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Abstract. Structured population models are a class of general evolution
equations which are widely used in the study of biological systems. Many the-
oretical methods are available for establishing existence and stability of steady
states of general evolution equations. However, except for very special cases,
finding an analytical form of stationary solutions for evolution equations is a
challenging task. In the present paper, we develop a numerical framework for
computing approximations to stationary solutions of general evolution equa-
tions, which can also be used to produce approximate existence and stability
regions for steady states. In particular, we use the Trotter-Kato Theorem to
approximate the infinitesimal generator of an evolution equation on a finite
dimensional space, which in turn reduces the evolution equation into a system
of ordinary differential equations. Consequently, we approximate and study
the asymptotic behavior of stationary solutions. We illustrate the convergence
of our numerical framework by applying it to a linear Sinko-Streifer struc-
tured population model for which the exact form of the steady state is known.
To further illustrate the utility of our approach, we apply our framework to
nonlinear population balance equation, which is an extension of well-known
Smoluchowski coagulation-fragmentation model to biological populations. We
also demonstrate that our numerical framework can be used to gain insight
about the theoretical stability of the stationary solutions of the evolution equa-
tions. Furthermore, the open source Python program that we have developed
for our numerical simulations is freely available from our GitHub repository
(github.com/MathBioCU ).

1. Introduction. Many natural phenomena can be formulated as the differential
law of the development (evolution) in time of a physical system. The resulting
differential equation combined with boundary conditions affecting the system are
called evolution equations. Evolution equations are a popular framework for study-
ing the dynamics of biological populations. For example, they have proven useful
in understanding the dynamics of biological invasions [51], bacterial flocculation in
activated sludge tanks [7], and the spread of parasites and diseases [30]. Since many
biological populations converge to a time-independent state, many researchers have
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used theoretical tools to investigate long-term behavior of these models. Analytical
and fixed point methods have been used to show the existence of stationary solu-
tions to size-structured population models [44, 29] and semigroup theoretic methods
have been used to investigate the stability of these stationary solutions [28, 43, 4].
For many models in the literature, the principle of linearized stability [55, 34] can
be used to show that the spectral properties of the infinitesimal generator (IG)
of the linearized semigroup determines the stability or instability of a stationary
solution. Moreover, using compactness arguments, spectral properties of the infin-
itesimal generator can be determined from the point spectrum of the IG, which in
turn can be written as the roots of a characteristic equation.

Despite this theoretical development, the derived existence and stability condi-
tions are oftentimes rather complex, and accordingly the biological interpretation
of these conditions can be challenging. To overcome this difficulty several numerical
methods for stability analysis of structured population models have been developed
[12, 27, 37, 21]. For instance, Diekmann et al. [37, 22, 21] present a numerical
method for equilibrium and stability analysis of physiologically structured popula-
tion models (PSPM) or life history models, where individuals are characterized by
a (finite) set of physiological characteristics (traits such as age, size, sex, energy
reserves). In this method a PSPM is first written as a system of integral equa-
tions coupled with each other via interaction (or feedback) variables. Consequently,
equilibria and stability boundary of the resulting integral equations are numerically
approximated using curve tracing methods. Later, de Roos [19] presented the mod-
ification of the curve tracing approach to compute the demographic characteristics
(such as population growth rate, reproductive value, etc) of a linear PSPM. For
a fast and accurate software for theoretical analysis of PSPMs we refer interested
reader to a software package by de Roos [20]. An alternative method for stabil-
ity analysis of physiologically structured population models, developed by Breda
and coworkers [11, 13, 10], uses a pseudospectral approach to compute eigenvalues
of a discretized infinitesimal generator. This method (also known as infinitesimal
generator (IG) approach) has been employed to produce bifurcation diagrams and
stability regions of many different linear evolution equations arising in structured
population modeling [13, 14, 15]. Unfortunately, not all structured population mod-
els fit into the framework of PSPMs and thus there is a need for a more general
numerical framework for asymptotic analysis of structured population models.

In this paper we develop a numerical framework to guide theoretical analysis of
structured population models. We demonstrate that our methodology can be used
for numerical computation and stability analysis of positive stationary solutions of
both linear and nonlinear size-structured population models. Moreover, we illustrate
the utility of our framework to produce approximate existence and stability regions
for steady states of size-structured population models. We also provide an open
source Python program used for the numerical simulations in our GitHub repository
[42]. Although, the examples presented in this paper are size-structured population
models, in Section 2, we show that the framework is applicable to more general
evolution equations.

The main idea behind the numerical framework is first to write a structured
population model in the form of an evolution equation and then use the well-known
Trotter-Kato Theorem [53, 35] to approximate the infinitesimal generator of the
evolution equation on a finite dimensional space. This in turn allows one to ap-
proximate solutions (or spectrum) of the evolution equation with the solution (or
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spectrum) of system of differential equations. Consequently, we approximate the
stationary solutions of an actual model with stationary solutions of the approximate
infinitesimal generator on a finite dimensional space. Approximate local stability
of the approximate steady states are then computed from the spectrum of the Ja-
cobian of ODE system evaluated at this steady states. Our method is similar to
the IG approach in [13, 14, 15], in a sense that we also approximate infinitesimal
generator and analyze the spectrum of the resulting operator to produce existence
and stability regions. However, in contrast to IG approach, our framework also
computes actual steady states and is easily applied to nonlinear evolution equations
arising in structured population dynamics.

The rest of the paper is structured as follows. We describe the theoretical devel-
opment of our framework for general evolution equations in Section 2.1. Note that
readers with more biological background can skip Section 2.1 and directly jump into
the application of the framework in Section 2.3. In Section 2.3, we illustrate the con-
vergence of the approximation method by applying it to linear Sinko-Streifer model,
for which the exact form of the stationary solutions is known. To further illustrate
the utility of our approach, in Section 3, we apply our framework to a nonlinear
size-structured population model (also known as population balance equations in
the engineering literature) described in [5, 9]. Moreover, in Section 2.2, we show
that approximate local stability conditions for a stationary solution can be derived
from the spectral properties of the approximate infinitesimal generator. Finally, we
conclude with some remarks and a summary of our work in Section 5.

2. Numerical framework. In this section, we demonstrate our numerical method-
ology for general evolution equations. We first present the numerical scheme used
to approximate the infinitesimal generator of a semigroup. Subsequently, in Sec-
tion 2.3, we illustrate the convergence of our approach by applying it to linear
Sinko-Streifer equations, for which exact stationary solutions are known.

2.1. Infinitesimal generator approximation. Given a Banach space X , con-
sider an abstract evolution equation,

ut = F(u), u(0, •) = u0 ∈ X , (1)

where F : D(F) ⊆ X → X is some operator defined on its domain D(F) and u0

is an initial condition at time t = 0. Note that any boundary condition belonging
to a given partial differential equation can be included in the domain D(F). The
solution to (1) can be related to the initial state u0 by some transition operator
T (t) so that

u(t, x) = T (t)u0(x) .

The transition operator T (t) is said to be a strongly continuous semigroup (or simply
C0 -semigroup) if satisfies the following three conditions:

1. T (s)T (t) = T (s+ t) for all s, t ≥ 0
2. T (0) = I, the identity operator on X
3. For each fixed u0 ∈ X ,

lim
t→0+

‖T (t)u0 − u0‖ = 0 .

Moreover, showing that the operator F generates a C0-semigroup is equivalent to
establishing well-posedness of the abstract evolution equation given in (1). In gen-
eral, finding the explicit form of the transition operator is challenging. Hence,
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approximation methods, e.g. Yosida approximants, are used to study a more com-
plicated evolution equation and the semigroups they generate. One of the famous
approximation theorems is due to Trotter [53] and Kato [35] (see [36] for the clas-
sical literature on the approximation of generators of semigroups). The goal is to
construct approximating generators Fn on the approximate spaces Xn such that C0-
semigroups Tn(·) generated by Fn approximate the C0-semigroup T (t) generated
by F . Although there are multiple ways to approximate the infinitesimal genera-
tor F , for our purposes we use the approximation scheme based on Galerkin-type
projection of the state space X [6, 32, 2]. For the convenience of readers, we will
summarize the approximation scheme here.

Let Xn, n = 1, 2, . . . be a sequence of subspaces of X with dim(Xn) = n and
define projections πn : X → Xn and canonical injections ιn : Xn → X . Assume
that the projections πn are bounded, i.e., there exists M̃ > 0 such that

‖πn‖ ≤ M̃ (A1)

for all n = 1, . . . , n. Moreover, assume that

lim
n→∞

πnv = v (A2)

for all v ∈ X . Consequently, for each subspace Xn we choose basis elements {βni }
n
i=1

such that each element v of subspace Xn can be written in the form v =
∑n
i=1 αiβ

n
i .

Moreover, for each subspace Xn we define the bijective mappings pn : Xn → Rn by

pnv = (α1, · · · , αn)T

and the norm on Rn by
‖v‖Rn =

∥∥p−1
n v

∥∥
X .

Consequently, we define bounded linear operators Pn : X → Rn and En : Rn → X
by

Pnv = pnπnv, v ∈ X (2)
and

Enz = ιnp
−1
n z, z ∈ Rn , (3)

respectively. Finally, we define approximate operators Fn on Rn by

Fn(z) = PnF (Enz) (4)

for all z ∈ Rn.
Accordingly, the Trotter-Kato Theorem states that the semigroup generated by

the discrete operator Fn converges to the semigroup generated by the infinitesimal
generator F . For the convenience of the reader, we state the theorem here and refer
readers to [32] for a proof.

Theorem. (Trotter-Kato) Assume that (A1) and (A2) are satisfied. Let (T (t))t≥0

and (Tn(t))t≥0, n ∈ N, be strongly continuous semigroups on X and Rn with gen-
erators F and Fn, respectively. Furthermore, assume that they satisfy the estimate

‖T (t)‖X , ‖Tn(t)‖Rn ≤Mewt for all t ≥ 0, n ∈ N ,

for some constants M ≥ 1, w ∈ R. Then the following are equivalent:

1. There exists a λ0 ∈ ρ(F) ∩
n⋂
i=1

ρ(Fi) such that for all v ∈ X∥∥∥En (λ0In −Fn)
−1
Pnv − (λ0I −F)

−1
v
∥∥∥
X
→ 0 as n→∞ .
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2. For all v ∈ X and t ≥ 0,

‖EnTn(t)Pnv − T (t)v‖X → 0

as n→∞, uniformly on compact t intervals.

In general, one establishes the first statement for a Trotter-Kato approximation
and then uses the second statement to approximate an abstract evolution equation
on a finite dimensional space. In their paper, Ito and Kappel [32] present the
standard ways to establish the first statement of the theorem (see also [6, 2, 1]).
Therefore, here we assume that for a particular problem the first statement in the
theorem has already been established and thus the evolution equation in (1) can be
approximated by the following system of ODEs,

u′n(t) = Fn (un(t)) , un(0) = Pnu(0, •) . (5)

Consequently, the solution of the IVP is mapped onto the infinite dimensional Ba-
nach space X and one has the following convergence

lim
n→∞

‖Enun(t)− u‖X = 0 (6)

for t in compact intervals.
In general, finding explicit stationary solutions of abstract evolution equations

is a challenging task. Conversely, many efficient root finding methods have been
developed for finding steady states of a system of ODEs. For large-scale nonlinear
systems, many efficient methods have been developed as well. Hence, we propose
a numerical framework that utilizes those efficient root finding methods to approx-
imate steady state solutions of general evolution equations. The idea is to use an
efficient and accurate root finding method to approximate a stationary solution of
the evolution equation (1) with the stationary solutions of the IVP in (5). Thus,
as a consequence of the Trotter-Kato Theorem, the steady states of (5) converge to
the steady states of (1) as n→∞.

2.2. Stability of stationary solutions. Studying the asymptotic behavior of so-
lutions is a fundamental tool for exploring the evolution equations which arise in the
mathematical modeling of real world phenomena. To this end, many mathematical
methods have been developed to describe long-term behavior of evolution equations.
For instance, for long-time behavior of linear evolution equations, linear semigroup
theoretic methods can be used to formulate physically interpretable conditions. Fur-
thermore, for nonlinear evolution equations, the principle of linearized stability can
be used to relate the spectrum of the linearized infinitesimal generator to the local
stability or instability of the stationary solution. Nevertheless, investigating the
spectrum of the linearized infinitesimal generator is cumbersome and requires ad-
vanced functional analysis techniques. In contrast to general evolution equations,
the asymptotic behavior of ordinary differential equations are determined by the
eigenvalues of the Jacobian and well-studied. Hence, in this section we demonstrate
that the approximation scheme, presented in Section 2.1, can also be used to give
some insights about the stability of stationary solutions of the general evolution
equations.

Stability results discussed in this section are not in a traditional Lyapunov sense.
In particular, since stationary solutions discussed in this paper are only approxi-
mations to actual stationary solutions, the stability results only hold for finite time
intervals. Therefore, we refer to this kind of stability as approximate local stability
of stationary solutions as this stability is deduced from numerical approximation
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of an evolution equation. In mathematical terms, the local numerical stability of a
stationary solution is defined as follows.

Definition 2.1. Stationary solution u∗ of an abstract evolution (1) is called ap-
proximately locally stable, if for every closed finite time interval [0, tf ] and ε > 0,
there exists δ > 0 such that a unique solution of (1), u(t, x), with initial condition
u0 fulfilling ‖u0 − u∗‖X < δ satisfies

‖u(t, ·)− u∗‖X < ε (7)

for all t ∈ [0, tf ].

Having the required definition in hand, we now prove the following stability result
for general evolution equations.

Corollary 2.2. Let u∗ denote a stationary solution of the abstract evolution (1)
and JA(un) denote the Jacobian of the approximate system of ODEs defined in (5).
If for all sufficiently large n the eigenvalues of JA(Pnu∗) are strictly negative, then
u∗ is approximately locally stable in the sense of Definition 2.1.

Proof. Since the infinitesimal generator approximation scheme, presented in Section
2.1, is convergent, for every given ε > 0 and finite time interval [0, tf ] there exist
nε ∈ N such that for n ≥ nε,

‖u(t, ·)− Enun(t)‖X < ε/2 (8)

for all t ∈ [0, tf ] (where the bounded linear function En is defined as in (3)).
Moreover, the eigenvalues of JA(Pnu∗) are strictly negative for all sufficiently large
n. This in turn implies that PMu∗ is a locally asymptotically stable solution of (5)
for some M ≥ nε. That is, for given ε > 0 there is δ > 0 such that

‖uM (t, ·)− PMu∗‖RM = ‖EMuM (t, ·)− u∗‖X < ε/2 (9)

for all t > 0 and for all u0 such that ‖PMu0 − PMu∗)‖RM = ‖u0 − u∗‖X < δ (see
for instance [3, §23]). Consequently, combining (8) and (9) yields

‖u(t, ·)− u∗‖X ≤ ‖u(t, ·)− EMuM (t, ·)‖X + ‖EMuM (t, ·)− u∗‖X < ε

for all t ∈ [0, tf ] and for all u0 such that ‖u0 − u∗‖X < δ.

We note that although the stability result of Corollary 2.2 holds for arbitrarily
large finite time intervals, the Corollary does not guarantee Lyapunov stability of
stationary solutions.

2.3. Numerical convergence results. To verify convergence of the proposed ap-
proximation scheme, we apply the framework to the linear Sinko-Streifer model [52]
for which an exact form of the stationary solution is available. The model describes
the dynamics of single species populations and takes into account the physiological
characteristics of animals of different sizes (and/or ages) . The mathematical model
reads as

ut = G(u) = −(gu)x − µu, t ≥ 0, 0 ≤ x ≤ x <∞ (10)
with a McKendrick-von Foerster type renewal boundary condition at x = 0

g(0)u(t, 0) =

∫ x

0

q(y)u(t, y) dy

and initial condition
u(0, x) = u0(x) .
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The variable u(t, x) denotes the population density at time t with size class x. The
population is assumed to have a minimum and a maximum size 0 and x < ∞,
respectively. The function g(x) represents the average growth rate of the size class
x and the coefficient µ(•) represents a size-dependent removal rate due to death
or predation. The renewal function q(•) represents the number of new individuals
entering the population due to birth.

Setting the right side of the equation (10) to zero and integrating over the size
on (0, x) yields the exact stationary solution

u∗(x) =
1

g(x)
exp

(
−
∫ x

0

µ(s)

g(s)
ds

)∫ x

0

q(y)u∗(y) dy . (11)

Multiplying both sides of (11) by q(x) integrating over the size on (0, x), we obtain
a necessary condition for existence of a stationary solution,

1 =

∫ x

0

q(x)

g(x)
exp

(
−
∫ x

0

µ(s)

g(s)
ds

)
dx . (12)

The convergence of the approximation scheme presented in Section 2.1 for Sinko-
Streifer models has already been established in [6]. Using the basis functions for
n-dimensional subspace Xn of the state space X = L1(0, x) are defined as

βni (x) =

{
1; xni−1 < x ≤ xni ; i = 1, . . . , n
0; otherwise

for positive integer n with {xni }ni=0 a uniform partition of [0, x], and ∆x = xnj −xnj−1

for all j. The functions βn form an orthogonal basis for the approximate solution
space

Xn =

{
h ∈ X | h =

n∑
i=1

αiβ
n
i , αi ∈ R

}
,

and accordingly, we define the orthogonal projections πn : X → Xn

πnh(x) =

n∑
j=1

αjβ
n
j (x), where αj =

1

∆x

∫ xnj

xnj−1

h(x) dx.

Moreover, since the evolution equation defined in (10) is a linear partial differential
equation, the approximate operator Gn on Rn is given by the following n×n matrix

[Gn]ij =



− 1
∆xg(xni )− µ(xni ) + q(xnj ) i = j = 1

q(xnj ) i = 1, j ≥ 2

− 1
∆xg(xni )− µ(xni ) i = j ≥ 2

1
∆xg(xni−1) i = j + 1, j ≥ 1

0 otherwise

. (13)

At this point, one can use numerical techniques to calculate zeros of the linear
system

Gnun = 0 . (14)
For the purpose of illustration, we set the model rates to

q(x) = a(x+ 1), g(x) = b(x+ 1), µ(x) = c . (15)

Plugging this rates into the necessary condition (12) yields

a =

{
ln 2
b b = c

(b− c)/(21−c/b − 1) b 6= c
.
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(a) (b) (c)

Figure 1. Results of the numerical simulations. a) a, b , c values
satisfying the necessary condition (12), form a 3D surface (blue
surface). Steady states of the Sinko-Streifer model only exist on the
red line b) Comparison of exact stationary solution (for the point
marked with red star in Figure 1a) with approximate stationary
solution for n = 100. c) Absolute error between exact stationary
solution and approximate stationary solution decays linearly as the
dimension of approximate subspaces Xn increase.

For b = c this is a curve in 3D coordinate system and when b 6= c the surface
is illustrated in Figure 1a. To illustrate the utility of our approach, we used the
numerical scheme described in this section to generate existence and stability regions
for Sinko-Streifer model. Particularly, the interval (a, b, c) ∈ [0, 1]× [0, 1]× [0, 1] is
discretized with ∆a = ∆b = ∆c = 0.01. Consequently, we checked for the existence
of a positive steady state at each of these discrete points. Since the approximate
operator Gn is an n×nmatrix, we can check if Gn is a singular matrix using standard
tools. The resulting existence region is depicted in Figure 1a forming a nontrivial
three-dimensional curve (red) on the surface defined by the necessary condition for
existence of the steady states. Moreover, the existence and stability regions of the
Sinko-Streifer model coincide for the chosen model rates in (15).

For the purpose of illustration, we arbitrarily choose b = 0.5 and a = c = 1
(marked with a red star in Figure 1a) as for these values a positive steady state
of the Sinko-Streifer model exists. Figure 1b indicates that even for n = 100 the
fit between approximate and actual stationary solution is satisfactory (the infinity
norm of the error is 0.004). Moreover, Figure 1c illustrates that as the dimension
of the approximate space Xn increases the absolute error between the exact sta-
tionary solution and the approximate stationary solution decreases. Furthermore,
the numerical algorithm has a linear convergence rate. This is due to the fact that
we chose zeroth order functions as basis functions for approximate subspaces. In
general, if one desires a higher order convergence for Galerkin-type approximations,
choosing higher order basis functions gives higher convergence rate [33].,

3. Application to nonlinear population balance equation. In aerosol physics
and environmental sciences, studying the flocculation of particles is widespread.
The process of flocculation involves disperse particles in suspension combining into
aggregates (i.e., a floc) and separating. The mathematical model used to study
flocculation process is the well-known population balance equation (PBE) which
describes the time-evolution of the particle size number density. The equations for
the flocculation model track the time-evolution of the particle size number density
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u(t, x) and can be written as

ut = F(u) (16)

where
F(u) := G(u) +A(u) + B(u),

G denotes growth
G(u) := −∂x(gu)− µ(x)u(t, x) , (17)

A denotes aggregation

A(u) :=
1

2

∫ x

0

ka(x− y, y)u(t, x− y)u(t, y) dy

− u(t, x)

∫ x−x

0

ka(x, y)u(t, y) dy , (18)

and B denotes breakage

B(u) :=

∫ x

x

Γ(x; y)kf (y)u(t, y) dy − 1

2
kf (x)u(t, x) . (19)

The boundary condition is traditionally defined at the smallest size 0 and the initial
condition is defined at t = 0

g(0)u(t, 0) =

∫ x

0

q(x)u(t, x)dx, u(0, x) = u0(x) ∈ L1(0, x) ,

where the renewal rate q(x) represents the number of new flocs entering the pop-
ulation. A floc is assumed to have a maximum size x < ∞. The function g(x)
represents the average growth rate of the flocs of size x due to proliferation, and
the coefficient µ(x) represents a size-dependent removal rate due to gravitational
sedimentation and death. The function ka(x, y) is the aggregation kernel, which
describes the rate with which the flocs of size x and y agglomerate to form a floc of
size x+ y. The fragmentation kernel kf (x) calculates the rate with which a floc of
size x fragments. The integrable function Γ(x; y) represents the post-fragmentation
probability density of daughter flocs for the fragmentation of the parent flocs of size
y. In other words, all the fractions of daughter flocs formed upon the fragmentation
of a parent floc sum to unity,∫ y

0

Γ(x; y) dx = 1 for all y ∈ (0, x]. (20)

The population balance equation, presented in (16), is a generalization of many
mathematical models appearing in the size-structured population modeling litera-
ture and has been widely used, e.g., to model the formation of clouds and smog
in meteorology [49], the kinetics of polymerization in biochemistry [56], the clus-
tering of planets, stars and galaxies in astrophysics [39], and even schooling of fish
in marine sciences [47]. For example, when the fragmentation kernel is omitted,
kf ≡ 0, the flocculation model reduces to algal aggregation model used to describe
evolution of a phytoplankton community [2]. When the removal and renewal rates
are set to zero, the flocculation model simplifies to a model used to describe the
proliferation of Klebsiella pneumoniae in a bloodstream [9]. Furthermore, the floc-
culation model, with only growth and fragmentation terms, was used to investigate
the elongation of prion polymers in infected cells [17, 26, 18].

The equation (16) has also been the focus of considerable mathematical analysis.
Well-posedness of the general flocculation model was first established by Ackleh and
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Fitzpatrick [1, 2] in an L2-space setting and later by Banasiak and Lamb [5] in an
L1-space setting. Moreover, asymptotic behavior of the equation (16) has been a
challenging task because of the nonlinearity introduced by the aggregation terms.
Nevertheless, under suitable conditions on the kernels, the existence of a positive
steady state has been established for the pure aggregation and fragmentation case
[38]. For a review of further mathematical results, we refer readers to review arti-
cles by Menon and Pego [41], and Wattis [54] and the book by Ramkrishna [50].
Lastly, although the population balance equation has received substantial theoreti-
cal work, the derivation of analytical solutions for many realistic aggregation kernels
has proven elusive. Towards this end, many discretization schemes for numerical
simulations of the PBEs have been proposed. For instance, to approximate steady
state solutions of PBEs, numerical schemes based on the least squares spectral
method [23, 24, 25] and the finite element method [45, 46, 31] have been developed.
For the further review of approximation methods we refer interested readers to the
review by Bortz [8].

3.1. Numerical implementation and results. For the numerical implemen-
tation we adopt the scheme developed in Section 2.1. Therefore, the approxi-
mate formulation of (16) becomes the following system of n nonlinear ODEs for
un = (α1, · · · , αn)T ∈ Rn :

u̇n = Fn(un) = Gnun + PnA(Enun) + PnB(Enun), (21)
un(0, x) = Pnu0(x) , (22)

where the matrix Gn is defined as in Section 2.3,

PnA(Enun) =


−α1

∑n−1
j=1 ka(xn1 , x

n
j )αj∆x

1
2ka(xn1 , x

n
1 )α1α1∆x− α2

∑n−2
j=1 ka(xn2 , x

n
j )αj∆x

...
1
2

∑n−2
j=1 ka(xnj , x

n
n−1−j)αjαn−1−j∆x− αn−1ka(xnn−1, x

n
1 )α1∆x

1
2

∑n−1
j=1 ka(xnj , x

n
n−j)αjαn−j∆x


and

PnB(Enun) =



∑n
j=2 Γ(xn1 ; xnj )kf (xnj )αj∆x− 1

2kf (xn1 )α1∑n
j=3 Γ(xn2 ; xnj )kf (xnj )αj∆x− 1

2kf (xn2 )α2

...
Γ(xnn−1; xnn)kf (xnn)αn∆x− 1

2kf (xnn−1)αn−1

− 1
2kf (xnn)αn

 .

The convergence of the approximate scheme (21)-(22) has been established in [1].
Therefore, the stationary solutions of the microbial flocculation model (16) can be
systematically approximated by the stationary solutions of the system of nonlinear
ODEs given in (21). We used Powell’s hybrid root finding method [48] as imple-
mented in Python 2.7.10 1 to find zeros of the steady state equation (see available
code at [42]). For faster convergence rate, we provided the solver with the exact
Jacobian of Fn(un) (see Section 2.2, Eqn (23) for the formulation of the Jacobian).
For the purpose of illustration, for a post-fragmentation density function we chose

1scipy.optimize.fsolve
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the well-known Beta distribution2 with α = β = 2,

Γ(x, y) = 1[0, y](x)
6x(y − x)

y3
,

where 1I is the indicator function on the interval I. The aggregation kernel was
chosen to describe flow within laminar shear field (i.e., orthokinetic aggregation)

ka(x, y) =
(
x1/3 + y1/3

)3

Other model rates were chosen arbitrarily as

q(x) = a(x+ 1), g(x) = b(x+ 1) µ(x) = cx kf (x) = x ,

where a, b and c are some positive real numbers.
The main advantage of this approximation scheme (21)-(22) is that it can be ini-

tialized very fast using Toeplitz matrices [40]. Fast initialization of the discretization
scheme allows one to check the existence of the steady states at many discrete points
efficiently. This in turn allows for the generation of the existence and stability re-
gions of the steady states of the PBE in (16). To illustrate the existence regions
of the steady states of the PBE, we discretized the intervals a ∈ [0, 15] , b ∈ [0, 1]
and c ∈ [0, 5] with ∆a = ∆b = ∆c = 0.1. We note that for faster convergence the
root finding method needs an initial seed close to the steady state solution. Since
we have no information about the existing steady state, we seed the root finding
method with 10 different uniform initial guesses i.e.,{

u0(x) = 2i | i = 0, 1, . . . , 9
}
,

before we conclude a positive steady state does not exist for a given point (a, b, c).
Consequently, we checked for the existence of a positive steady state at each of these
discrete points. As depicted in Figure 2a, approximate existence region of positive
steady states of the PBE forms a three dimensional wedge like region. Moreover,
in Figures 2b-2d, to deduce stability of each steady state solution, we checked the
spectrum of the Jacobian matrix evaluated at each steady state. Particularly, if
the real part of rightmost eigenvalue of the Jacobian matrix is negative, the steady
state is identified as locally stable (blue region). Conversely, if the real part of the
rightmost eigenvalue of the Jacobian matrix is positive the steady state is identified
as unstable (red region). One can observe that growth (b) and removal (c) rates can
balance the smaller renewal rates (a), and thus locally stable steady states exist.
However, as the renewal rate gets larger steady states first become unstable and
then cease to exist (yellow region). This is also illustrated in Figure 3b, where
steady states start diverging for the larger renewal rates (a).

Figure 3a illustrates an example stationary solution for b = 0.5, a = c = 1. To
confirm that the function depicted in Figure 4 is indeed a locally stable steady state,
we simulated the system of ODEs in (21)-(22) for t ∈ [0, 10] with a collection of
arbitrary initial conditions (Figure 4a) close to the steady state solution. One can
observe in Figure 4 that the stationary solution is indeed locally stable and thus
initial conditions, Figure 4, converge to the steady state depicted in Figure 4b. As

2 Although normal and log-normal distributions are mostly used in the literature, Byrne et al.
[16] have provided evidence that the Beta density function describes the fragmentation of small
bacterial flocs.
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(a) (b)

(c) (d)

Figure 2. Existence and stability regions for the steady states of
the PBE a) Existence region for the steady states of the PBE forms
a wedge like shape. b) Stability region for b = 0.1, a ∈ [0, 15] and
c ∈ [0, 5]. c) Stability region for b = 0.5, a ∈ [0, 15] and c ∈ [0, 5].
d) Stability region for b = 1.0, a ∈ [0, 15] and c ∈ [0, 5]. Color
bar represents the real part of rightmost eigenvalue of the Jacobian
matrix evaluated at each steady state. Yellow regions represents
the region for which a positive steady state does not exists.

depicted in Figures 4c and 4d, convergence is also reflected in the evolution of the
total number of flocs (zeroth moment),

M0(t) =

∫ x

0

u(t, x) dx ≈
n∑
i=1

∫ xni

xni−1

αiβ
n
i (x) dx = ∆x

n∑
i=1

αi ,

and total mass of the flocs (first moment),

M1(t) =

∫ x

0

xu(t, x) dx ≈
n∑
i=1

∫ xni

xni−1

αixβ
n
i (x) dx =

∆x

2

n∑
i=1

αi
(
xni + xni−1

)
.

Moreover, to confirm that the steady state solution is not changing with increas-
ing dimension of approximate spaces Xn, we simulated our numerical scheme for
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(a) (b)

Figure 3. a) An example steady-state solution of the PBE for
b = 0.5, a = c = 1. b) Steady states for increasing renewal rate
and b = c = 1

(a) (b)

(c) (d)

Figure 4. Time evolution of the flocculation model with arbitrary
initial conditions. a) Four different initial conditions are chosen
close to the steady state. b) Solution of the PBE for those initial
conditions at t = 10. c) Evolution of the total number M0(t) of
the flocs for t ∈ [0, 10]. d) Evolution of the total mass M1(t) of the
flocs for t ∈ [0, 10].
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(a) (b)

Figure 5. Change in zeroth and first moments with increasing
dimension of the approximate space Xn. a) Change in the total
number and the total mass of the flocs with respect to increasing
dimension n. Dashed red lines and dotted green lines corresponds
to the total number and the total mass of the flocs of the steady
state for n = 1000, respectively. b) Steady state solution for n =
100 and n = 500.

different values of n. Figure 5a illustrates that stationary solutions converge to ex-
act stationary solution of (16) as n→∞. Furthermore, one can observe, in Figure
(5)b that difference between approximate steady states for different values of n is
considerably small.

3.2. Conditions for numerical stability of positive steady states. In this
section, we derive conditions for approximate local stability of the stationary solu-
tion of the nonlinear population balance equation defined in (16). In particular, we
impose conditions on the model rates of the population balance equation for which
the first statement of Corollary 2.2 holds. Towards this end, we use the well-known
Gershgorin theorem for locating eigenvalues of a matrix. The Gershgorin theorem
states that each eigenvalue of A lies in one of the the circular areas, called Gersh-
gorin disks, in the complex plane that is centered at the ith diagonal element and
whose radius is Ri,

{z ∈ C : |z − aii| ≤ Ri} ,
where

Ri =

n∑
j=1, j 6=i

|aji| .

Since the approximate system for the microbial flocculation model is nonlinear,
we linearize the system around its stationary solutions. Let u∗ ∈ L1(0, x) be a
stationary solution of (16) and denote the projection of the stationary solution
u∗ onto Rn by α = Pnu∗ = [α1, · · · , αn]T , then the Jacobian of the approximate
operator Fn defined in (21) can be written as

JF (α) = Gn + JA(α) + JB(α) , (23)



A NUMERICAL FRAMEWORK FOR STABILITY ANALYSIS 947

where Gn is defined in (13),

JA(α) =


−α1ka(xn1 , x

n
1 )∆x −α1ka(xn1 , x

n
2 )∆x ··· −α1ka(xn1 , x

n
n−1)∆x 0

−α2ka(xn2 , x
n
1 )∆x ··· −α2ka(xn2 , x

n
n−2)∆x 0 0

.

.

.
.
.
.

. . .
.
.
.

.

.

.
−αN−1ka(xnn−1, x

n
1 )∆x 0 ··· 0 0

0 0 ··· 0 0



+



−
∑n−1
j=1

ka(xn1 , x
n
j )αj∆x 0 ··· 0 0

α1ka(xn1 , x
n
1 )∆x −

∑n−2
j=1

ka(xn2 , x
n
j )αj∆x 0 ··· 0

α2ka(xn1 , x
n
2 )∆x α1ka(xn2 , x

n
1 )∆x

. . . 0
.
.
.

.

.

.
.
.
.

. . . −
∑1
j=1 ka(xnn−1, x

n
j )αj∆x 0

αn−1ka(xn1 , x
n
n−1)∆x αn−2ka(xn2 , x

n
n−2)∆x ··· α1ka(xnn−1, x

n
1 )∆x 0


,

and

JB(α) =



− 1
2
kf (xn1 ) Γ(xn1 ;xn2 )kf (xn2 )∆x Γ(xn1 ;xn3 )kf (xn3 )∆x ··· Γ(xn1 ;xnn)kf (xnn)∆x

0 − 1
2
kf (xn2 ) Γ(xn2 ;xn3 )kf (xn3 )∆x ··· Γ(xn2 ;xnn)kf (xnn)∆x

.

.

. 0
. . .

. . .
.
.
.

0 ··· 0 − 1
2
kf (xnn−1) Γ(xnn−1;xnn)kf (xnn)∆x

0 0 ··· 0 − 1
2
kf (xnn)



To bound the eigenvalues of JF (α) we use Gershgorin theorem. Consequently,
the centers and the radii of Gershgorin disks are given by

aii = − 1

∆x
g(xni )− µ(xni )− 1

2
kf (xni )− αika(xni , x

n
i )∆x−

n−i∑
j=1

ka(xni , x
n
j )αj∆x

and

Ri ≤
1

∆x
g(xni ) + q(xni ) +

i−1∑
j=1

Γ(xnj ;xni )kf (xni )∆x+

n−i∑
j=1

αjka(xnj , x
n
i )∆x

+

n−i∑
j=1, j 6=i

αjka(xni , x
n
j )∆x ,

respectively. Consequently, if we can show that

|aii| > Ri for each i ∈ {1, . . . , n} , (24)

then each of the Gershgorin disks lie strictly on the left side of the complex plane.
To this end, inequality (24) can be simplified as

µ(xni ) +
1

2
kf (xni ) > q(xni ) +

i−1∑
j=1

Γ(xnj ;xni )kf (xni )∆x+

n−i∑
j=1

αjka(xnj , x
n
i )∆x (25)

for each i ∈ {1, · · · , n}. Accordingly, taking the limit of (25) as n→∞ yields

µ(x) +
1

2
kf (x) > q(x) +

∫ x

0

Γ(y, x)kf (x) dy +

∫ x−x

0

ka(x, y)u∗(y) dy (26)

for all x ∈ [0, x] and together with the number conservation requirement (20) implies

q(x) +
1

2
kf (x)− µ(x) +

∫ x−x

0

ka(x, y)u∗(y) dy < 0

for all x ∈ [0, x]. Conversely, note that the integral approximations in (25) are right
Riemann sums. Therefore, if the functions Γ(y, x) and ka(x, y)u∗(y) are decreasing
in y then integral approximations in (25) are under-approximations of the integrals
in (26). Thus, the inequality stated in (26) ensures that the eigenvalues of the
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(a) (b)

(c) (d)

Figure 6. Eigenvalues of the Jacobian JF (α) multiplied by ∆x
for the steady state illustrated in Figure 3a. a) Eigenvalues of the
Jacobian plotted in the complex plane for n = 20. b) Eigenvalues
of the Jacobian plotted in the complex plane for n = 50. c) Eigen-
values of the Jacobian plotted in the complex plane for n = 200.
d) Change in the rightmost eigenvalue for increasing n. Dashed
black line corresponds to the rightmost eigenvalue of the Jacobian
for n = 1000.

Jacobian JF (α) are strictly negative for all sufficiently large n. Now, we are in a
position to summarize the results of this section in the following proposition.

Proposition 3.1. Let u∗ be a stationary solution of the microbial flocculation model
(16). Moreover, if

q(x) +
1

2
kf (x)− µ(x) +

∫ x−x

0

ka(x, y)u∗(y) dy < 0 (27)

for all x ∈ [0, x] and

∂y (ka(x, y)u∗(y)) ≤ 0 and ∂yΓ(y, x) ≤ 0 (28)

for all x ∈ [0, x] and y ∈ [0, x], then stationary solution u∗ is approximately locally
stable in the sense of Definition 2.1.

To illustrate the utility of the framework developed in this section we applied our
approach to the model rates given in Section 3.1 for generation of Figure 3a. The
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Beta distribution used for the post-fragmentation function Γ is not monotonically
decreasing, and thus it does not satisfy the conditions of Proposition 3.1. However,
Figure 6a-c illustrates that the model rates satisfy the conditions of Corollary 2.2.
In fact, Figure 6d depicts that for the steady state illustrated in Figure 3a the
eigenvalues of JF (Pnu∗) have strictly negative real part for n ≥ 5. Therefore, as
it has already been established in Figure 4, this steady state solution is locally
asymptotically stable in the sense of Corollary 2.2.

4. Concluding remarks. Our primary motivation in this paper was to show that
available numerical tools in the literature can facilitate theoretical analysis of evo-
lution equations. Towards this end we developed a numerical framework for theo-
retical analysis of evolution equations arising in population dynamical models. The
main idea behind this framework is to approximate generators of semigroups of
evolution equations and use numerical tools to study stability of steady states of
evolution equations. We demonstrated the utility of our approach by applying the
numerical framework to both linear and nonlinear size-structured population mod-
els. In particular, we generated approximate existence and stability regions of the
steady states of both models (which can be difficult to obtain by using conventional
analytical tools). We showed that our numerical framework can also be used to
gain insight about the approximate local stability (see Definition 2.1) of stationary
solutions. Furthermore, code used for the numerical simulations can be obtained
from our GitHub repository under the open source MIT License (MIT) [42].

Although the stability inequality in (7) holds for arbitrarily large finite time
intervals, behavior of the solutions as t → ∞ is unclear. Hence, we note that
the local stability of the stationary solutions specified in Corollary 2.2 is not in a
usual Lyapunov sense. In order to prove Lyapunov stability of stationary solutions
using the approximation scheme presented in Section 2.1, one has to prove uniform
convergence of the approximation scheme for all t ≥ 0. Hence, as a future plan
we wish to utilize the numerical framework presented here to establish Lyapunov
stability of stationary solutions of general evolution equations.
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