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Abstract. In this paper, an economic epidemiological model with vaccina-

tion is studied. The stability of the endemic steady-state is analyzed and some

bifurcation properties of the system are investigated. It is established that the
system exhibits saddle-point and period-doubling bifurcations when adult sus-

ceptible individuals are vaccinated. Furthermore, it is shown that susceptible

individuals also have the tendency of opting for more number of contacts even
if the vaccine is inefficacious and thus causes the disease endemic to increase in

the long run. Results from sensitivity analysis with specific disease parameters

are also presented. Finally, it is shown that the qualitative behaviour of the
system is affected by contact levels.

1. Introduction. Due to their continued global prevalence, infectious diseases
have been receiving great attention. While some developed nations have been
affected by the adverse consequences of infectious diseases, their prevalence and
impact are more profound in developing nations where prevention and treatment
are not readily available. For instance, the spread of Sexually Transmitted Diseases
(STDs) such as Human Immunodeficiency Syndrome (HIV) have had devastating
effects on the socio-economic structure of many developing nations. In the past,
it was believed that, with the introduction of effective antibiotics and vaccination
programs as well as improved sanitation, infectious diseases will soon be eradicated.
However, the world has witnessed the propagation and continued presence of infec-
tious diseases at a global scale in spite of humanity’s relentless effort to get rid
of them. As a result of this alarming reality, the study of infectious diseases has
become an area of significant scientific research. In particular, there has been im-
mense scientific investigation focused in developing critical comprehension of the
conditions or factors that contribute to the epidemic of diseases and the controlling
measures that can be employed to curb this epidemic. These investigations attempt

2010 Mathematics Subject Classification. Primary: 92D30, 92B05, 90C3; Secondary: 37N40.
Key words and phrases. Dynamical system, economic epidemiology, equilibrium, eigenvalue,

stability, vaccination.
∗ Corresponding author.

975

http://dx.doi.org/10.3934/mbe.2017051


976 WISDOM S. AVUSUGLO, KENZU ABDELLA AND WENYING FENG

to address a number of vital scientific questions; how effective will an introduction
of vaccination help decrease the impact of the epidemic? How will the behaviours
of individuals affect the spread of the disease when vaccines are introduced?

As a common tool in mathematical modelling, system of equations has always
been effective in comprehending disease dynamics among population. See for in-
stance [19, 20, 28, 32, 33]. However, most of these models do not explicitly take into
account the impacts of behavioural responses of individuals on disease dynamics in-
cluding whether there will be epidemic or not. Along with the rapid development
of Internet and social network applications, social behaviour has become a new
challenge in public health. As a result, infectious disease models incorporating so-
cial influence, risk perception and decision-making have attracted more and more
interests of researchers from multiple areas. For example, in [16] (Science 2013),
it was shown that when a social contagion is coupled to a biological contagion,
the disease-behaviour system exhibits complex dynamics and social impact can be
either positive or negative. In [34], injunctive social norms were added to an ex-
isting behaviour-incidence model to study the dynamics of vaccinating behaviour.
To study the pandemic potential of influenza such as H1N1 or H5N1, an epidemio-
logical game-theoretic model of an influenza pandemic was developed in [41]. The
model compared the perspectives for antiviral coverage at the individual level (in-
dividual behaviour) and the population level to determine the optimal [41]. As
examples, risk prediction in decision-making from psychological point of view was
studied using the fuzzy trace theory [39] and later, risk perception for HIV transmis-
sion response through multiple pathways is discussed in [42]. Some recent progress
on population dynamics involving decision-making under the consideration of both
human-environment and biological conditions can be found in [1, 2, 17, 34, 42, 43].
In particular, a review on coupled disease-behavior dynamics including social and
disease perspectives from the approach of complex networks was given in [43].

At the meantime, as an emerging class of models, Economic Epidemiology (EE)
is interdisciplinary and utilizes economic concepts to explicitly incorporate be-
havioural related responses. For some previous efforts in this direction see [8, 10,
18, 35, 37]. Also, a detailed account of some results in this field maybe found in [37]
and recently in [5, 36]. Different from the traditional mathematical epidemiology,
EE models apply incentives for healthy behaviour and associated behavioural re-
sponses to offer unique insights to transmissibility of infectious diseases and thereby
recommending optimal control strategies to contain their spread.

As classical models for epidemiology, SIR (susceptible-infected-removed), SI, SIS
and SIRS models and their various extensions have been extensively studied [11].
For instance, [23] discusses continuous time mathematical epidemiological models
integrated with utility functions and decision making and a discrete time EE models
were discussed in [5], where equilibrium dynamics of EE under rational expectations
were investigated.

In this paper, we introduce a discrete time EE model of vaccination incorpo-
rating social consideration and decision-making. Individuals are assumed to have
control over the contacts they make. That is, it is assumed that contacts are made
in order to maximize utility (satisfaction) subject to disease dynamics, health stock
and probability of infection. It is also assumed that newborns and older suscepti-
ble individuals are vaccinated. The approach used in this study is similar to the
one used in [4] but more detailed investigation on properties of system bifurcation
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and sensitivity analysis for the infection parameter and contact rates provides in-
depth understanding to system dynamics. We also present results obtained from
sensitivity analysis with specific disease parameters to show the behaviour of some
particular diseases. Our results show that the system exhibits saddle-point and
period-doubling bifurcation when older susceptible individuals are vaccinated. The
converse also holds. That is the model does not show these bifurcation properties
if there is no available vaccination for older susceptible individuals.

The organization of the paper is as follows: Section 2 describes the model, the
various parameters and the underlining assumptions governing the formulation of
the system. Section 3 describes the optimal behaviour of susceptible individuals.
Parameter analysis is carried out in Section 4, where the endemic equilibria (when
diseases is present in the population) of the prevalence rate of disease and sensitivity
analysis on the equilibria of the number of contacts is carried out. Also, local sta-
bility analysis around the disease endemic equilibria as well as bifurcation analysis
are discussed in this section. In Section 5, simulation of the system is presented
and discussed. Conclusion on the paper is presented in Section 6.

2. Model development. The model is set in a discrete time interval such that
individuals make decisions in discrete time given their disease status. The model
considers a total population, say N , divided into three mutually exclusive disease
groups: Susceptible (S), Infected (I) and Vaccinated (V ) category. The disease
category is written as the proportion of the total population. Let st, it and vt denote
the proportion of the disease categories (Susceptible, Infected and Vaccinated) to
the total population at a given time, t respectively, hence st+ it+vt = 1. We derive
the epidemiological model by making the following assumptions:

• The population size is assumed constant with equal birth and death rates
per year. This is denoted as µ. The death rate is assumed the same for all
disease categories. The new births enter the susceptible group (we assumed
no infection among the new births). The constant m > 0 is the proportion of
children who are vaccinated in their first year. Adult susceptible individuals
are assumed to receive vaccination. Let n denotes the proportion of these vac-
cinated individuals. We assume that vaccination does not confer permanent
immunity. This assumption is consistent with epidemiological data since for
many infectious diseases immunity wanes following natural infection. While
the duration of immunity provided by vaccines varies, live vaccines generally
induce longer lived immunity than sub unit vaccines [50]. For example for
Tetanus, the estimated duration of protection from vaccine after receiving all
the recommended doses is 25 years for 72% of the vaccinated individuals while
for measles permanent immunity is obtained for 96% of the vaccinated indi-
viduals [38]. Therefore, a fraction of the vaccinated individuals are assumed
to lose their immunity. Let ν denote this fraction.

• Following the work in [26] and [44], the treatment function of infected indi-
viduals is modelled as

T (it) =

{
σit if 0 ≤ it ≤ ic,
σic if it > ic.

Where σ and ic are the respective treatment parameter and the disease preva-
lence level beyond which the health care system can not operate at a particular
time. σ is the percentage of individuals who receive treatment per year. The
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treatment function indicates that the treatment increases linearly with infec-
tion prevalence and then reaches a peak at which it becomes constant.

• There is no disease related death.

From the above, we have the following system of equations explaining the epidemi-
ological model:

st+1 − st = µ−mµ− (pt + µ+ n)st + T (it) + νvt, (1)

it+1 − it = ptst − µit − T (it), (2)

vt+1 − vt = mµ+ nst − (µ+ ν)vt, (3)

where pt is the probability of infection. By intuition, individuals can either be
in the susceptible or infected or vaccinated disease category at a time. Also, a
contact made by a susceptible individual can either result in infection or not. The
probability of a susceptible individual transitioning to the infected group is modelled
by following the work in [3]-[7]. We have the probability of infection as

pt = 1− (1− λit)ct ,
where ct and λ are the number of contacts made by an individual at time t and the
probability of a susceptible individual contracting the disease from a single infected
contact per unit time respectively. λ can also be viewed as the rate (force) of
infection per unit time. Since st + it + vt = 1, Eq. (1)-(3) can be reduced to the
following system of equations:{

st+1 − st = µ−mµ− (pt + µ+ n)st + T (it) + ν(1− st − it),
it+1 − it = ptst − µit − T (it).

(4)

To introduce behavioural influence of individuals into the dynamics of the model,
suppose an individual k1 independently makes a decision by choosing a number of
contacts c. Associated with each contact comes a risk of infection. Individuals
are faced with the decision to choose c in any period t such that his/her utility is
maximized. We have the following as the individual’s objective function:

∞∑
j=0

βjU(ck,t+j , hk,t+j),

where 0 < β < 1 and hk,t are the discount factor and individual k’s health stock in
period t. β measures the estimated worth individuals place on their future utility. If
they place less value on their future utility, the discount factor takes up high value.
On the other hand, the discount factor will take low value when more value is placed
on future utility. In the analysis, we specify the utility function U as follows:

U(ck,t, hi,t) = ck,t − δc2k,t + φhk,t, (5)

where φ > 0 and δ measures the relative importance of the health stock [3] and
the level of contacts that yields the possible maximum utility respectively and h
denotes the health stock. Thus, we have ck,t = 1/2δ as the level of contact that
yields maximum utility. Fig. 1 illustrates this. Notice that the graph for δ = 0.05
has a maximum utility less than the graph for δ = 0.025. The graph is plotted by
dropping the indexes attached to c and h. Furthermore, low values of δ yield high
level of utility and vice-versa (that is there is a case of disutility when δ takes high
values). Note that φ = 0 implies that individuals do not place importance on h
and thus an increase in the value of φ implies that much importance is placed on h

1k = 1, 2, 3.. can be interpreted as individual 1, 2 and 3 etc..
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[3]. We define the dynamics of the health stock by following the work by Grossman
[25]. We have the equation for the health stock as

hk,t+1 = h
′
+ (1− ε)hk,t − it+1, (6)

where ε captures the depreciation rate of health h. h′ is the autonomous health
stock. It implies from Eq. (6) that the steady state for the health stock of uninfected
individuals is h∗ = h′/ε. Hence, h∗ serves as the ceiling for h.

Figure 1. Graph of utility function. φ = 1 and h = 2

3. Optimal behaviour of individuals. Suppose that individuals are not altru-
istic (that is, they are not concerned about the welfare of the general public), then
each individual will be willing to go for a contact level that will yield maximum
satisfaction. Since individuals in the infected and vaccinated category are already
infected and vaccinated respectively, we further assumed that unless they are altru-
istic, they will opt for the maximum number of contacts ( that is ck,t = 1/2δ = c̄ )
in order to gain the possible optimal level of utility. Beyond this level, the utility
of individuals will decrease (that is individuals will be faced with disutility for any
additional contact they make. This phenomenon is due to the quadratic nature of
the utility function. Therefore, to maintain a strictly increasing utility function the
contact level should not exceed c̄. This is shown in Fig. 2. Note that as c moves
beyond the vertical line (c = 1/2δ), the utility U(c) begins to decrease. The figure
also exhibits how the variation in the health stock affects the level of utility for
individuals. In our illustration, we assumed an exogenous increase in the health
stock from 2 to 4. This causes an upward shift of the utility curve resulting in the
maximum level of utility for individuals moving from 7 to 92. To carry out our
analysis, we assume that individuals are identical in behaviour with the exception
that they have different health stock. Hence, we can drop the subscripts and ana-
lyze in terms of a single individual. We further assume that the infected and the
vaccinated individuals are not altruistic and that they go for a level of contact that
yields maximum utility. The decision faced by the susceptible individual is to maxi-
mize the objective function subject to Eq. (6) and the dynamics of the disease. The
following Euler equation was used to explain the optimal behaviour of susceptible
individuals [3]:

∂U

∂ct
= −β ∂U

∂ht+1

∂ht+1

∂it+1

∂pt
∂ct

. (7)

2The maximum utility was calculated by substituting the value for c = 1/2δ into the utility
function.
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Figure 2. Graph of utility function. δ = 0.05 and φ = 1

Eq. (7) measures the trade-off in the model in that an additional contact made by
a susceptible individual may or may not result in an infection. Therefore, in order
for the individual to be in equilibrium, the individual should make contacts that
will satisfy the above equation.

The right hand side of Eq. (7) measures the marginal benefit associated with an
additional contact made by a susceptible individual while the expression on the left
hand side measures the damage the individual incurs as a result of an additional
contact made. See [3] for detailed explanation on the above. By employing Eq. (4),
(5) and (6) we have the Euler equation reducing to

1− 2δct = βφpc,t, (8)

where

pc,t =
∂pt
∂ct

= −(1− λit)ct ln(1− λit) = − (1− pt)
ct

ln(1− pt).

The value of pc,t shows that unlike the classical mathematical epidemiology, the
probability of infection is dependent on how susceptible individuals responds to
disease risk. Therefore, we can interpret pc,t as the magnitude in which the rate of
probability of infection changes with respect to optimal number of contacts.

4. Parameter analysis.

4.1. Equilibria analysis. This section discusses the existence of the disease steady
state. Let E(s∗, i∗, c∗, h∗) be the equilibrium(equilibria) for the disease categories.
The endemic steady state is found by solving the time invariant version of System (4)
and Eq. (6) and (8) simultaneously. The following equations represent the endemic
steady state (equilibrium at which the disease is presence in the population) for
0 < i∗ ≤ ic: 

s∗ = µ(1−m)+(σ−ν)i∗+ν
p+µ+n+ν ,

i∗ = ps∗

µ+σ ,

1− 2δc∗ = βφpc,

h∗ = h′ + (1− ε)h∗ − i∗.

(9)

And for i∗ > ic, s
∗ and i∗ satisfies{

s∗ = µ(1−m)+ν+σic−νi∗
p+µ+n+ν ,

i∗ = ps∗

µ+σic
,
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where {
p = 1− (1− λi∗)c∗ ,
pc = −(1− λi∗)c∗ ln(1− λi∗).

(10)

It can be verified that there is no explicit solution for the endemic steady state.
Numerical method is employed in examining the existence of positive endemic
steady state(s). For example, Fig. 3 shows the relationship between the preva-
lence rate i and the number of contacts c. Note that, for all values of c, there
is a positive relationship between i and c. The graph shown is for the condition
0 < i∗ < ic. The same result holds for i∗ > ic. It further shows that as individ-
uals increase their number of contacts, it reaches a level beyond which the disease
prevalence remains constant.

Figure 3. Graph of infection prevalence verses number of con-
tacts. δ = µ = 0.05, ν = 0.8,m = 0.6, n = 0.5

The disease free equilibrium, E0

(
µ(1−m)+ν
µ+n+ν , 0, 1

2δ ,
h′

ε

)
is obtained from Eq. (9).

The expression for E0 confirms the expectation that, in the absence of infectious
disease(s) susceptible individuals will go for maximum number of contacts and yet
maintain their highest health stock. It further shows that if the proportion of vac-
cinated newborns and adult susceptible individuals are zero (that is both newborns
and adult susceptible individuals are not vaccinated), s will equal 1.

4.2. Sensitivity analysis of number of contacts. This section discusses the
sensitivity analysis of the number of contacts to the parameter λ and φ, denoted by
S(c∗, λ) and S(c∗, φ) respectively. By employing the method used in [29], we have

S(c∗, λ) =
∂c∗

∂λ

λ

c∗
=
ζ1
ζ2
,

where {
ζ1 = βφ(1− λi∗)c∗(c∗ ln(1− λi∗) + 1)λi∗,

ζ2 = (1− λi∗)(∆ ln(1− λi∗)− 2δ)c∗,

and ∆ = βφ(1− λi∗)c∗ ln(1− λi∗).
From the above expression, we can obtain results on the relationship between

number of contacts and the infection parameter.

Theorem 4.1. (Positive relationship) If
√
M1 < λi∗ < M2 or c∗ > max (M3,

2√
eM1

)
then S(c∗, λ) > 0. Where

M1 = 2δe
βφ ,

M2 = 1− e− 1
c∗ ,

M3 = − 1
ln(1−λi∗) .
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Proof.

Case 1. Assume that
√
M1 < λi∗ < M2. Clearly ζ1 > 0 since λi∗ < M2. This

implies that

c∗ ln(1− λi∗) + 1 > 0.

Similarly,

ζ2 = (1− λi∗)(βφ(1− λi∗)c
∗
(ln(1− λi∗))2 − 2δ)c∗

>

(
βφ

e
(ln(1− λi∗))2 − 2δ

)
(1− λi∗)c∗ (11)

since λi∗ < M2 implies that (1− λi∗)c∗ >
(
e−

1
c∗

)c∗
= 1

e .

However, (ln(1− λi∗))2 > (λi∗)2 since 0 ≤ λi∗ ≤ 1. Hence Eq. (11) implies that

ζ2 >

(
βφ

e
(λi)2 − 2δ

)
(1− λi∗)c∗ > 0 (12)

since λi∗ >
√
M1.

Therefore, if
√
M1 < λi∗ < M2, then ζ1 > 0 and ζ2 > 0 and thus S(c∗, λ) > 0.

Case 2. Suppose that c∗ > max
(
M3,

2√
eM1

)
.

Since c∗ > M3, we have c∗ ln(1− λi∗) + 1 < 0. Thus ζ1 < 0. On the other hand,

ζ2 = (1− λi∗)(βφ(1− λi∗)c
∗
(ln(1− λi∗))2 − 2δ)c∗

< (1− λi∗)
(

4βφ

e2c∗2
− 2δ

)
c∗

due to f(λi∗) = (1−λi∗)c∗(ln(1−λi∗))2 has a maximum at 1−λi∗ = e−
2
c∗ , therefore

max(f(λi∗)) = f(1− e− 2
c∗ ) = 4

e2c∗2 . Since c∗ > 2√
eM1

,

ζ2 < (1− λi∗)
(
βφ

e
M1 − 2δ

)
= 0. (13)

Hence, S(c∗, λ) > 0.

Theorem 1 implies that an increase in the probability of infection with each
infected contact λ will result in an increase in the number of contacts c on the
part of the individual. This may arise as a result of fatalistic behaviour on the
part of susceptible individuals. Also, a decrease in λ will result in a decrease in
c. This situation can be attributed to public education attempted at encouraging
individuals to reduce contact even though λ maybe low.

Theorem 4.2. (Negative relationship) If λi∗ > max
(√
M1,M2

)
or 2√

eM1
< c∗ <

M3 then S(c∗, λ) < 0. Where 
M1 = 2δe

βφ ,

M2 = 1− e− 1
c∗ ,

M3 = − 1
ln(1−λi∗) .

Proof.
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Case 3. Assume λi∗ > max(
√
M1,M2). This implies that λi∗ >

√
M1 and λi∗ >

M2.
Since λi∗ > M2, we have

c∗ ln(1− λi∗) + 1 < 0,

which implies that ζ1 < 0. On the other hand,

ζ2 = (1− λi∗)(βφ(1− λi∗)c∗(ln(1− λi∗))2 − 2δ)c∗ > 0 (14)

since λi∗ >
√
M1 as shown in Eq. (12) above.

Hence, if λi∗ > max(
√
M1,M2), then ζ1 < 0 and ζ2 > 0. Thus, S(c∗, λ) < 0.

Case 4. Suppose 2√
eM1

< c∗ < M3. Clearly, ζ1 > 0 since c∗ < M3 gives us

c∗ ln(1− λi∗) + 1 > 0, which implies that ζ1 > 0.
Similarly,

ζ2 = (1− λi∗)(βφ(1− λi∗)c∗(ln(1− λi∗))2 − 2δ)c∗ < 0 (15)

as shown in Eq. (13) above.
Therefore, if 2√

eM1
< c∗ < M3, then ζ1 > 0 and ζ2 < 0 and thus S(c∗, λ) < 0.

Theorem 4.2 implies that a reduction in the value of λ (probability of infection
with each infected contact) will result in an increase in the number of contacts and
the opposite holds. That is an increase in the value of λ will result in a decrease in
the number of contacts by a susceptible individual. The resulting behaviour implies
that individuals are risk-averse and thus are very much concerned about their health
status. Therefore, public health policy directed at reducing λ may in the long-run
result in high prevalence rate of the disease, in that the reduction in λ may cause
individuals to increase their number of contacts.

Also, we have

S(c∗, φ) =
∂c∗

∂φ

φ

c∗
= − c̄βφpc

c∗
. (16)

From Eq. (10), we have pc as positive. Also, since φ, β and c∗ are positive, we
have Eq. (16) as negative. This means that the more importance individuals place
on their health status, the less contacts they will be willing to make. The converse
holds; the less importance they place on their health status, the more contacts
they are willing to make. Of course, we can have a counter intuition to the above,
where there exist a positive relationship between c∗ and φ. For instance, the Ebola
outbreak has shown that even though individuals may place much importance on
their health status, people may still will to expose themselves to the disease. This
maybe due to people putting less priority on their health status as compared to
that of the health of the infected.

4.3. Analysis around the endemic equilibrium. Stability analysis of the sys-
tem is carried out under two cases: When older susceptible individuals are not
vaccinated (the proportion of vaccinated susceptible adults, n = 0) and when they
are vaccinated (the proportion of the vaccinated susceptible adults, n 6= 0). Given
the relation s + i + v = 1, we have established in Section 2 that the model can be
reduced to two discrete equations involving susceptible (S) and infected (I) cat-
egories. Therefore, we employed System(4) in our analysis. We investigated the
stability properties of the model by first linearizing System (4), Eq. (6) and (8)
around the endemic steady states (that is equilibrium at which disease is present in
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the population) by employing first order Taylor series approximation. Below is the
linearized system and equations:

ŝt+1 = (1− p− µ− ν − n)ŝt + T (ît)− (spi + ν)ît − spcĉt,
ît+1 = pŝt + (1− µ+ spi)̂it − T (̂it) + spcĉt,

ĥt+1 = (1− ε)ĥt − ît+1,

ĉt = (κ
c∗

i∗
)̂it,

where

T (̂it) =

{
σît if 0 ≤ it ≤ ic,
0 if it > ic,

and

κ =
∂c∗

∂i∗
i∗

c∗
=
βφ(1− λi∗)c∗(c∗ ln(1− λi∗) + 1)λi∗

(1− λi∗)(∆(ln(1− λi∗))− 2δ)c∗
.

κ in the linearized system measures the elasticity or the sensitivity of the number
of contacts to the infection or prevalence rate of disease. This parameter has its
expression equal to that of S(c∗, λ). Thus, the conditions for which κ is positive
or negative are the same as S(c∗, λ). κ > 0 implies individuals are not mindful of
their health stock or disease status, in that they increase their number of contacts
even in the presence of increasing prevalence. This behaviour according to Aadland
et al. [4] can be due to fatalistic behaviour on the part of individuals. And for the
individual to make an optimal choice, he or she has to increase his or her number of
contacts. If κ = 0, the model reduces to the standard Mathematical epidemiological
model (see for instance [9, 31, 45]). By substituting out the control variable, the
number of contacts c, and making use of the condition 0 ≤ it ≤ ic, we have the
linearized system in matrix form as follows:[

ŝt+1

ît+1

]
=

[
1− p− µ− ν − n σ − ν − θ

p 1− µ− σ + θ

]
︸ ︷︷ ︸

A

[
ŝt
ît

]
, (17)

where θ = s (pi + pcκc
∗/i∗) and ∂p

∂i∗ = pi = c∗λ(1 − λi∗)c
∗−1. θ captures the

summation of the effect of a change in disease prevalence on the probability of
infection where susceptible individuals do not have control over contacts levels (that
is the number of contacts c is assumed fixed) and the effect of a change in disease
prevalence on the probability of infection as a result of a change in the optimal
number of contacts made by susceptible individuals [4]. From System (17), we have
the eigenvalues for matrix A as follows:

λ1,2 =
X1 ±

√
ψ

2
, (18)

where {
X1 = 2(1− µ) + θ − (p+ ν + n+ σ),

ψ = (p+ σ − ν − θ − n)2 + 4pn.
(19)

From expression (18) the system is locally stable provided that |λ1,2| are less than
one. The system will exhibit a stable cycle if these eigenvalues have an imaginary
part. That is, if ψ < 0 and the norm of the eigenvalues are less than one. This
implies that the system exhibits a dampened cycle (that is the oscillation in the
system decay or dies out after a disturbance) for some parameter values, which can
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be amplified when κ > 0 as shown for instance in [4]. If the proportion of vaccinated
susceptible adults (n = 0) is zero (older susceptible individuals are not receiving
vaccination), we have the eigenvalues as{

λ1 = 1− σ − p− µ+ θ,

λ2 = 1− µ− ν.
(20)

Proposition 1. The system does not exhibit stable or dampened cycle for both
n = 0 or n 6= 0.

The proof is straight forward by observing that the expression for ψ in equation
(19) can not be less than zero, making the eigenvalues for both cases to be real
numbers. The significance of this is that the introduction of vaccination into the
model does not cause the system to exhibit dampened cycle(s).

Proposition 2. If n = 0 , System(17) is locally stable if

σ + p+ µ− 2 < θ < σ + p+ µ.

Proof. Suppose |λ1,2| < 1, then from the expression for λ1 we have

− 1 < 1− σ − p− µ+ θ < 1.

This implies that
σ + p+ µ− 2 < θ < σ + p+ µ.

Also for λ2, we have
− ν < µ < 2− ν. (21)

Since 0 < µ < 1 and 0 < ν < 1, Eq. (21) holds always, therefore we have σ + p +
µ− 2 < θ < σ + p+ µ as the stability condition.

Proposition 2 implies that the system is stable if the sum effect of the change in
disease prevalence on the probability of infection (number of contacts is held fixed)
and the effect of a change in prevalence on the probability of infection due to a
change in optimal number of contacts is less than the sum of the treatment rate (σ)
of disease, the probability of infection (p) and µ.

It follows from case 2 that for n = 0 and it > ic, the system is locally stable if

p+ µ− 2 < θ < p+ µ. (22)

Furthermore, if the endemic steady state for which disease prevalence is less than
treatment capacity is stable it suffices to conclude that the endemic steady-state
equilibrium for the system will be stable if the disease prevalence is greater than
the treatment capacity.

Proposition 3. If n 6= 0, (that is older susceptible individuals are vaccinated) and
0 ≤ it ≤ ic, System (17) is locally stable if{

θ1 < θ < H
L ,

L < 2,

where 
θ1 = 2(F+L)−H−4

2−L ,

H = LF − np,
L = ν + µ+ n,

F = p+ µ+ σ.
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Proof. Stability requires that

|Tr(A)| < det(A) + 1 < 2. (23)

Eq. (23) implies that{
−1− det(A) < Tr(A) < det(A) + 1,

det(A) < 1,
(24)

where {
Tr(A) = 2 + θ − F − L,
det(A) = 1− F − L+H − θL+ θ.

Case 5. 1 < L < 2: We have

Tr(A) < det(A) + 1,

implies

θ <
H

L
. (25)

And

− 1− det(A) < Tr(A),

implies

θ > θ1 =
2(F + L)−H − 4

2− L
. (26)

Also,

det(A) < 1,

implies

θ > θ2 =
H − F − L
L− 1

. (27)

For θ2 < θ1, we have
H

L
< F +

(L− 2)2

L
. (28)

Eq. (28) always holds, since

FL+ L2 − 4L+ 4−H = pn+ (n+ µ+ det(A)− 2)2 > 0.

Furthermore,

θ2 − θ1 =
pn+ (L− 2)2

(L− 2)(L− 1)
< 0

Hence, from Eq. (25), (26) and (27) we have

θ1 < θ <
H

L
.

Case 6. L < 1: We have

Tr(A) < det(A) + 1,

implies

θ <
H

L
.

And {
−1− det(A) < Tr(A),

det(A) < 1,
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implies that θ1 < θ < θ2. Also, for

θ2 −
H

L
=

pn+ L2

L(1− L)
> 0.

Hence, θ2 >
H
L . Therefore, we have

θ1 < θ <
H

L
.

Case 7. L > 2: From Eq. (26) and (27), θ2 < θ < θ1. However,

θ2 − θ1 =
pn+ (L− 2)2

(L− 2)(L− 1)
> 0.

Hence, θ2 < θ < θ1 can not be satisfied. Therefore, for L > 2 the system will always
be unstable. Thus, we conclude that Proposition 3 holds.

Proposition 3 implies that in case of full vaccination, we expect µ+ ν < 1. That
is birth/death rate and those of the vaccinated who lose immunity can not exceed
100%. Furthermore, from Proposition 3, we can establish that pn < L(2 − L):
implying that in case of full vaccination, the condition reduces to p < 1− (µ+ ν)2.
Which implies that the probability of infection should have a bound that reduces
(increases) with birth/death rate and those with lost immunity. The gray area in
Fig. 4 shows the stability region of System (17). Notice that the stability region
indicates that pn < 1.

Figure 4. Graph of pn vs L

It follows from Proposition 3 that System (17) is locally stable for it > ic and
n 6= 0 if {

θ1 < θ < H
L ,

L < 2,
(29)

where 
θ1 = (µ+ν−2)(p+µ)+nµ−2(L−2)

L−2 ,

H = (ν + µ)(p+ µ) + nµ,

L = ν + µ+ n.

(30)
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4.4. Bifurcation analysis. This section discusses conditions under which the model
will exhibits saddle-point and period-doubling bifurcation. We have a saddle-point
bifurcation if λ1 and λ2 equal positive one and a period-doubling bifurcation if
λ1 and λ2 equal negative one [22]. Thus, for 0 ≤ it ≤ ic, the system exhibits
saddle-point bifurcation if

θ =
(ν + µ)(p+ σ + µ) + n(σ + µ)

ν + µ+ n
,

and period-doubling bifurcation if

θ =
(µ+ ν − 2)(σ + p+ µ) + n(µ+ σ)− 2(ν + µ+ n− 2)

ν + µ+ n− 2
.

Proposition 4. The model does not exhibit both saddle-point and period-doubling
bifurcation if n = 0.

Proof. It follows from the corresponding eigenvalues for case n = 0 that the condi-
tion for saddle-point bifurcation is{

θ − (σ + p+ µ) = 0,

µ+ ν = 0,
(31)

and that of period-doubling bifurcation is{
θ − (σ + p+ µ) = −2,

µ+ ν = 2.
(32)

Since 0 < µ < 1 and 0 < ν < 1, it implies that conditions (31) and (32) can not be
satisfied.

5. Simulation and discussion. This section discusses some simulation results on
the theorems and propositions of Section 4.

5.1. Sensitivity analysis of number of contacts. Fig. 6 confirms Theorems 1
and 2. Fig. 6(a) - 6(b) satisfies theorem 1. Fig. 6(a) confirms the condition for which
both ζ1 and ζ2 are positive; which corresponds to the condition

√
M1 < λi∗ < M2.

We chose φ = 1, β = 0.5, δ = 0.05, and c∗ = 5. Fig. 6(b) confirms the case

when both ζ1 and ζ2 are negative; which gives the condition c∗ > max
(
M3,

2√
eM1

)
.

φ, β, δ and λi∗ = 0.4 are chosen as 1, 0.5, 0.05 and 0.4 respectively.
Fig. 6(c)-6(d) confirms theorem 2. Fig. 6(c) confirms the condition for which

λi∗ > max(
√
M1,M2); this corresponds to the case where ζ1 < 0 and ζ2 > 0. We

chose φ = 1, β = 0.5, c∗ = 2 and δ = 0.0001. Fig. 6(d) satisfies the condition
2√
eM1

< c∗ < M3, which ζ1 > 0 and ζ2 < 0. We chose the values for φ, β, λi∗ and δ

as 1, 0.5, 0.3 and 0.1 respectively.

5.2. Sensitivity analysis with specific disease parameters. In this section
we present a general numerical sensitivity analysis in which model parameters are
motivated by the outbreak of measles virus among 0-12 month old babies. Measles
is a highly contagious and a serious respiratory disease caused by a virus. In spite
of the availability of a safe and effective vaccine, the disease has remained one of
the leading causes of death among young children globally [46, 48, 49]. Measles
is prevalent in developing countries where per capita incomes are low and where
their health care system is weak [49]. In this analysis, we consider parameter values
related to children who received measles vaccination by the time they celebrate their
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first birthdays in the Kissii county in Kenya. Table 1 shows the relevant values for
the model parameters employed:

Table 1. Parameter values

Parameters Values Sources
m 92.9% [27]
n 0.0 Assumed
σ 40% Assumed
λ 0.09091 per day [24]
δ 0.05 Assumed
β 0.96 [4]
φ 1 Assumed
µ 0.02755 per year [24]
ν 10% Assumed

Note that we assume n = 0 since we are strictly considering infectivities among
babies. Even though there is no specific antiviral treatment for the disease, it is
shown that the number of deaths associated with the disease has been reduced
through supportive care and Vitamin A supplements [49]. Thus, we assume σ =
40%. The relative importance of health stock, φ is set at 1. Furthermore, the
immunity confer by a single dose of measles vaccine given to 12 or 15 months old
babies is estimated to be between 85% and 95% with a second dose conferring 100%
immunity [47]. Therefore the percentage of babies who lose immunity, ν is set at
10%.

The resulting numerical solution for the above parameters yields eigenvalues
λ1 = 0.7356 and λ2 = 0.8725. This is indicative of stability of the system around
the disease endemic steady state. Table 2 summarizes the results. The results show
that at the endemic steady state, the disease prevalence among the babies, i∗ is
about 26.6%, proportion of babies susceptible to the disease, s∗ is about 53.3%
and the proportion of babies who maintained their immunity against the disease is
about 20%. The probability of infection, p is about 21.4%.

Figures 5(a)-5(d) show the simulation output for the various disease categories
and the number of contacts by babies. (i, s, v) = (0.1, 0.9, 0.5) is the initial point
for the numerical solution. Fig. 5(a) shows that as time increases, the proportion
of susceptible babies declines and eventually stabilizes. The decrease may partly be
attributed to the high rate of mass vaccination of new born babies in the county.
Also, since measles is very contagious, the interplay of the disease dynamics and
the number of contacts may also contribute to this phenomenon. Also, Fig. 5(b)
indicates the disease prevalence increases sharply, reaches a threshold and then
decreases to the endemic steady state value. The initial increase of the disease may
be due to the associated high level of contacts as well as the highly infectious nature
of the disease. Conversely, the decline of the disease prevalence may be due to early
diagnoses of the disease and control mechanisms put in place to curb the outbreak of
the disease. This means that a timely intervention to curb an outbreak or resurgence
of infectious disease can go a long way to mitigate the damage that could be triggered
by the disease. Furthermore, fig. 5(c) and 5(d) are the graphs of the proportion of
babies vaccinated and the associated number of contacts respectively. Both graphs
exhibit an initial decline, upward movements and then stability. These dynamics
may be explained by the effectiveness of measles vaccines. Therefore, it is vital to
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increase the awareness of parents about the availability of a preventive vaccine that
will protect the babies as well as the possible damage the disease can cause to new
born babies [21, 40].

Table 2. Corresponding endemic steady state values for Table 1

s∗ i∗ v∗ p
0.533 0.266 0.200 0.214

(a) Simulation of proportion of sus-

ceptible babies among babies

(b) Simulation of disease prevalence

(c) Simulation of proportion of vac-
cinated babies

(d) Simulation of number of con-
tacts by babies

Figure 5. Simulation of the proportion susceptible, infected,
vaccinated babies and number of contacts

5.3. Analysis around the endemic steady state. For confirmation of some of
the results on the stability of the system we chose the following parameters:

Table 3. Fixed parameter values

Parameters m σ λ δ β φ
Values 0.8 0.6 0.6 0.05 0.96 3
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The parameters in Table 3 indicate that 80% of the newborns in the population
are vaccinated. The treatment rate is 60% of the infected population, probability
of a susceptible individual becoming infected by a single infected contact is 0.6,
the value for β implies that the annual discount rate is 4%, the values for δ and
φ indicates that the maximum level of contacts is 10 and the relative importance
individuals attach to their health status is 3 respectively.

Proposition 2. As a form of demonstration, we chose the values for death and birth
rates as 5%. The proportion of vaccinated individuals whose vaccination wear out
per annum is chosen as 10%. The proportion of older susceptible individuals who
receive vaccination is set at 0 (that is n = 0). Fig. 7 shows the simulation result
confirming this proportion. The initial points given in the order of (i, s, v, c) are
given as (0.01, 0.01, 0.01, 1), (0.1, 0.2, 0.4, 3), (0.08, 0.5, 0.6, 10) for the red, green and
blue paths respectively.

Proposition 3. Table 4 contains the respective parameters that satisfy the conditions
under which the system is stable or unstable. As a form of demonstration, Fig. 8
shows the numerical simulation for System (4) and Eq. (8) for condition L < 1.
The initial points are given as those given for Proposition 2.

Table 4. Parameter values satisfying proposition 3

Cases Parameters |λ|
L < 1 ν = 0.2 |λ1| = 0.556

µ = 0.05 |λ2| = 0.714
n = 0.6

1 < L < 2 ν = 0.4 |λ1| = 0.921
µ = 0.05 |λ2| = 0.549
n = 0.6

L > 2 ν = 0.8 |λ1| = 1.426
µ = 0.6 |λ2| = 0.183
n = 0.7

Furthermore, for L < 1, Table 5 indicates that at equilibrium, approximately
19%, 19.4% and 61.6% of the population will remain susceptible, infected and
vaccinated respectively. The probability of infection is approximately 66.3% and
individuals are willing to go for a number of contacts that is approximately 9.

Table 5. Corresponding endemic steady state values

s∗ i∗ v∗ c∗ p
0.19 0.194 0.616 8.80 0.663

Based on the values for condition L < 1, we calculate the corresponding value of
κ as approximately 0.0151. This indicates a positive relationship between disease
prevalence and contacts made by susceptible individuals. This behaviour can be
attributed to fatalistic behaviour on the part of susceptible individuals as pointed
out in [4, 13]. This can also be attributed to the fact that, the vaccinated group is
large as compared to the infected group and thus rational individuals have incentive
to increase contact levels. For instance, notice that the steady state value for the
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proportion of the vaccinated is about 62%, which is much higher than that of the
disease prevalence (19.4%) .

To illustrate the condition where there is negative relationship between the con-
tact levels and disease prevalence rate, we set ν = 0.1. This gives the steady state
values in Table 6.

Table 6. Corresponding endemic steady state values

s∗ i∗ v∗ c∗ p
0.135 0.059 0.807 9.261 0.282

The values in Table 6 give the value for κ as approximately -0.0558. This is
indicates that susceptible individuals will opt to reduce their number of contacts c
in the presence of an increasing disease prevalence. Notice that the value for κ can be
said to be small. This can be attributed to the fact that as the fraction of those who
lose immunity from the disease decreases, it decreases the probability of infection
in the long run and thus causing disease prevalence to decrease. Hence, rational
susceptible individuals have the incentive to increase their number of contacts. This
maybe why the steady state of the prevalence rate is about 5.9% and that of the
number of contact is approximately 9. Fig. 9 shows the simulation results for this
case.

Also, Fig. 10 shows the simulation result for 1 < L < 2. The initial points are
given in the order of (i, s, v, c) as (0.01, 0.01, 0.01, 1), (0.1, 0.2, 0.4, 3), (0.05, 0.4, 0.4, 8)
for the red, green and blue paths respectively.

5.4. Bifurcation analysis. The parameter values in Table 7 are chosen to confirm
the conditions for which the system exhibits bifurcation properties:

Table 7. Parameter values for bifurcation analysis

Parameter µ ν n m σ δ β φ
Value 0.05 0.5 0.6 0.5 0.6 0.05 0.96 3

Fig. 11(a) and 11(b) show period-doubling bifurcation diagram for the system.
The infection parameter λ is the bifurcation parameter. Also, the number of con-
tacts is varying in this case. It shows that as the values of λ increases, the system
makes a transition from a single equilibrium path to multiple equilibria paths . The
system changes qualitative behaviour around 0.56, 0.64 and 0.75. This behaviour
may be due to the unpredictability nature of behavioural responses of individu-
als. This behaviour is clearly shown by 11(a) (the bifurcation diagram for disease
prevalence).

Fig. 12(a) and 12(b) show the period-doubling bifurcation diagram for the case
where the number of contacts is fixed. In carrying out the numerical simulation, we
fixed the number of contacts at 8. It is clear from the figures that the system makes
a smooth transition of the system from an equilibrium path to a double equilibria
paths is observed.

You will notice from Fig. 11 and 12 that there is a difference in the transitioning
process. The implication of the above phenomenon is that if rational individuals
are allowed to make choices on contact levels, the system can behave in a chaotic
manner. This may be due to the unpredictable nature of the behaviours of these
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individuals. From policy perspective, policy makers should take into consideration
the behaviour of individuals, in order to have a clear picture of the dynamics of the
epidemiology of diseases , the infection parameter (λ) should be kept within the
range that gives a clear picture of the dynamic of the system.

Fig. 13(a) and 13(b) show the period-doubling bifurcation diagram for n being
the bifurcation parameter and individuals in control of the number of contacts.
That is c is varying. This diagram shows no chaotic behaviour. This may be due to
the fact that as the proportion of vaccinated adults increases, individuals are faced
with low risk of infection and thus showing some level of predictability in their
behaviours. The case for which c taking up a fixed value shows similar diagram but
with a bifurcation value less than its counterpart (c varying).

The epidemiological implication of the above dynamic is that the system has the
tendency to switch from equilibria path to chaotic path. In other words, there are
regions of multistability in which the disease can have a stabilizing effect as well
as chaotic effect. This dynamic can become more complex as disease parameters
are varied across some range of values. In [15] for instance, it is shown that as
disease induced death rate with higher transmissibility, the system exhibits more
complexities that give rise to period-doubling cascades couple with other dynamics.
For other studies on possible secondary infection, period-doubling bifurcations and
chaotic behaviour in epidemic models, we refer [12, 14, 30].

(a) S(c∗, λ) > 0, ζ1 > 0, ζ2 > 0 (b) S(c∗, λ) > 0, ζ1 < 0, ζ2 < 0

(c) S(c∗, λ) < 0, ζ1 < 0, ζ2 > 0 (d) S(c∗, λ) > 0, ζ1 > 0, ζ2 < 0

Figure 6. Sensitivity analysis of number of contacts
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(a) Disease prevalence (i), proportion of

susceptibles (s) and vaccinated (v)

(b) Number of contacts

Figure 7. The parameter values for the plot of the graphs are given

in Table 3. n = 0, µ = 0.05 and ν = 0.1

(a) Disease prevalence (i), proportion of

susceptibles (s) and vaccinated (v)

(b) Number of contacts

Figure 8. The parameter values for plot of graphs are given in Table
3. n = 0.6, µ = 0.05 and ν = 0.2

6. Conclusion. Decisions made by individuals in the presence of infectious dis-
ease(s) are most often done in a selfish manner. This is due to the risk and benefits
associated with such decisions. Individuals are faced with either forgoing a number
of contacts just to maintain their health stock or risk their health stock by making
some number of contacts. Associated with this choices are benefits(utilities). Also,
associated with this is the cost of becoming infected. These phenomena affect dis-
ease dynamics. That is individual decisions determine whether a population will be
faced with an epidemic or not.

It is therefore imperative that decision makers take into consideration the ef-
fects of private choices on epidemiological processes in order to better understand
the disease dynamics for better policy on “disease-epidemic-control”. In this pa-
per, behavioural responses by individuals is incorporated into a “disease vaccination
model”. This gave an explicit fashion in which we can analyze how individuals re-
spond to diseases with available vaccination. In our analyses, we were able to estab-
lish that, with the introduction of vaccination the system did not exhibit dampened
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(a) Disease prevalence (i), proportion of

susceptibles (s) and vaccinated (v)

(b) Number of contacts

Figure 9. The parameter values for plot of graphs are given in Table
3. n = 0.6, µ = 0.05, ν = 0.1

(a) Proportion of susceptibles (b) Disease prevalence (i)

(c) Proportion of vaccinated (d) Number of contacts

Figure 10. The parameter values for plot of graphs are given in Table
3. n = 0.6, µ = 0.05, ν = 0.4

cycles. And this also holds when adults are not vaccinated. We have established
that the system exhibits period-doubling and saddle-point bifurcation where there
is transitioning from unstable to stable endemic steady-state paths when adult indi-
viduals are vaccinated. With regards to the case where adult susceptible individuals
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(a) Bifurcation for disease preva-

lence

(b) Bifurcation for proportion of

susceptibles

Figure 11. Period-doubling bifurcation diagram for a varying number
of contacts. The bifurcation parameter is λ.

(a) Bifurcation for disease preva-

lence

(b) Bifurcation for proportion of

susceptibles

Figure 12. Period-doubling bifurcation diagram for a fixed number of
contacts (c = 8). The bifurcation parameter is λ.

are not vaccinated, the system exhibits either stability or instability; there is no bi-
furcation.

In carrying out the numerical simulations, the parameter values are chosen to
reflect the case where susceptible individuals increase their number of contacts for an
initial decrease in disease prevalence. Also, we chose the values of the parameters to
reflect the opposite: susceptible individuals respond positively in terms of choices
on contact levels to disease prevalence, a situation Aadland et. al. refers to as
dynamic resonance [7]. In our case, by choosing high values for the proportion of the
vaccinated individuals who lose vaccination (all other parameters are constant), we
established a positive relationship between contacts levels and disease prevalence; A
situation that causes disease prevalence to increase in the long run. This behaviour
can be attributed to social factors such as those that contributed to the Ebola
outbreak; where people for instance, consider health condition of their infected
relatives is more important than their own health condition and thus make contacts
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(a) Bifurcation for disease preva-

lence )

(b) Bifurcation for proportion of

susceptibles

Figure 13. Period-doubling bifurcation diagram for a varying number
of contacts. The bifurcation parameter is n.

with these relatives. In [4] for instance where “syphilis cycles” is studied, Aadland
et. al. pointed out that this dynamics produces cycles in syphilis infection such
that an increase in disease prevalence can cause susceptible individuals to increase
their partners and vice-versa, and a decrease in the disease prevalence will opt to
reduce partners. This phenomenon amplifies the disease cycles in the population.

In a nutshell, this paper is an attempt to further emphasize the importance of
considering private choices in formulating policies on tackling infectious diseases.
And that instead of public policy makers imposing policies on individuals in the
advent of disease spread, they should rather understand how their behaviours can
affect the epidemiological process of the disease.
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