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Abstract. We present a method, known in control theory, to give set-
membership estimates for the states of a population in which an infectious

disease is spreading. An estimation is reasonable due to the fact that the pa-

rameters of the equations describing the dynamics of the disease are not known
with certainty. We discuss the properties of the resulting estimations. These

include the possibility to determine best- or worst-case-scenarios and identify
under which circumstances they occur, as well as a method to calculate con-

fidence intervals for disease trajectories under sparse data. We give numerical

examples of the technique using data from the 2014 outbreak of the Ebola virus
in Africa. We conclude that the method presented here can be used to extract

additional information from epidemiological data.

1. Introduction. Infectious diseases are an ever-current topic in human society.
The impact on life expectancy, quality of life, and the economy of the affected
communities can be immense. This is true not only of decades-long lethal pandemics
such as HIV/AIDS ([6]) and violent disease outbreaks such as the recent Ebola virus
epidemic ([17]), but also less threatening but persistent diseases such as influenza
([14]). Even diseases that affect only animals, such as foot and mouth disease, can
have a noticeable impact on the economy ([7]).

Given the importance of the subject, it is consequential that many different,
powerful mathematical modelling techniques have been developed that are widely
used (for an introduction see for example [9, 11]). For the sake of simplicity we
will presently only deal with models described by ordinary differential equations
(ODEs), which in particular includes compartmental models. In these models the
population is divided into several sub-populations (so called compartments) and
the dynamics are described by giving the rates at which individuals progress from
one compartment to another. As an example, among the simplest such models are
susceptible-infected-recovered-models (SIR-models) where the population is divided
into the three mentioned compartments and the dynamics are given by

Ṡ(t) = −βI(t)S(t),

İ(t) = βI(t)S(t)− γI(t),

Ṙ(t) = γI(t).
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In order for this model to be able to correctly describe the progression of a disease,
the two parameters β and γ, which describe the force of infection and recovery rate
respectively, need to be known. The identification of the parameter vector p = (β, γ)
for a specific disease is carried out by statistical analysis of epidemiological data.
Due to the importance of estimating parameters in epidemiological models there is
a vast literature concerning this subject. We only mention [3, 8, 13, 18] and refer
to references therein.

The result is that knowledge about the parameter p always entails some un-
certainty. For example, the information may be given in the form of confidence
intervals for each parameter component. The aim is then to extract as much infor-
mation as possible about the disease from the available data. We present here a
technique that can in some instances be used to gain additional information that is
not obtained by other methods. If information about some parameter is only avail-
able as a member of a certain set, it is natural to ask whether we also can describe
the possible outcomes as some set-membership. This idea is well established in con-
trol theory (see e.g. [12, 16]) and techniques have be developed to estimate these
set-memberships. We show one of these techniques and discus how this method can
be used in an epidemiological context to gain additional insight from given data,
that is relevant for both researchers and policy makers.

The paper is organised as follows. In Section 2 we present the set-estimation
procedure in a general setting. In Section 3 we discuss this procedure and explore
some of its properties. In Section 4 we demonstrate the technique in some numerical
examples by applying it to data from the Ebola virus outbreak in 2014.

2. Set-membership estimation.

2.1. Formulation of the problem. We consider an ODE system

ẋ(t) = f(t, x(t), p), x(0) = x0. (1)

Here, x ∈ Rn are the state variables, x0 ∈ Rn is the known initial condition, p ∈ Rm
is a vector of parameters, and the function f : R × Rn × Rm → Rn is measurable
in t, differentiable in x and p with Lipschitz continuous partial derivatives. The
solution to (1) at time t while using the specific vector p will be denoted by x[p](t).

We assume that the parameter p lies in a compact and convex set P ⊂ Rm. For
each fixed time T > 0 we now want to estimate what values x(T ) can take, given
that p ∈ P. The best possible estimate is given by the reachable set

R(T ) = {x ∈ Rn : ∃p ∈ P so that x = x[p](T )} .

To put this in an epidemiological context using the simple example given in the
introduction, the vector x(t) = (S(t), I(t), R(t)) is composed of the individual com-
partments used in the model. The function f(t, x, p) describes its dynamics and
the vector p = (β, γ) contains all parameters. The set P describes our knowledge
about the parameter vector by denoting a region in which we assume the parameter
p may lie. The reachable set R(T ) then tell us which vectors (S, I,R) may describe
the system at time T given our assumptions.

We will in the following describe how an estimate E(T ) ⊇ R(T ) can be calculated.
In many cases not all components of x are of immediate interest, but only the
components lying in a subspace L ⊂ Rn, e.g. if we are only interested in the number
of infected individuals but not the recovered ones. We will therefore also consider
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estimates EL(T ) that fulfil EL(T ) ⊇ prL(R(T )), where prL is the projection operator
onto L.

2.2. Set-membership estimation. Here we present a method to find approxi-
mations to the exact set-membership approximation R(T ) that is well known in
control theory ([5, 12]).

For a fixed time T and a unit vector ` ∈ Rn we consider the optimisation problem

J`(p) := 〈`, x[p](T )〉 → max, (2)

where x[p](T ) satisfies (1) and p ∈ P (〈·, ·〉 denotes the inner product in Rn). We
denote by x` an ε-solution of (2), i.e. there exists a p ∈ P such that x` = x[p](T )
and x` fulfils

〈`, x`〉 ≥ sup
p∈P
〈`, x[p](T )〉 − ε.

Obviously, R(T ) lies in the half-space {x ∈ Rn : 〈`, x− x`〉 ≤ ε}.
Let Λ = {`1, . . . , `k} be a set of unit vectors for which we have ε-solutions. Then

R(T ) ⊆
⋂

i=1,...,k

{x ∈ Rn : 〈`i, x− x`i〉 ≤ ε} =: EΛ(T ).

Consequently, EΛ(T ) is a set-membership estimation of x(T ). As an intersection of
convex sets EΛ(T ) is itself convex. It is easy to show that if Λ is a δ-net on the unit
sphere and both δ and ε converge to zero, then EΛ(T ) converges to the convex hull
of R(T ) in the Hausdorff sense.

If we are only interested in a set-membership estimation in the subspace L ⊂ Rn,
then we can simplify the above definition by requiring that the collection of unit
vectors Λ belongs to the space L from which we can define the estimate

prL(R(T )) ⊆ prL

 ⋂
i=1,...,k

{x ∈ Rn : 〈`i, x− x`i〉 ≤ ε}

 =: EL(T ).

For example, if in an SIR-model we are only interested in the number of infected
individuals, we can choose as subspace L the space spanned by the vector (0, 1, 0),
which contains all the desired information about the vector x = (S, I,R). The
set Λ will then consist of the two vectors (0, 1, 0) and (0,−1, 0). Note that in
order to calculate an estimate E(T ) we need to solve (at least approximately) the
optimisation problem (2).

2.3. The optimisation problem. For ` ∈ Rn we want to maximise

J`(p) = 〈`, x[p](T )〉.

Note that the solution to this problem gives the scalar projection of the vector
x[p](T ) onto the unit vector `. To continue the example given in the introduction
where x = (S, I,R), if ` = (0,−1, 0) then J`(p) = −I(T ). So by maximising J`(p)
we can deduce what the minimum value is that I(T ) can take for a p ∈ P. We now
prove a theorem that is crucial to solving this maximisation problem.

Denote by A∗ the transpose of the matrix A. For a given p ∈ P and corresponding
state trajectory x[p](t) we define the adjoint function λ[p](t) as the solution to the
terminal value problem

λ̇[p](t) = −f ′x(t, x[p](t), p)∗λ[p](t), λ[p](T ) = −`. (3)
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Theorem 2.1. The functional J` is differentiable and the derivative is given by

J ′`(p) = −
T∫

0

f ′p(t, x[p](t), p)∗λ[p](t) dt. (4)

Proof. We have

J`(p)− J`(p̂) = 〈`, x[p](T )− x[p̂](T )〉
and
T∫

0

〈
λ̇[p̂](t), x[p](t) −x[p̂](t)〉 dt = 〈λ[p̂](T ), x[p](T )− x[p̂](T )〉

− 〈λ[p̂](0), x[p](0)− x[p̂](0)〉 −
T∫

0

〈λ[p̂](t), ẋ[p](t)− ẋ[p̂](t)〉 dt.

Using that λ[p̂](T ) = −` and that x[p](0) = x[p̂](0) we can add these two equations
to get

J`(p)−J`(p̂) = −
T∫

0

〈
λ̇[p̂](t), x[p](t)− x[p̂](t)

〉
+ 〈λ[p̂](t), ẋ[p](t)− ẋ[p̂](t)〉 dt

=−
T∫

0

〈
λ̇[p̂](t), x[p](t)− x[p̂](t)

〉
+ 〈λ[p̂](t), f(t, x[p](t), p)− f(t, x[p̂](t), p̂)〉 dt

=−
T∫

0

〈
λ̇[p̂](t), x[p](t)− x[p̂](t)

〉
+ 〈λ[p̂](t), f ′x(t, x[p̂](t), p̂)(x[p](t)− x[p̂](t))〉

+
〈
λ[p̂](t), f ′p(t, x[p̂](t), p̂)(p− p̂)

〉
dt+ o(|p− p̂|)

=

〈
−

T∫
0

f ′p(t, x[p̂](t), p̂)∗λ[p̂](t) dt, p− p̂

〉
+ o(|p− p̂|).

The last equality is due to (3), while the fact that the remaining terms in the
Taylor approximation are o(|p− p̂|) follows from Grönwall’s Lemma, which tells us
that |x[p1](t) − x[p2](t)| ≤ c|p1 − p2|. The result follows obviously from the above
equality.

2.4. Numerical procedure. Using the result of the previous section we can derive
a numerical gradient projection procedure for solving the problem (2). Starting with
a point p0 ∈ P we first solve the initial value problem (1) and then the terminal
value problem (3). Using the formula in Theorem 2.1 we can calculate the gradient
J ′`(p0). We then choose a step size α that maximises J` (prP (p0 + αJ ′`(p0))) and
set p1 = prP (p0 + αJ ′`(p0)). Iterating this process yields convergence to a critical
point p̂ so that after enough iterations the calculated value will be an ε-solution.
For more detailed explanation of gradient projection algorithms, in particular the
choice of the step size α, see for example [15]. Algorithm 1 below shows the pseudo
code for a possible implementation of this procedure.

The optimisation problem (2) has to be solved for many different times Tn. If
p̂ maximises J` for Tn then p̂ is a sensible initial guess for the maximisation of J`
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at the time Tn+1 which can make the algorithm more efficient. Furthermore, the
adjoint equation (3) is linear which is another property that might in some cases
simplify the calculation.

Another possible difficulty in this procedure is the calculation of the projection
onto the set P, which can be very complicated depending on its nature. However, if
the set P is given by box constraints then this task is very simple. Such constraints
arise for example if the set is described by confidence intervals of the individual
parameter components. This is a common way the information about the parameter
is available.

input : functions f(t, x, p), f ′x(t, x, p), and f ′p(t, x, p); projection operator
prP ; initial condition x0; initial guess p0; tolerance ε; stopping
condition τ < 1; unit vectors `1, . . . , `k; time discretisation
0 = T0, . . . , Tr = T

for j = 1, . . . , k do
pnew = p0;

for i = 1, . . . , r do
error = 1;

while error ≥ τ do
pold = pnew;

calculate x[pold](t) on [0, Ti] using (1);
calculate λ[pold](t) on [0, Ti] with terminal condition λ(Ti) = −lj
using (3);

calculate J ′`j (pold) using (4) with Ti as the upper integral bound;

choose step size α;

pnew = prP

(
pold + αJ ′`j (pold)

)
;

error = ‖pnew − pold‖ or ‖J`j (pnew)− J`j (pold)‖ or similar;

end

x`j (Ti) = x[pnew](Ti);

end

end

for i = 1, . . . , r do
E(Ti) =

⋂
j=1,...,k

{
x ∈ Rn :

〈
`j , x− x`j (Ti)

〉
≤ ε
}

;

end
output: set-membership estimation E(t) of R(t) at each point Ti

Algorithm 1: Set-membership estimation

3. Discussion of the estimation. Here we want to discuss some attributes of the
set-membership estimation that is described in Section 2.

3.1. Convexity of the estimate. As already noted, the set-membership estima-
tion E(T ) is always convex. However, epidemiological models are usually non-linear,
and the reachable sets of non-linear equations do not have to be convex ([4]). The
convex hull ofR(T ) (which our procedure approximates) is therefore usually strictly
larger than the reachable set itself, which limits the accuracy of our approach. We
therefore present two ways in which this limitation can be circumvented.

The first way is to consider only estimations of a single component of x. Since
x[p](T ) depends continuously on p and P is connected, R(T ) is also connected. The
projection onto a one dimensional subspace is therefore necessarily convex. The
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estimate EL(T ) for a one dimensional space L therefore approximates the reachable
set in L itself since it coincides with its convex hull. A further advantage of this
approach is that the unit sphere in a one dimensional space is given by the two
vectors {−1, 1} and so no further discretisation is necessary.

If an approximation of the non-convex set R(T ) in a higher dimensional space
is needed, the procedure presented in Section 2 can be used in the following way.
Create a partition of the set P into two convex sets PA and PB . Calculate for
each of them their respective set-membership estimation EPA

(T ) and EPB
(T ), i.e.

the estimates for x(T ) given that p ∈ PA and PB respectively. Since PA ( P,
the diameter of EPA

(T ) cannot be larger than the diameter of the estimate EP(T ).
Obviously, the same reasoning can be applied to PB . On the other hand, the union
of EPA

(T ) and EPB
(T ) necessarily contains R(T ). If necessary, the sets PA and PB

can now themselves be partitioned further until we arrive at a partition P1, . . . ,Pk
of P such that the diameter of EPi

(T ) is smaller than some given tolerance η > 0.
The union of these estimates is then an estimate of R(T ) with a distance (in the
Hausdorff sense) from R(T ) of at most η.

This procedure may be numerically costly so that it might be more reasonable
to consider the numerically cheaper estimates for the convex hull of R(T ).

There are some special cases in which other procedures may be more effective to
calculate the reachable set. For example, if the parameter set is one dimensional, i.e.
given by an interval [a, b], then the reachable set can be approximated by discretising
the interval and calculating the solution for each point in the discretisation. Similar
approaches become infeasible if the parameter vector is high dimensional.

3.2. Identifying extremal values. Set-membership estimates can be used to cal-
culate worst-case-scenarios (or best-case-scenarios). If the quantity in question is
one of the components of x(T ), then the set-membership estimate in the one di-
mensional space of this component calculates the maximum and minimum value
this component can take. This allows us for example to determine the maximum
number of people that could become infected during a disease outbreak, given the
parameter constraints.

If the quantity in question is not one of the components of x, but its derivative
can be computed, we can of course extend the vector x by the variable in question.
For example, assume we are interested in the prevalence of the infection given by
I(t)
N(t) , where I(t) denotes the number of infected individuals and N(t) the population

size. Assume that I(t) and N(t) are components of x but that the prevalence is

not. Since we are able to calculate İ(t) and Ṅ(t), we can add the variable xn+1(t)

with initial conditions xn+1(0) = I(0)
N(0) and derivative İ(t)N(t)−I(t)Ṅ(t)

N(t)2 . The set-

membership estimation can then be used to calculate the maximal prevalence that
can occur during an outbreak, given the parameter constraints.

Furthermore, if we are interested in a quantity y(x(T )) for which the above is
not possible, the set-membership estimate can still be useful. Given an estimate
E(T ) for x(T ) we can calculate maxx∈E(T ) y(x) to get an estimate for the maximal
possible value of y.

Another useful aspect of this calculations is that not only do we get information
about the extremal values of x, but also for which parameters p this values are ob-
tained. In many cases it is not obvious which choice of parameters will maximise or
minimise a certain variable. Identifying them can be of importance in constructing
policies to minimise the impact of a disease.
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3.3. Confidence intervals for the trajectories. A common way (see e.g. [2])
to obtain pointwise confidence intervals for the trajectories of various variables is
the following: Calculate the maximum likelihood estimate p̂ of the unknown model
parameters and the associated variance-covariance matrix Σ. Then simulate large
number or parameters with a normal distribution with mean p̂ and variance matrix
Σ. Calculate the trajectory for each of the simulated parameters and use e.g. the
2.5% and 97.5% quantile to construct the 95% confidence interval.

This is based on the fact that under certain circumstances the maximum likeli-
hood estimate is asymptotically normally distributed. In particular this approach is
only valid if enough data is available for the estimator to approach this asymptotic
distribution. Set-membership estimates can be used to describe confidence intervals
in a different way, without any need of further assumptions.

Under the model assumption, i.e. that the trajectories follow equation (1), every
trajectory is given by x[p](t) for some parameter vector p. Let P be a 95% confidence
region for p, i.e. there is a 95% chance that the set P contains the true parameter
p̂1. Let R(T ) be the reachable set of (1) at time T under the assumption that
p ∈ P. Then, letting P(A) describe the probability of the event A, we have

P (x[p̂](T ) ∈ R(T )) =P (x[p̂](T ) ∈ R(T ) | p̂ ∈ P)P (p̂ ∈ P)

+ P (x[p̂](T ) ∈ R(T ) | p̂ /∈ P)P (p̂ /∈ P) .
(5)

By the definition of the reachable set the first probability on the right hand side is 1.
Due to the fact that P describes the 95% confidence region we have P (p̂ ∈ P) = 0.95.
The value of the second addend is unknown since we have in general no information
about the probability that a trajectory of the system, with a parameter that lies
outside of P, will at time T be in the reachable set for the system with parameter
values that lie in P. However, since it is certainly non-negative we have

P (x[p̂](T ) ∈ R(T )) ≥ 0.95.

This probability is of course to be interpreted in the sense of a confidence region.
That is, if the reachable set is calculated from a data set, there is at least a 95%
chance that the reachable set contains the true trajectory.

Thus the reachable set describes a confidence region for the trajectory of at least
the confidence level of the region for the parameter. The same is of course true if
we look at the trajectory of components of x(T ) in the subspace L ⊂ Rn and the
respective reachable sets RL(T ). In particular, if we look at a single component of
x(T ), then the set-estimate EL(T ) approximates a confidence interval (i.e. a one di-
mensional confidence region) with a level of at least that of P. This approximation
can be done to arbitrary accuracy and does not depend on any additional assump-
tions. This means for example that, unlike the method described at the beginning
of this section, the procedure is valid even for small data sets.

4. Numerical examples. In this section we use a model and data presented by
Althaus in [1] for the outbreak of the Ebola virus in 2014 in Guinea. The model

1We use here frequentist connotation. However, the same argument can be made in Bayesian
terms, if P is replaced by a 95% credible region, i.e. a set such that the probability that the

parameter p lies in P is 95%.



148 ANDREAS WIDDER

0 50 100 150 200 250 300
0

100

200

300

400

500

600

700

800

t

C
u

m
m

u
la

ti
v
e
 n

u
m

b
e

r 
o
f 

c
a

s
e
s

0 50 100 150 200 250 300
0

100

200

300

400

500

600

t

C
u
m

m
u
la

ti
v
e

 n
u
m

b
e
r 

o
f 
d

e
a

th
s

Figure 1. A comparison with the set membership estimation with
the data. The dotted line is calculated using the maximum likeli-
hood estimate. The solid lines are the set-membership estimation
calculated by using the 95% confidence intervals. The dashed lines
are calculated from a 95% confidence region using Bonferroni’s
method.

equations are

Ṡ(t) = −βe−ktS(t)I(t)

N(t)
,

Ė(t) = βe−kt
S(t)I(t)

N(t)
− σE(t),

İ(t) = σE(t)− γI(t),

Ṙ(t) = (1− f)γI(t),

(6)

together with

Ċ(t) = σE(t),

Ḋ(t) = fγI(t).

Here, S denotes the susceptible individuals, E the exposed class, I the infectious
individuals, and R the recovered. The total number of individuals is given by
N = S+E+ I +R. The additional two variables denote the cumulative number of
infected cases C and deaths D. The parameters 1

σ and 1
γ are the average durations

of incubation and infectiousness, respectively. The transmission rate is denoted by
β and the fatality rate by f . The factor k determines the exponential decay of
the transmission rate due to intervention measures. The initial conditions for the
vector (S,E, I,R,C,D) are (106 − 1, 0, 1, 0, 1, 0). The two parameters σ and γ are
fixed at 1

5.3 and 1
5.61 respectively. The remaining three parameters are estimated

from data. The maximum likelihood estimate (and the 95% confidence interval) for
these parameters are2

2The values presented here are slightly different than the one in [1]. There, rounded values
have been given. The more accurate values presented here were kindly provided by the author of

[1] in personal correspondence.
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Figure 2. A long term calculation of the maximum likelihood
estimate (dotted line), and estimations using the 95% confidence
intervals (dashed lines), and a 95% confidence region (solid lines).

β = 0.268574 (0.266924, 0.270189),

f = 0.7368011 (0.719586, 0.754707),

k = 0.0023379 (0.0022597, 0.002415).

The box described in R3 by these three intervals can be used as the set P of possible
parameters. As an initial guess p0 for the parameter we simply use the centre of
the box, although other guesses such as the maximum likelihood estimate itself are
of course also possible. With respect to the set P we note, however, that this box
will not describe a 95% confidence region. There are different interpretations of the
result when using this set. One is to say that this set describes the best knowledge
we have about the location of the parameters, and the set-membership estimation
therefore yields the best forecast that is possible, given our information. This
interpretation may be particularly justified in cases where the estimates for different
parameters come from different sources (and in particular different data sets). In
cases such as the present one, where the data can be analysed, we may interpret the
box described by the confidence intervals as a confidence region using the Bonferroni
method ([10]). According to this method, to get a 100 − α% confidence region for
an m-dimensional parameter, we calculate the 100 − α

m% confidence intervals for
each component. The box described by these intervals is then a confidence region
of the desired level. Therefore, in our case the 95% intervals provided yield an
85% confidence region for the parameter. To get an 95% confidence region we
need to calculate the 98.3̇% confidence intervals for the individual components of
the parameter vector. In Figure 1 we compare the two resulting set-membership
estimations to the actual data3. In Figure 2 we calculate the estimations over a
longer time period. Doing this for more confidence levels results in a graduation of
confidence regions for the trajectory.

Extremal parameters. In simple models it is sometimes obvious what parameter
configuration maximises (or minimises) certain compartments. For example, looking

3The calculations here were carried out in Matlab. The code has been made public in [21].
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Figure 3. Set-membership estimates for I(t) along with the pa-
rameter combinations that maximise and minimise I(t). Even in
the simple model presented here this combination may change with
time.

at the equations in (6) we see that an increase in β will lead to a decrease of S(t). So
to maximise S(t) we certainly need to minimise β. In more complicated models such
relations are often hard to discern. As mentioned in Section 3, the set-membership
estimation technique allows us to calculate for each t which parameter combination
will yield a maximum for certain variables.

In order to capture at least one time dependent effect, we now consider a slight
variation of Equations (6). We now assume that recovered individuals may return
into the susceptible class and let ρ denote the rate at which this happens. We
furthermore assume that the disease is not fatal and that no intervention is made.
The resulting equations are then given by

Ṡ(t) = −βS(t)I(t)

N(t)
+ ρR(t),

Ė(t) = β
S(t)I(t)

N(t)
− σE(t),

İ(t) = σE(t)− γI(t),

Ṙ(t) = γI(t)− ρR(t).

(7)

We assume that our knowledge about the parameters can be described by the in-
clusions

β ∈ [0.05, 0.06],

σ ∈ [0.3, 0.35],

γ ∈ [0.05, 0.055],

ρ ∈ [0.2, 0.23].

These numbers are not based on data and are chosen to highlight the dynamical
features. In Figure 3 we show the set-membership estimation for I(t) based on
this information. We also show the parameter combinations that maximise and
minimise I(t). We see that even for the simple model we have chosen, the parameter
combination that minimises I(t) changes with time. For more complex models the
time dependence of extremal parameter configurations may be more pronounced.
Also note that it is not necessary that the extremal parameter combination is on
the boundary of the interval for each component.
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5. Conclusion. In this paper we discuss a technique to calculate set-membership
estimations of trajectories for dynamical systems in which some parameters are
not known. We apply this technique, which is well known in control theory, to
epidemiological models, and emphasise certain aspects that are of particular use in
this context.

Firstly, we describe how the estimates can be interpreted as a confidence region
for the trajectories if the knowledge about the parameters is given in form of con-
fidence intervals, as is often the case. Since this is a topic of great interest, further
analysis of this method is desired. In particular it would be of interest to study the
efficiency of the presented method compared with other established ones.

We furthermore explain how this method can be used to find parameters which
yield the highest or lowest value for a state variable of choice. The technique pre-
sented here identifies the best and worst case scenario given all available information,
and indicates which parameters should be influenced to achieve a more preferable
outcome. This may be of particular interest to policy makers.

In this paper we focus on ODE models in which the dynamics depend on a
finite dimensional parameter vector. However, this method can be altered for more
general settings. For example, Theorem 2.1 can easily be adapted to include the
case that the initial condition x0 is itself an unknown parameter, or cases where the
dynamics do not depend smoothly on the parameter p

It can also be applied to heterogeneous models with structured populations,
where the dynamics are described by partial differential equations. In such models,
initial conditions are given by a density function in an infinite dimensional space.
These densities are usually not known. Also, parameters may depend on the popu-
lation structure and therefore lie in some infinite dimensional function space. Some
results have been presented to deal with unknown initial conditions ([19, 20]), and
further research may provide results regarding unknown parameter functions.

Set-membership estimation is shown to be a flexible technique that can be applied
in many different situations. It is not meant to supplant any existing technique,
but to supplement them, and to help extract the maximum amount of information
from epidemiological data.
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