidence (i.e. the rate of new

HIV infections) is given by λe−αi
n

(1−i)i. To guarantee that HIV incidence is Î at the

time when HIV prevalence is P̂ , we require that λe−αP̂
n

(1−P̂ )P̂ = Î . To ensure that
HIV incidence is maximized at this time, we require that d

dP

(
λe−αP

n

(1− P )P
)

=

λe−αP̂
n
(
−αP̂nn

(
1− P̂

)
+ 1− 2P̂

)
= 0. Adding these two additional conditions

(noting that λe−αP̂
n 6= 0), we arrive at the following calibration system of equations:

0 = λe−αi
n

(1− i)i− ρi1 − µi1, (36)

0 = ρi1 − ρi2 − µi2, (37)

0 = ρi2 − ρi3 − µi3, (38)
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0 = ρi3 − ρi4 − µi4, (39)

0 = i1 + i2 + i3 + i4 − Â, (40)

0 = λe−αP̂
n

(1− P̂ )P̂ − Î , (41)

0 = 1− αP̂nn
(

1− P̂
)
− 2P̂ . (42)

To reiterate, the calibration system imposes that the disease is at equilibrium in

(36)–(39), that the HIV prevalence at endemic equilibrium is Â in (40), that HIV

incidence is Î at the time when HIV prevalence is P̂ in (41) and that HIV incidence

is maximized at the time when HIV prevalence is P̂ in (42).
In order to complete the calibration, we use Newton’s Method to find the solution

(i∗1, i
∗
2, i
∗
3, i
∗
4, λ
∗, α∗, n∗) of the calibration system (36)–(42). Unlike the previous

calibration examples, establishing a suitably robust initial approximation to the

root is nontrivial. To do so, we note that at equilibrium we must have that i = Â,
so from (36) and (41), we have that

λe−αÂ
n

=
i1(ρ+ µ)

(1− Â)Â
and λe−αP̂

n

=
Î

(1− P̂ )P̂
, (43)

which implies that

e−α(Â
n−P̂n) =

i1(ρ+ µ)(1− P̂ )P̂

(1− Â)ÂÎ
. (44)

Solving (42) for α, we get that

α =
1− 2P̂

nP̂n
(

1− P̂
) . (45)

Substituting (45) into (44), we get

e
− (1−2P̂ )(Ân−P̂n)

nP̂n(1−P̂ ) − i1(ρ+ µ)(1−P̂ )P̂

(1−Â)ÂÎ
= e
− (1−2P̂ )((Â/P̂)n−1)

n(1−P̂ ) − i1(ρ+ µ)(1−P̂ )P̂

(1−Â)ÂÎ
= 0

(46)
which can be solved numerically to obtain an initial approximation for n. Once an
initial approximation n0 is established, (45) and (43) are used to obtain an initial
approximation for α and λ, respectively. Initial approximations for i1, i2, i3 and i4
can be found by noting that Equations (37)–(40) consist of 4 linear conditions on
i1, i2, i3, i4.

To summarize, we calibrate our model to HIV prevalence and peak incidence by
using Newton’s Method to find the solution (i∗1, i

∗
2, i
∗
3, i
∗
4, λ
∗, α∗, n∗) of the calibration

system (36)–(42) using the following initial approximation:

i1,0 =
Â (ρ+ µ)

3

(2 ρ+ µ) (2 ρ2 + 2 ρµ+ µ2)
, i2,0 =

(ρ+ µ)
2
ρ Â

(2 ρ+ µ) (2 ρ2 + 2 ρµ+ µ2)
(47)

i3,0 =
(ρ+ µ) ρ2Â

(2 ρ+ µ) (2 ρ2 + 2 ρµ+ µ2)
, i4,0 =

ρ3Â

(2 ρ+ µ) (2 ρ2 + 2 ρµ+ µ2)
, (48)

n0 = numerical solution to (46), α0 =
1− 2P̂

n0P̂n0(1− P̂ )
, λ0 =

eαÂ
n0

(ρ+ µ)i1,0

(1− Â)Â
.

(49)
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7.1.1. Demonstration of calibration to HIV prevalence, peak HIV incidence and tim-
ing of peak HIV incidence. In this section, we use our calibration technique to pa-
rameterize the Granich et al. HIV model to HIV prevalence at equilibrium, peak
HIV incidence and timing of peak incidence. To demonstrate the robustness of our
approach, we calibrate the model for random sets of model parameters and cali-
bration conditions. Specifically, we obtain 50 independent samples of parameters
and calibration conditions from uniform distributions over the ranges specified in

Table 7(a). Notably, restrictions were placed on the peak HIV incidence, Î, and the

HIV prevalence at time of peak HIV incidence, P̂ , for epidemiological plausibility.
Specifically, we require peak HIV incidence and the HIV prevalence at the time of
peak incidence to be from 10–50% and 5–95% of the HIV prevalence at equilibrium,
respectively (see Table 7(a)). This is done to avoid identifiability issues that could
arise from having epidemiologically implausible calibration conditions such as a very
high peak HIV incidence followed by very low prevalence at equilibrium.

The calibration system given by (36)–(42) was then solved using Newton’s Method
with the initial conditions given in (47)–(49). For each sample, the calibrated values

of λ, α and n were noted along with the resulting HIV prevalence (Â∗), peak HIV

incidence (Î∗), HIV prevalence at the time of peak incidence (P̂ ∗) and the necessary
number of iterations of Newton’s Method (N). The results are shown in Table 6(b).

For all 50 samples, the calibration approach successfully matched the three cal-
ibration conditions while requiring no more than 3 iterations of Newton’s Method
(see Table 6(b)). To illustrate the variation in the nature of the epidemic, Figure 7
shows the dynamics of HIV prevalence and HIV incidence of the first 12 calibrations.
In each calibration plot, the horizontal dashed blue line indicates the sampled HIV

prevalence at equilibrium (Â), the horizontal dashed red line the sampled peak HIV

incidence (Î) and the horizontal dashed gray line the sampled HIV prevalence at

the time of peak incidence (P̂ ). Thus, the plot indicates a successful calibration if

HIV prevalence (solid blue curve) approaches Â (dashed blue line) as t→∞; HIV

incidence (solid red curve) peaks at Î (dashed red line); and HIV prevalence at time

of peak incidence is P̂ (solid blue curve, horizontal dashed gray line and the dashed
vertical gray line indicating time of peak incidence all intersect at the same point).

The minor discrepancies between the sampled and calibrated values of HIV preva-

lence at peak incidence (P̂ ) observed in Table 6(b) are due to the transient nature of
the system at the time of peak incidence. Consequently, the HIV prevalence at peak
incidence is influenced by the imprecision of choosing the time of peak incidence
from the discrete set of time points t0, t1, ..., tK that results from the numerical
solution to the dynamical systems model. Table 6(b) also shows a troubling level
of variability in the magnitude of calibrated values that determine the population’s
response to disease prevalence, α∗ and n∗. Most notably, we see in Table 6(b) that
α∗ ranges from values of order 101 to 10149. In Figure 8, we plot the behavioral
response to HIV prevalence via the transmission term e−αP

n

for the calibrations
with largest α values. We note that the shape of the behavioral responses remain
biologically feasible despite the magnitude of the α terms. Also in Figure 8, we plot
the prevalence and incidence curves for Calibrations #20, 30, 33, 40 and 46 (noting
that those of #4 and #10 are in Figure 7). In each calibration, we observe that
the scenario of a late-peaking epidemic (i.e. one where the HIV prevalence at the
time of peak incidence is very near the HIV prevalence at equilibrium) seems to be
producing the large α∗ values.
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Figure 7. Dynamics of HIV prevalence and HIV incidence of the
first 12 calibrations: horizontal dashed blue line is sampled HIV

prevalence at equilibrium (Â), horizontal dashed red line is sam-

pled peak HIV incidence (Î) and horizontal dashed gray line is

sampled HIV prevalence at the time of peak incidence (P̂ ). Cali-
bration is successful if HIV prevalence (solid blue curve) approaches

Â (dashed blue line) as t → ∞; HIV incidence (solid red curve)

peaks at Î (dashed red line); and HIV prevalence at time of peak

incidence is P̂ (solid blue curve, horizontal dashed gray line and
the dashed vertical gray line indicating time of peak incidence all
intersect at the same point).

7.2. Approximate calibration of HIV/HSV-2 coinfection model to HIV
prevalence at equilibrium, peak HIV incidence and timing of peak inci-
dence. In Section 6.2, the HIV/HSV-2 model with behavioral response was cali-
brated to HIV and HSV-2 prevalence at the endemic equilibrium. In the previous
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Figure 8. Behavioral response to HIV prevalence via the trans-
mission term e−αP

n

for the calibrations with largest α values and
the prevalence/incidence curves for those calibrations. Note that
the prevalence/incidence curves of Calibrations #4 and #10 are
shown in Figure 7.

section, the Granich et al. HIV model was calibrated to different types of epidemic
curves (e.g. early, mid and late peaking epidemics) using peak HIV incidence and
the timing of peak HIV incidence. In this section, we attempt to calibrate the ex-
panded HIV/HSV-2 coinfection model with behavioral response (i.e. System (20)
in Section 6.1) to HIV and HSV-2 prevalence conditions as well as the the shape
of the HIV epidemic (i.e. peak HIV incidence and its timing). The conditions are
given by

Â = HIV prevalence at endemic equilibrium,

Ĥ = HSV-2 prevalence at endemic equilibrium,

Î = peak HIV incidence,

P̂ = HIV prevalence at time of peak HIV incidence,

(50)

and the calibration is achieved using the initial values of the HIV and HSV-2 trans-
mission terms (i.e. λ and κ) and the location and shape of the transmission terms
(i.e. α and n) as calibration parameters.

To impose the peak incidence condition in the same manner as the previous sec-
tion, we note that the rate of new HIV infections in the HIV/HSV-2 model with
behavioral response is given by λe−αP

n

(a+r2c)(s+r1h). Unfortunately, we immedi-
ately see that this rate is no longer a function of only P as was the case in (40) in our
previous calibration. This is a major issue in setting up a calibration system because
peak HIV incidence occurs during the transient phase of the epidemic. Consequently
the state variables a, c, s and h at this time are not the endemic equilibrium values
that would be enforced in the rest of the calibration system. Overcoming this would

require an incidence formulation such as λe−αP
n

P̂ (1+r2ω1)(1−P̂ )(1+r1ω2), where
ω1 (ω2) are the proportion of HIV positive (negative) individuals that are infected
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with HSV-2 at the time of peak HIV incidence. Unfortunately, such ω values would
depend on the particular initial conditions assumed and would not be available a
priori.

As a simpler alternative, we present the following approximate calibration of the
model to the four conditions given in (50) using λ, κ, n and α as calibration variables.
This two step approach relies on previous calibration systems in the following way:

Step 1. Calibrate the Granich et al. model to Â, Î and P̂ using calibration param-
eters λ, n and α by solving system (36)–(42) in the previous section.

Step 2. Using the resulting values for HIV transmission terms n and α from Step

1, calibrate the HIV/HSV-2 model with behavioral response to Â and Ĥ using
λ and κ as calibration variables by solving system (22)–(32) from Section 6.2.

The calibrated parameter values are then n∗, α∗ (outputs from Step 1 which deter-
mine the shape of the behavioral response) and λ∗, κ∗ (outputs from Step 2 which
impose disease prevalence at endemic equilibrium).

7.2.1. Demonstration of calibration to HIV and HSV-2 prevalence at equilibrium,
peak HIV incidence and timing of peak HIV incidence. To demonstrate the per-
formance of this approach, we calibrate the model to 50 independent samples of
parameters and calibration conditions from uniform distributions over the ranges
specified in Table 7(a). The results are shown in Table 7(b). As might be expected
given Step 2 of this approximate approach, we see that the model is exactly cali-

brated to both HIV and HSV-2 prevalence at equilibrium (see Â vs Â∗ and Ĥ vs

Ĥ∗ in Table 7(b)). On the other hand, the calibration is not able to exactly match
the conditions related to the transient phase of the epidemic (i.e. peak HIV inci-
dence and timing of peak HIV incidence). Specifically, we see in Table 7(b) that the

peak HIV incidence realized via calibration, Î∗, is higher than the desired value, Î,
and quite often by a substantial amount. This makes sense because the terms that
control the behavioral response to HIV prevalence, namely n and α, are determined
in Step 1 before HIV’s interaction with HSV-2 infection is included. Including the
interaction produces a higher peak incidence level due to the fact that HSV-2 in-
fection increases the rate of new HIV infections from both sides of transmission
(i.e. r1, r2 ≥ 1). While the approximate calibration considerably overshoots peak
HIV incidence, it is worth noting that the approach does much better in terms of

the timing of peak HIV incidence (i.e. P̂ ∗ vs P̂ in Table 7(b)).

8. Discussion. The model calibrations conducted in this work have demonstrated
that an exact approach to calibration can be a straightforward and efficient means
to parameterize an epidemiological model to surveillance data. On the other hand,
the similarities of the scenarios examined herein (e.g. disease prevalence at endemic
equilibrium) may cast doubt on the general applicability of this approach in other
situations. Hence, it is important to identify limitations and generalizations of the
approach that could influence its applicability.

From the examples presented, the exact calibration approach may appear to be
limited to diseases at endemic equilibria. However, it is worth noting that there
is no such limitation from a technical perspective. As an example, recall our first
calibration system (4)–(8) from Section 4.2. If reliable data were available that

suggested a given HIV and HSV-2 prevalence of Â and Ĥ, respectively, and that
the proportions of HIV only, HSV-2 only and coinfected individuals where changing
at rates da

dt ,
dh
dt and dc

dt , respectively, one could simply insert these nonzero rates
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as the left-hand sides of (4)–(6). The calibration procedure would work exactly
the same. However, a practical limitation is evident if we attempt to consider an
analogous situation for the HIV/HSV-2 coinfection model with behavior change
from Section 6. While it is reasonable that estimates could exist for the rates of
change for the aggregate HIV-infected, HSV-2 infected and coinfected proportions
of the population, it is unlikely that specific estimates exist for each subdivision
(i.e. da1

dt , ...,
da4
dt ,

dc1
dt , ...,

dc4
dt ).

An exact calibration to estimates of disease prevalence, incidence, etc. may leave
the impression that such indicators are known data rather than the imprecise esti-
mates that they are in reality. However, this approach should not be viewed as an
alternative to incorporating uncertainty into modeling work. In fact, the ideas pre-
sented here could compliment the standard approach of sampling parameter values
and filtering described in Section 2. In the standard approach, all model parameters
would be independently sampled before running simulations and filtering out the pa-
rameter sets which do meet calibration conditions. In a combined approach, model
parameters for which strong empirical estimates exist could be randomly sampled
and values of calibration parameters (for which reliable empirical estimates do not
exist) would be obtained via the exact procedure to match calibration conditions.
Parameter sets with infeasible values for the calibration parameters could then be
filtered out. With such an approach, the ultimate number of parameters sets that
are filtered out (i.e. computational time wasted) would be significantly reduced.
Moreover, uncertainty in the calibration conditions (e.g. disease prevalence, inci-
dence) could also be incorporated by sampling values from assumed distributions
as was done in each robustness demonstration in this work.

Lastly, it is clear that the exact calibration approach can not be used to fit a
model to time series data. While approaches were shown to calibrate to different
types of epidemics in Section 7, the approach remains limited to calibration con-
ditions at a few time steps, at most. Hence, numerical fitting algorithms will be
required whenever a model must be fit to times series data. In such situations,
our approach could improve the performance of numerical fitting algorithms whose
efficiency and precision are largely determined by the quality of the initial approxi-
mation to the solution. To do this, an exact fitting (analogous to that of Section 7.1)
would be used to obtain parameter values for which the model behavior matches
the general shape of the data. Those values would then be used as an initial ap-
proximation for a numerical fitting algorithm.

While not universally applicable or intended to replace other calibration proce-
dures, the exact calibration process presented in this work streamlines the process
of calibrating mathematical models of infectious disease to surveillance data while
increasing efficiency and reducing reliance on computational methods.
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[2] B. Auvert, R. Ballard, C. Campbell, M. Caraël, M. Carton, G. Fehler, E. Gouws, C. MacPhail,

D. Taljaard, J. V. Dam and B. Williams, Hiv infection among youth in a south african mining

town is associated with herpes simplex virus-2 seropositivity and sexual behaviour, AIDS, 15
(2001), 885–898.

[3] J. M. Baeten, D. Donnell, P. Ndase, N. R. Mugo, J. D. Campbell, J. Wangisi, J. W. Tappero,

E. A. Bukusi, C. R. Cohen, E. Katabira, A. Ronald, E. Tumwesigye, E. Were, K. H. Fife,
J. Kiarie, C. Farquhar, G. John-Stewart, A. Kakia, J. Odoyo, A. Mucunguzi, E. Nakku-Joloba,

R. Twesigye, K. Ngure, C. Apaka, H. Tamooh, F. Gabona, A. Mujugira, D. Panteleeff, K. K.

Thomas, L. Kidoguchi, M. Krows, J. Revall, S. Morrison, H. Haugen, M. Emmanuel-Ogier,
L. Ondrejcek, R. W. Coombs, L. Frenkel, C. Hendrix, N. N. Bumpus, D. Bangsberg, J. E.

Haberer, W. S. Stevens, J. R. Lingappa and C. Celum, Antiretroviral prophylaxis for HIV

prevention in heterosexual men and women, N Engl J Med, 367 (2012), 399–410.
[4] R. V. Barnabas, E. L. Webb, H. A. Weiss and J. N. Wasserheit, The role of coinfections in

HIV epidemic trajectory and positive prevention, AIDS, 25 (2011), 1559–1573.
[5] M.-C. Boily, R. F. Baggaley, L. Wang, B. Masse, R. G. White, R. J. Hayes and M. Alary,

Heterosexual risk of hiv-1 infection per sexual act: Systematic review and meta-analysis

of observational studies, Lancet Infect Dis, 9 (2009), 118–129, URL http://linkinghub.

elsevier.com/retrieve/pii/S1473-3099(09)70021-0.

[6] R. Burden and J. Faires, Numerical Analysis, Cengage Learning, 2010.

[7] M. S. Cohen, Y. Q. Chen, M. McCauley, T. Gamble, M. C. Hosseinipour, N. Kumarasamy,
J. G. Hakim, J. Kumwenda, B. Grinsztejn, J. H. S. Pilotto, S. V. Godbole, S. Mehendale,

S. Chariyalertsak, B. R. Santos, K. H. Mayer, I. F. Hoffman, S. H. Eshleman, E. Piwowar-

Manning, L. Wang, J. Makhema, L. A. Mills, G. de Bruyn, I. Sanne, J. Eron, J. Gallant,
D. Havlir, S. Swindells, H. Ribaudo, V. Elharrar, D. Burns, T. E. Taha, K. Nielsen-Saines,

D. Celentano, M. Essex, T. R. Fleming and HPTN 052 Study Team, Prevention of HIV-1

infection with early antiretroviral therapy., N Engl J Med, 365 (2011), 493–505.
[8] M. Das, P. L. Chu, G.-M. Santos, S. Scheer, E. Vittinghoff, W. McFarland and G. N. Colfax,

Decreases in community viral load are accompanied by reductions in new HIV infections in
san francisco, PLoS ONE, 5 (2010), e11068.

[9] E. E. Freeman, H. A. Weiss, J. R. Glynn, P. L. Cross, J. A. Whitworth and R. J. Hayes,

Herpes simplex virus 2 infection increases hiv acquisition in men and women: Systematic
review and meta-analysis of longitudinal studies, AIDS, 20 (2006), 73–83.
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Table 6. Calibration of Granich et al. model to HIV prevalence,
peak HIV incidence and timing of peak HIV incidence.

(a) Model parameters and calibration conditions for parameterizing the Granich et al. model to HIV preva-

lence, peak HIV incidence and timing of peak HIV incidence. ‡Recruitment rate range is same as background

mortality to give a total population of 1 in the absence of HIV, without loss of generality.

Symbol Range References

Model Parameters

Background mortality rate (/yr) µ 1
60 −

1
30 [11]

Recruitment rate into the population (/yr) Λ 1
60 −

1
30

‡

Rate of HIV progression (/yr) ρ 0.1 – 0.4 [11]

Calibration Conditions

HIV prevalence at endemic equilibrium Â 0.3 – 17 [18]

Peak HIV incidence Î 10% – 50% of Â

HIV prevalence at time of peak HIV incidence P̂ 5% – 95% of Â

Calibration Parameters

Initial value of transmission term (/yr) λ determined by calibration procedure

Location of transmission term α determined by calibration procedure

Shape of transmission term n determined by calibration procedure

(b) Results of calibrating the Granich et al. model to 50 indepen-

dent sets of parameters and calibration conditions (randomly sam-
pled from ranges above). For each sample, the resulting values

of the calibration parameters (λ∗, α∗, n∗) and the resulting cali-

bration values (Â∗, Î∗, P̂ ∗) are given. The number of iterations
of Newton’s Method required to achieve a stopping criterion of

max{|λi − λi−1|, |αi − αi−1|, |ni − ni−1|} < 10−9 is denoted by m.

Sampled parameters and calibration condition Calibration results

j Λ µ ρ Â Î P̂ λ∗ α∗ n∗ Â∗ Î∗ P̂ ∗ m
1 0.031 0.028 0.306 0.095 0.016 0.011 224.91 1.22212E+01 0.2 0.095 0.016 0.011 2
2 0.017 0.027 0.115 0.054 0.017 0.036 0.54 2.80696E+09 7.2 0.054 0.017 0.036 2
3 0.031 0.022 0.171 0.015 0.007 0.006 1.82 2.22785E+04 2.1 0.015 0.007 0.006 2
4 0.024 0.026 0.372 0.023 0.009 0.020 0.46 1.09674E+42 25.5 0.023 0.009 0.020 3
5 0.032 0.032 0.192 0.168 0.066 0.151 0.52 1.91294E+33 42.7 0.168 0.066 0.152 3
6 0.022 0.023 0.102 0.120 0.044 0.105 0.48 1.30078E+32 34.4 0.120 0.044 0.104 3
7 0.031 0.018 0.307 0.093 0.013 0.021 15.58 1.04219E+01 0.3 0.093 0.013 0.021 2
8 0.024 0.017 0.224 0.143 0.057 0.037 3.86 3.28571E+01 1.1 0.143 0.057 0.039 2
9 0.027 0.033 0.124 0.160 0.042 0.013 62.63 1.27961E+01 0.3 0.160 0.042 0.014 2
10 0.032 0.023 0.215 0.105 0.029 0.097 0.34 1.15023E+57 58.1 0.105 0.029 0.096 3
11 0.023 0.020 0.138 0.110 0.049 0.064 0.97 2.69922E+05 5.2 0.110 0.049 0.066 2
12 0.032 0.024 0.393 0.102 0.044 0.068 0.80 3.07050E+06 6.3 0.102 0.044 0.070 2
13 0.031 0.018 0.199 0.074 0.013 0.055 0.27 5.60380E+09 8.5 0.074 0.013 0.055 2
14 0.026 0.023 0.386 0.049 0.019 0.018 2.04 2.41472E+02 1.5 0.049 0.019 0.018 2
15 0.033 0.032 0.364 0.138 0.067 0.073 1.32 1.62810E+03 3.3 0.138 0.067 0.071 2
16 0.018 0.032 0.378 0.055 0.010 0.024 1.11 4.61171E+01 1.0 0.055 0.010 0.024 2
17 0.027 0.019 0.254 0.170 0.064 0.075 1.36 1.83155E+02 2.4 0.170 0.064 0.075 2
18 0.018 0.025 0.223 0.062 0.028 0.051 0.62 5.34456E+22 18.6 0.062 0.028 0.050 3
19 0.025 0.017 0.177 0.147 0.058 0.051 2.07 9.90795E+01 1.7 0.147 0.058 0.049 2
20 0.017 0.032 0.337 0.013 0.005 0.012 0.43 2.57848E+149 79.2 0.013 0.005 0.012 3
21 0.031 0.028 0.367 0.083 0.016 0.050 0.48 1.12025E+03 2.7 0.083 0.016 0.050 2
22 0.017 0.023 0.213 0.157 0.035 0.030 6.57 1.27404E+01 0.6 0.157 0.035 0.028 2
23 0.023 0.022 0.278 0.124 0.051 0.010 104.17 1.40918E+01 0.3 0.124 0.051 0.009 2
24 0.020 0.018 0.280 0.044 0.013 0.025 0.69 2.06649E+05 3.7 0.044 0.013 0.025 2
25 0.027 0.023 0.234 0.169 0.018 0.084 0.54 1.16327E+01 1.0 0.169 0.018 0.084 2
26 0.025 0.017 0.112 0.041 0.008 0.018 0.69 5.50369E+03 2.4 0.041 0.008 0.018 2
27 0.021 0.030 0.135 0.146 0.067 0.094 0.90 9.15850E+05 6.6 0.146 0.067 0.093 2
28 0.026 0.022 0.237 0.076 0.014 0.021 2.34 2.52938E+01 0.8 0.076 0.014 0.021 2
29 0.021 0.025 0.245 0.105 0.038 0.092 0.47 2.27510E+28 28.8 0.105 0.038 0.091 3
30 0.021 0.030 0.277 0.119 0.057 0.106 0.62 2.40327E+33 35.8 0.119 0.057 0.107 3
31 0.024 0.017 0.382 0.092 0.017 0.013 137.54 1.16973E+01 0.2 0.092 0.017 0.013 2
32 0.017 0.033 0.111 0.097 0.020 0.034 1.18 9.80157E+01 1.5 0.097 0.020 0.034 2
33 0.023 0.019 0.150 0.041 0.013 0.038 0.36 3.52296E+107 77.2 0.041 0.013 0.039 3
34 0.026 0.019 0.115 0.065 0.020 0.058 0.38 9.88557E+45 38.4 0.065 0.020 0.058 3
35 0.018 0.029 0.133 0.123 0.039 0.046 1.45 1.60470E+02 1.9 0.123 0.039 0.047 2
36 0.018 0.023 0.212 0.128 0.048 0.049 1.72 1.44867E+02 1.9 0.128 0.048 0.050 2
37 0.029 0.022 0.194 0.131 0.036 0.021 9.28 1.59178E+01 0.6 0.131 0.036 0.021 2
38 0.023 0.029 0.113 0.147 0.030 0.120 0.30 2.46362E+14 17.0 0.147 0.030 0.120 2
39 0.030 0.030 0.132 0.093 0.041 0.071 0.66 5.17855E+13 12.9 0.093 0.041 0.071 2
40 0.028 0.032 0.370 0.034 0.007 0.031 0.23 6.39613E+38 26.6 0.034 0.007 0.031 2
41 0.026 0.028 0.264 0.012 0.002 0.010 0.26 7.91021E+25 13.5 0.012 0.002 0.010 2
42 0.022 0.021 0.139 0.038 0.018 0.003 60.79 2.99343E+01 0.4 0.038 0.018 0.003 2
43 0.029 0.025 0.175 0.131 0.044 0.017 16.96 1.61755E+01 0.5 0.131 0.044 0.015 2
44 0.031 0.019 0.163 0.061 0.013 0.042 0.38 6.60195E+08 7.0 0.061 0.013 0.041 2
45 0.021 0.017 0.238 0.141 0.053 0.106 0.61 7.72114E+09 11.3 0.141 0.053 0.104 2
46 0.023 0.027 0.104 0.124 0.052 0.103 0.59 1.88292E+20 22.0 0.124 0.052 0.105 3
47 0.024 0.029 0.295 0.076 0.025 0.052 0.57 9.65496E+07 6.9 0.076 0.024 0.053 2
48 0.027 0.029 0.378 0.106 0.012 0.091 0.21 2.25508E+02 2.7 0.106 0.012 0.091 2
49 0.030 0.033 0.202 0.024 0.003 0.016 0.24 6.01293E+05 3.5 0.024 0.003 0.016 2
50 0.029 0.020 0.116 0.028 0.008 0.007 2.62 2.59513E+02 1.2 0.028 0.008 0.007 2
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Table 7. Calibration of HIV/HSV-2 confection model with be-
havioral response to HIV prevalence, HSV-2 prevalence, peak HIV
incidence and timing of peak HIV incidence.

(a) Model parameters and calibration conditions for parameterizing the HIV/HSV-2 confection model with
behavioral response to HIV and HSV-2 prevalence, peak HIV incidence and timing of peak HIV incidence.
‡Recruitment rate range is same as background mortality to give a total population of 1 in the absence of HIV.

Symbol Range References

Model Parameters

Background mortality rate (/yr) µ 1
60 −

1
30 [11]

Recruitment rate into the population (/yr) Λ 1
60 −

1
30

‡

Rate of HIV progression (/yr) ρ 0.1 – 0.4 [11]

Calibration Conditions

HIV prevalence at endemic equilibrium Â 0.3 – 17 [18]

HSV-2 prevalence at endemic equilibrium Ĥ 4 – 50 [2, 16, 22, 20]

Peak HIV incidence Î 10% – 50% of Â

HIV prevalence at time of peak HIV incidence P̂ 5% – 95% of Â

Calibration Parameters

Initial value of HIV transmission term (/yr) λ determined by calibration procedure

Initial value of HSV-2 transmission term (/yr) κ determined by calibration procedure

Location of transmission term α determined by calibration procedure

Shape of transmission term n determined by calibration procedure

(b) Calibration of HIV/HSV-2 confection model with behavioral response to 50 inde-

pendent sets of parameters and calibration conditions. For each sample j = 1, 2, ..., 50,

the resulting values of the calibration parameters (λ∗, κ∗, α∗, n∗) and the resulting cali-

bration values (Â∗, Ĥ∗, Î∗, P̂ ∗) are given. Number of iterations required to satisfy the

stopping criteria of Steps 1 and 2 (i.e. max{|λi−λi−1|, |αi−αi−1|, |ni−ni−1|} < 10−9

and max{|λi − λi−1|, |κi − κi−1|} < 10−9) denoted m1 and m2, respectively.

Sampled parameters and calibration condition Calibration results

j Λ µ ρ Â Ĥ Î P̂ λ∗ κ∗ α∗ n∗ Â∗ Ĥ∗ Î∗ P̂ ∗ m1 m2

1 0.019 0.030 0.245 0.066 0.278 0.017 0.007 27.363 24.30 1.57188E+01 0.3 0.066 0.278 0.023 0.010 2 4
2 0.033 0.019 0.222 0.073 0.499 0.026 0.032 0.623 0.82 1.33110E+03 2.4 0.073 0.499 0.037 0.033 2 4
3 0.018 0.021 0.119 0.105 0.422 0.012 0.028 0.980 1.32 2.00261E+01 0.8 0.105 0.422 0.017 0.030 2 4
4 0.027 0.027 0.183 0.149 0.314 0.025 0.022 9.194 9.80 1.09897E+01 0.4 0.149 0.314 0.036 0.028 2 4
5 0.027 0.021 0.271 0.087 0.125 0.026 0.059 0.462 0.20 1.78937E+07 6.6 0.087 0.125 0.033 0.059 2 4
6 0.027 0.020 0.366 0.013 0.383 0.004 0.010 0.267 0.14 1.04947E+22 11.5 0.013 0.383 0.005 0.010 2 4
7 0.027 0.017 0.101 0.035 0.475 0.011 0.014 0.726 1.09 5.92861E+03 2.2 0.035 0.475 0.014 0.014 2 4
8 0.027 0.025 0.127 0.102 0.408 0.042 0.072 0.407 0.59 1.09128E+10 9.7 0.102 0.408 0.063 0.073 2 4
9 0.027 0.033 0.171 0.042 0.456 0.013 0.009 2.812 4.86 5.02452E+01 0.8 0.042 0.456 0.017 0.010 2 4
10 0.022 0.027 0.188 0.088 0.167 0.030 0.032 1.258 0.95 1.90229E+02 1.7 0.088 0.167 0.045 0.035 2 4
11 0.017 0.024 0.393 0.068 0.354 0.012 0.031 0.593 0.43 4.13872E+01 1.1 0.068 0.354 0.016 0.031 2 4
12 0.022 0.021 0.132 0.108 0.446 0.022 0.086 0.145 0.25 1.00813E+14 14.3 0.108 0.446 0.032 0.085 2 4
13 0.022 0.018 0.274 0.090 0.325 0.027 0.041 0.664 0.44 5.42991E+02 2.2 0.090 0.325 0.037 0.042 2 4
14 0.030 0.029 0.158 0.154 0.447 0.053 0.024 5.053 8.46 1.69047E+01 0.7 0.154 0.447 0.078 0.026 2 4
15 0.020 0.021 0.315 0.099 0.064 0.032 0.087 0.349 0.15 2.83629E+28 28.2 0.099 0.064 0.042 0.088 2 4
16 0.029 0.032 0.213 0.013 0.174 0.004 0.010 0.319 0.25 3.11897E+23 12.3 0.013 0.174 0.007 0.010 2 4
17 0.019 0.026 0.225 0.087 0.313 0.019 0.031 0.941 0.77 6.22601E+01 1.3 0.087 0.313 0.026 0.031 2 4
18 0.017 0.021 0.251 0.092 0.265 0.013 0.027 1.891 1.09 1.44818E+01 0.6 0.092 0.265 0.016 0.029 2 4
19 0.026 0.030 0.167 0.098 0.242 0.016 0.041 0.531 0.50 8.84472E+01 1.5 0.098 0.242 0.024 0.043 2 4
20 0.032 0.018 0.162 0.004 0.253 0.001 0.003 0.315 0.21 1.69847E+39 16.4 0.004 0.253 0.002 0.004 2 4
21 0.023 0.018 0.317 0.114 0.205 0.050 0.024 5.369 2.61 2.49145E+01 0.8 0.114 0.205 0.063 0.025 2 4
22 0.022 0.018 0.349 0.097 0.156 0.013 0.043 1.036 0.37 1.20336E+01 0.7 0.097 0.156 0.015 0.047 2 4
23 0.020 0.021 0.121 0.112 0.244 0.015 0.038 0.671 0.62 4.06640E+01 1.2 0.112 0.244 0.023 0.041 2 4
24 0.021 0.022 0.275 0.131 0.207 0.044 0.109 0.321 0.22 9.01245E+16 19.0 0.131 0.207 0.068 0.111 2 4
25 0.033 0.027 0.128 0.048 0.134 0.021 0.040 0.412 0.35 1.47565E+32 24.1 0.048 0.134 0.038 0.040 2 4
26 0.031 0.032 0.232 0.017 0.195 0.004 0.007 1.048 0.71 1.01842E+03 1.5 0.017 0.195 0.006 0.007 2 4
27 0.032 0.032 0.183 0.163 0.278 0.022 0.141 0.132 0.12 4.93217E+16 21.3 0.163 0.278 0.031 0.142 2 4
28 0.030 0.027 0.363 0.080 0.128 0.031 0.041 0.975 0.39 2.89175E+03 2.8 0.080 0.128 0.036 0.042 2 4
29 0.032 0.026 0.199 0.033 0.041 0.010 0.006 6.908 3.13 4.36917E+01 0.7 0.033 0.041 0.011 0.006 2 4
30 0.017 0.026 0.211 0.018 0.071 0.004 0.006 1.130 0.53 4.52802E+02 1.2 0.018 0.071 0.004 0.006 2 4
31 0.027 0.017 0.339 0.008 0.434 0.001 0.003 0.583 0.36 2.40135E+02 1.0 0.008 0.434 0.002 0.004 2 4
32 0.033 0.029 0.151 0.103 0.352 0.019 0.089 0.158 0.19 1.69030E+26 26.4 0.103 0.352 0.028 0.090 2 4
33 0.026 0.027 0.150 0.111 0.363 0.051 0.074 0.471 0.63 5.48670E+07 7.7 0.111 0.363 0.080 0.076 2 4
34 0.029 0.028 0.327 0.118 0.083 0.041 0.025 6.144 2.99 1.75725E+01 0.7 0.118 0.083 0.051 0.028 2 4
35 0.026 0.019 0.298 0.063 0.433 0.012 0.056 0.107 0.11 8.21837E+39 33.2 0.063 0.433 0.017 0.057 2 4
36 0.019 0.028 0.222 0.102 0.162 0.022 0.018 6.609 4.04 1.50967E+01 0.5 0.102 0.162 0.029 0.021 2 4
37 0.025 0.017 0.321 0.153 0.449 0.023 0.029 13.872 14.87 9.29399E+00 0.3 0.153 0.449 0.033 0.035 3 4
38 0.017 0.026 0.306 0.152 0.272 0.028 0.089 0.310 0.24 2.90089E+02 2.8 0.152 0.272 0.039 0.090 2 4
39 0.021 0.028 0.220 0.027 0.130 0.009 0.015 0.748 0.41 4.01353E+05 3.3 0.027 0.130 0.012 0.015 2 4
40 0.021 0.018 0.102 0.105 0.395 0.049 0.027 2.254 3.06 9.83595E+01 1.4 0.105 0.395 0.071 0.031 2 4
41 0.026 0.021 0.354 0.080 0.480 0.018 0.037 0.437 0.45 1.73014E+02 1.8 0.080 0.480 0.025 0.039 2 4
42 0.017 0.029 0.170 0.124 0.043 0.031 0.107 0.315 0.17 1.61848E+24 26.5 0.124 0.043 0.032 0.108 2 4
43 0.031 0.031 0.370 0.064 0.332 0.012 0.011 31.695 19.29 1.22280E+01 0.3 0.064 0.332 0.014 0.014 2 4
44 0.031 0.026 0.143 0.010 0.375 0.004 0.001 54.142 84.59 3.92541E+01 0.4 0.010 0.375 0.006 0.001 2 4
45 0.021 0.024 0.244 0.098 0.287 0.014 0.019 7.851 6.15 1.13403E+01 0.4 0.098 0.287 0.019 0.022 3 4
46 0.023 0.021 0.385 0.120 0.139 0.052 0.021 11.064 4.83 1.65212E+01 0.6 0.120 0.139 0.063 0.022 2 4
47 0.020 0.032 0.166 0.122 0.420 0.028 0.010 36.862 65.08 1.30911E+01 0.3 0.122 0.420 0.040 0.012 2 4
48 0.024 0.025 0.323 0.152 0.235 0.029 0.101 0.260 0.18 4.59014E+03 4.4 0.152 0.235 0.043 0.102 2 4
49 0.025 0.026 0.384 0.031 0.171 0.011 0.006 6.999 3.11 3.49139E+01 0.6 0.031 0.171 0.014 0.007 2 4
50 0.025 0.018 0.313 0.052 0.479 0.012 0.004 165.669 157.22 1.52477E+01 0.2 0.052 0.479 0.014 0.006 2 4
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