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Abstract. The competitive exclusion principle means that the strain with the

largest reproduction number persists while eliminating all other strains with
suboptimal reproduction numbers. In this paper, we extend the competitive

exclusion principle to a multi-strain vector-borne epidemic model with age-
since-infection. The model includes both incubation age of the exposed hosts

and infection age of the infectious hosts, both of which describe the different

removal rates in the latent period and the variable infectiousness in the in-

fectious period, respectively. The formulas for the reproduction numbers Rj0
of strain j, j = 1, 2, · · · , n, are obtained from the biological meanings of the

model. The strain j can not invade the system if Rj0 < 1, and the disease free

equilibrium is globally asymptotically stable if maxj{Rj0} < 1. If Rj00 > 1,

then a single-strain equilibrium Ej0 exists, and the single strain equilibrium is

locally asymptotically stable when Rj00 > 1 and Rj00 > Rj0, j 6= j0. Finally,

by using a Lyapunov function, sufficient conditions are further established for

the global asymptotical stability of the single-strain equilibrium correspond-
ing to strain j0, which means strain j0 eliminates all other stains as long as

Rj0/R
j0
0 < bj/bj0 < 1, j 6= j0, where bj denotes the probability of a given

susceptible vector being transmitted by an infected host with strain j.

1. Introduction. In many infectious diseases, such as HIV, schistosomiasis, tuber-
culosis, the infectiousness of an infected individual can be very different at various
stages of infection. Hence, the age of infection may be an important factor to con-
sider in modeling transmission dynamics of infectious diseases. In the epidemic
model of Kermack and Mckendrick [9], infectivity is allowed to depend on the age
of infection. Because the age-structured epidemic model is described by first order
PDEs, it is more difficult to theoretically analyze the dynamical behavior of the
PDE models, particularly the global stability. Several recent studies [10, 11, 18]
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have focused on age structured models, and the results show that age of infection
may play an important role in the transmission dynamics of infectious diseases.

In our pervious work [4], we formulated an infection-age structured epidemic
model to describe the transmission dynamics of vector-borne diseases. The model
includes both incubation age of the exposed hosts and infection age of the infectious
hosts, both of which describe the different removal rates in the latent period and the
variable infectiousness in the infectious period, respectively. The results in [4] show
that the basic reproduction number determines transmission dynamics of vector-
borne diseases: the disease-free equilibrium is globally asymptotically stable if the
basic reproduction number is less than 1, and the endemic equilibrium is globally
asymptotically stable if the basic reproduction number is greater than 1. However,
the vector-borne epidemic model formulated in [4] only incorporates a single strain.
In reality, many diseases are caused by more than one antigenically different strains
of the causative agent [15]. For instance, the dengue virus has 4 different serotypes
[6], and bacterial pneumonia is caused by more than ninety different serotypes of
Streptoccus pneumoniae. Therefore, it is necessary to study infection-age structured
epidemic models with multiple strains.

In this paper, we will extend the model with a single strain to the model with
multiple strains, and obtain the following infection-age-structured vector-borne epi-
demic model with multiple strains:

dSv
dt

= Λv −
n∑
j=1

Sv

∫ ∞
0

βjv(a)Ijh(a, t)da− µvSv,

dIjv
dt

= Sv

∫ ∞
0

βjv(a)Ijh(a, t)da− (µv + αjv)I
j
v ,

dRv
dt

=

n∑
j=1

αjvI
j
v − µvRv,

dSh
dt

= Λh −
n∑
j=1

βjhShI
j
v − µhSh,

∂Ejh(τ, t)

∂τ
+
∂Ejh(τ, t)

∂t
= −(µh +mj

h(τ))Ejh(τ, t),

Ejh(0, t) = βjhShI
j
v ,

∂Ijh(a, t)

∂a
+
∂Ijh(a, t)

∂t
= −(µh + αjh(a) + rjh(a))Ijh(a, t),

Ijh(0, t) =

∫ ∞
0

mj
h(τ)Ejh(τ, t)dτ,

dRh
dt

=

n∑
j=1

∫ ∞
0

rjh(a)Ijh(a, t)da− µhRh.

(1)

In the model (1), Sh(t), Ejh(τ, t),Ijh(a, t), Rh(t) represent the number/density of the
susceptible hosts, infected hosts with strain j but not infectious, infected hosts with
strain j and infectious, and recovered hosts at time t, respectively. Sv(t), I

j
v(t) and

Rv(t) denote the number of the susceptible vectors, infected vectors with strain j
and infectious, and recovered vectors at time t, respectively. Λv,Λh are the birth
/recruitment rates of the vectors and hosts, respectively; µv, µh are the natural

death rates of the vectors and hosts, respectively. The parameter mj
h(τ) denotes
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the removal rate of the infected hosts with strain j of incubation age τ from the
latent period; αjh(a) is the additional disease induced death rate due to the strain
j at age of infection a; αjv denotes the recovery rate of the infected vectors with

strain j; rjh(a) denotes the recovery rate of the infected hosts of infection age a with
strain j; βjv(a) is the transmission coefficient of the infected host individuals with

strain j at age of infection a, and βjh is the transmission coefficient of strain j from
infected vectors to healthy host individuals.

The dynamics of the epidemic model involving multiple strains has fascinated
researchers for a long time (see [3, 5, 6, 7, 17] and the references therein), and one
of the important results is the competitive exclusion principle. In epidemiology,
the competitive exclusion principle states that if multiple strains circulate in the
population, only the strain with the largest reproduction number persists and the
strains with suboptimal reproduction numbers are eliminated [13]. Using a multiple-
strain ODE model Bremermann and Thieme [2] first proved that the principle of
competitive exclusion is valid under the assumption that infection with one strain
precludes additional infections with other strains. In 2013, Maracheva and Li [13]
extended the competitive exclusion principle to a multi-stain age-since-infection
structured model of SIR/SI-type. The goal of this paper is to extend this principle
to model (1).

As we all know, the proof of competitive exclusion principle is based on the
global stability of the single-strain equilibrium. The stability analysis of nonlinear
dynamical systems has always been an important topic theoretically and practically
since global stability is one of the most important issues related to their dynamic
behaviors. Due to the lack of generically applicable tools proving the global stability
is very challenging, especially for the continuous age-structured models which are
described by first order PDEs. Although there are various approaches for some
general nonlinear systems, the method of Lyapunov functions is the most common
tool used to prove the global stability. In this paper, we will apply a class of
Lyaponuv functions to study the global dynamics of system (1) and draw on the
results to derive the competitive exclusion principle for infinite dimensional systems.

This paper is organized as follows. In the next section we derive an explicit
formula for the basic reproduction number Rj0 of strain j for j = 1, · · · , n, and
then we will show that strain j will die out if its basic reproduction number is
less than one. In section 3, we will define the disease reproduction number R0,
and then prove that the disease-free equilibrium (DFE) of the system is globally
asymptotically stable if R0 < 1. In Section 4, we will investigate the existence
of single-strain equilibria and their local stabilities. In section 5 we will devote to
prove the principle of competitive exclusion. Without loss of generality, we assume
that strain one has the maximal reproduction number and R1

0 > 1. Under the
assumption, we will show that strain one is uniformly strong persistent while the
remaining strains become extinct. In Section 6, we use a class of Lyapunov functions
to derive the global stability of the strain one equilibrium under the condition that
Ri0/R1

0 < bi/b1 < 1, i 6= 1, where bj denotes the probability of a given susceptible
vector being transmitted by an infected host with strain j, which implies that
complete competitive exclusion holds for the system. Finally, a brief discussion is
given in Section 7.

2. The reproduction numbers and threshold dynamics. In this section, we
mainly derive the reproduction numbers for each strain, and show that the stain
will die out if its basic reproduction number is less than one.
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Since the equations for the recovered individuals and the recovered vectors are
decoupled from the system, it follows that the dynamical behavior of system (1) is
equivalent to the dynamical behavior of the following system:

dSv
dt

= Λv −
n∑
j=1

Sv

∫ ∞
0

βjv(a)Ijh(a, t)da− µvSv,

dIjv
dt

= Sv

∫ ∞
0

βjv(a)Ijh(a, t)da− (µv + αjv)I
j
v ,

dSh
dt

= Λh −
n∑
j=1

βjhShI
j
v − µhSh,

∂Ejh(τ, t)

∂τ
+
∂Ejh(τ, t)

∂t
= −(µh +mj

h(τ))Ejh(τ, t),

Ejh(0, t) = βjhShI
j
v ,

∂Ijh(a, t)

∂a
+
∂Ijh(a, t)

∂t
= −(µh + αjh(a) + rjh(a))Ijh(a, t),

Ijh(0, t) =

∫ ∞
0

mj
h(τ)Ejh(τ, t)dτ.

(2)

Model (2) is equipped with the following initial conditions:

Sv(0) = Sv0 , Ijv(0) = Ijv0 , Sh(0) = Sh0 , Ejh(τ, 0) = ϕj(τ), Ijh(a, 0) = ψj(a).

All parameters are nonnegative, Λv > 0, Λh > 0, and µv > 0, µh > 0. We make
the following assumptions on the parameter-functions.

Assumption 2.1.

1. The function βjv(a) is bounded and uniformly continuous for every j. When
βjv(a) is of compact support, the support has non-zero Lebesgue measure;

2. The functions mj
h(τ), αjh(a), rjh(a) belong to L∞(0,∞);

3. The functions ϕj(τ), ψj(a) are integrable.

Let us define

X = R×
n∏
j=1

R× R×
n∏
j=1

(L1(0,∞)× L1(0,∞)).

It is easily verified that solutions of (2) with nonnegative initial conditions belong
to the positive cone for t ≥ 0. Adding the first and all equations for Ijv yields that

d

dt

(
Sv(t) +

n∑
j=1

Ijv(t)

)
≤ Λv − µv

(
Sv(t) +

n∑
j=1

Ijv(t)

)
.

Hence,

lim sup
t→+∞

(
Sv(t) +

n∑
j=1

Ijv(t)

)
≤ Λv
µv
.

Similarly, adding the equation for Sh and all equations for Ejh, I
j
h, we have

d

dt

(
Sh(t) +

n∑
j=1

∫ ∞
0

Ejh(τ, t)dτ +

n∑
j=1

∫ ∞
0

Ijh(a, t)da

)
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≤ Λh − µh
(
Sh(t) +

n∑
j=1

∫ ∞
0

Ejh(τ, t)dτ +

n∑
j=1

∫ ∞
0

Ijh(a, t)da

)
,

and it then follows that

lim sup
t→+∞

(
Sh(t) +

n∑
j=1

∫ ∞
0

Ejh(τ, t)dτ +

n∑
j=1

∫ ∞
0

Ijh(a, t)da

)
≤ Λh
µh
.

Therefore, the following set is positively invariant for system (2)

Ω =

{
(Sv, I

1
v , · · · , Inv , Sh, E1

h, I
1
h, · · · , Enh , Inh ) ∈ X+

∣∣∣∣(
Sv(t) +

n∑
j=1

Ijv(t)

)
≤ Λv
µv
,

(
Sh(t) +

n∑
j=1

∫ ∞
0

Ejh(τ, t)dτ +

n∑
j=1

∫ ∞
0

Ijh(a, t)da

)
≤ Λh
µh

}
.

(3)

In what follows, we only consider the solutions of the system (2) with initial condi-
tions which lie in the region Ω. As we all know, the reproduction number is one of
most important concepts in epidemiological model. Next, we will express the basic
reproduction numbers for each strain. To simplify expression, let us introduce two
notations.

Definition 2.1. The exit rate of exposed host individuals with strain j from the
incubation compartment is given by µh+mj

h(τ), the probability of still being latent

after τ time units, denoted by πj1(τ), is given by

πj1(τ) = e−µhτe−
∫ τ
0
mjh(σ))dσ. (4)

Definition 2.2. The exit rate of infected individuals with strain j from the infective
compartment is given by µh+αjh(a)+rjh(a), and it then follows that the probability

of still being infectious after a time units, denoted by πj2(a), is given by

πj2(a) = e−µhae−
∫ a
0
(αjh(σ)+r

j
h(σ))dσ. (5)

Then we can give the expression for the basic reproduction number of strain j
which can be expressed as

Rj0 =
βjhΛvΛh

µvµh(µv + αjv)

∫ ∞
0

mj
h(τ)πj1(τ)dτ

∫ ∞
0

βjv(a)πj2(a)da. (6)

The reproduction number of strain j gives the number of secondary infections pro-
duced in an entirely susceptible population by a typical infected individual with
strain j during its entire infectious period. Rj0 gives the strength of strain j to
invade into the system when rare and alone. The reproduction number of strain j
consists of two terms:

Rjh =
Λv
µv

∫ ∞
0

βjv(a)πj2(a)da, Rjv =
βjhΛh

µh(µv + αjv)

∫ ∞
0

mj
h(τ)πj1(τ)dτ.

The first term Rjh represents the reproduction number of human-to-vector trans-
mission of strain j, and the second term Rjv is the reproduction number of vector-
to-human transmission of strain j.

Now we are able to state the results on threshold dynamics of strain j:
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Theorem 2.3. If Rj0 < 1, strain j will die out.

Proof. Let

BjE(t) = Ejh(0, t), BjI (t) = Ijh(0, t).

Integrating along the characteristic lines of system (2) yields

Ejh(τ, t) =


BjE(t− τ)πj1(τ), t > τ,

ϕj(τ − t)
πj1(τ)

πj1(τ − t)
, t < τ,

Ijh(a, t) =


BjI (t− a)πj2(a), t > a,

ψj(a− t)
πj2(a)

πj2(a− t)
, t < a.

(7)

From the first and the third equations of system (2), we obtain

lim sup
t→+∞

Sv(t) ≤
Λv
µv
, lim sup

t→+∞
Sh(t) ≤ Λh

µh
. (8)

Thus, from system (2) and inequalities (8), we have
dIjv(t)

dt
≤ Λv
µv

∫ ∞
0

βjv(a)Ijh(a, t)da− (µv + αjv)I
j
v ,

Ejh(τ, t) = Ejh(0, t− τ)πj1(τ), t > τ,

Ijh(a, t) = Ijh(0, t− a)πj2(a), t > a.

(9)

From the first inequality of (9), we obtain that

Ijv(t) ≤ Ijv(0)e−(µv+α
j
v)t +

Λv
µv

∫ t

0

e−(µv+α
j
v)(t−s)

∫ ∞
0

βjv(a)Ijh(a, s)dads

≤ Ijv(0)e−(µv+α
j
v)t +

Λv
µv

∫ t

0

e−(µv+α
j
v)(t−s)

(∫ s

0

βjv(a)Ijh(0, s− a)πj2(a)da

+

∫ t

s

βjv(a)ψj(a− s)
πj2(a)

πj2(a− s)
da+

∫ ∞
t

βjv(a)Ijh(a, s)da

)
ds.

(10)
Notice that

lim sup
t→+∞

∫ t

0

e−(µv+α
j
v)(t−s)

∫ s

0

βjv(a)Ijh(0, s− a)πj2(a)dads

≤
(

lim sup
t→+∞

∫ t

0

e−(µv+α
j
v)(t−s)ds

)∫ ∞
0

βjv(a)πj2(a)da

(
lim sup
t→+∞

Ijh(0, t)

)
=

1

µv + αjv

∫ ∞
0

βjv(a)πj2(a)da

(
lim sup
t→+∞

Ijh(0, t)

)
,

(11)

lim sup
t→+∞

∫ t

0

e−(µv+α
j
v)(t−s)

∫ t

s

βjv(a)ψj(a− s)
πj2(a)

πj2(a− s)
dads

≤ β̄ lim sup
t→+∞

∫ t

0

e−(µv+α
j
v)(t−s)

∫ t

s

ψj(a− s)e−
∫ a
a−s(µh+α

j
h(σ)+r

j
h(σ))dσdads

≤ β̄ lim sup
t→+∞

∫ t

0

e−(µv+α
j
v)(t−s)

∫ t

s

ψj(a− s)e−µhsdads
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= β̄ lim sup
t→+∞

(
e−(µv+α

j
v)t

∫ t

0

e(µv+α
j
v−µh)s

∫ t−s

0

ψj(a)dads

)
= β̄

∫ ∞
0

ψj(a)da lim sup
t→+∞

(
e−(µv+α

j
v)t
e(µv+α

j
v−µh)t − 1

µv + αjv − µh

)
= 0,

(12)

and

lim sup
t→+∞

∫ t

0

e−(µv+α
j
v)(t−s)

∫ ∞
t

βjv(a)Ijh(a, s)dads = 0. (13)

It then follows from (11), (12) and (13) that

lim sup
t→+∞

Ijv(t)

≤ Λv

µv(µv + αjv)

∫ ∞
0

βjv(a)πj2(a)da

(
lim sup
t→+∞

Ijh(0, t)

)
≤ Λv

µv(µv + αjv)

∫ ∞
0

βjv(a)πj2(a)da

(
lim sup
t→+∞

∫ ∞
0

mj
h(τ)Ejh(τ, t)dτ

)
≤ Λv

µv(µv + αjv)

∫ ∞
0

βjv(a)πj2(a)da lim sup
t→+∞

(∫ t

0

mj
h(τ)Ejh(τ, t)dτ

+

∫ ∞
t

mj
h(τ)Ejh(τ, t)dτ

)
=

Λv

µv(µv + αjv)

∫ ∞
0

βjv(a)πj2(a)da

(
lim sup
t→+∞

∫ t

0

mj
h(τ)Ejh(0, t− τ)πj1(τ)dτ

)
≤ Λv

µv(µv + αjv)

∫ ∞
0

βjv(a)πj2(a)da

∫ ∞
0

mj
h(τ)πj1(τ)dτ

(
lim sup
t→+∞

Ejh(0, t)

)
≤ βjh

ΛvΛh

µvµh(µv + αjv)

∫ ∞
0

βjv(a)πj2(a)da

∫ ∞
0

mj
h(τ)πj1(τ)dτ lim sup

t→+∞
Ijv(t)

≤ Rj0 lim sup
t→+∞

Ijv(t).

(14)

Since Rj0 < 1 and Ijv(t), j = 1, · · · , n, are all bounded, the above expression implies
that

lim sup
t→+∞

Ijv(t) = 0, j = 1, · · · , n. (15)

Hence, we have

lim sup
t→+∞

Ejh(0, t) = 0, lim sup
t→+∞

Ejh(τ, t) = lim sup
t→+∞

Ejh(0, t− τ)πj1(τ) = 0. (16)

By using the same argument, we have

lim sup
t→+∞

Ijh(0, t) = 0, lim sup
t→+∞

Ijh(a, t) = 0. (17)

Therefore, (Ijv(t), Ejh(τ, t), Ijh(a, t))→ 0 as t→∞. This means that strain j will die
out. The proof of Theorem 2.3 is completed.
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3. Global stability of the disease-free equilibrium. In this section, we mainly
define the disease reproduction number and show that the disease free equilibrium
is globally asymptotically stable if the disease reproduction number R0 is less than
one, where

R0 = max{R1
0, · · · ,Rn0}.

System (2) always has a unique disease-free equilibrium E0, which is given by

E0 =

(
S∗v0 , 0, S∗h0

, 0, 0

)
,

where

S∗v0 =
Λv
µv
, S∗h0

=
Λh
µh
,

and 0 = (0, · · · , 0) is an n-dimensional zero vector.
Now let us establish the local stability of the disease-free equilibrium. Let

Sv(t) =S∗v0 + xv(t), Ijv(t) = yjv(t), Sh(t) = S∗h0
+ xh(t),

Ejh(τ, t) = zjh(τ, t), Ijh(a, t) = yjh(a, t).

Then the linearized system of system (2) at the disease-free equilibrium E0 can be
expressed as

dxv(t)

dt
= −

n∑
j=1

S∗v0

∫ ∞
0

βjv(a)yjh(a, t)da− µvxv(t),

dyjv(t)

dt
= S∗v0

∫ ∞
0

βjv(a)yjh(a, t)da− (µv + αjv)y
j
v(t),

dxh(t)

dt
= −

n∑
j=1

βjhS
∗
h0
yjv(t)− µhxh(t),

∂zjh(τ, t)

∂τ
+
∂zjh(τ, t)

∂t
= −(µh +mj

h(τ))zjh(τ, t),

zjh(0, t) = βjhS
∗
h0
yjv(t),

∂yjh(a, t)

∂a
+
∂yjh(a, t)

∂t
= −(µh + αjh(a) + rjh(a))yjh(a, t),

yjh(0, t) =

∫ ∞
0

mj
h(τ)zjh(τ, t)dτ.

(18)

Let

yjv(t) = ȳjve
λt, zjh(τ, t) = z̄jh(τ)eλt, yjh(a, t) = ȳjh(a)eλt, (19)

where ȳjv, z̄
j
h(τ) and ȳjh(a) are to be determined. Substituting (19) into (18), we

obtain
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λȳjv = S∗v0

∫ ∞
0

βjv(a)ȳjh(a)da− (µv + αjv)ȳ
j
v,

dz̄jh(τ)

dτ
= −(λ+ µh +mj

h(τ))z̄jh(τ),

z̄jh(0) = βjhS
∗
h0
ȳjv,

dȳjh(a)

da
= −(λ+ µh + αjh(a) + rjh(a))ȳjh(a),

ȳjh(0) =

∫ ∞
0

mj
h(τ)z̄jh(τ)dτ.

(20)

Solving the differential equation, we obtain

z̄jh(τ) = z̄jh(0) e−λτπj1(τ) = βjhS
∗
h0
ȳjv e

−λτπj1(τ).

Substituting the expression for z̄jh(τ) into the equation for ȳjh(0), expressing ȳjh(0)

in term of z̄jh(0), and replacing ȳjh(0) in the equation for ȳjh(a), we obtain

ȳjh(a) = ȳjh(0) e−λaπj2(a) = βjhS
∗
h0
ȳjv e

−λaπj2(a)

∫ ∞
0

mj
h(τ) e−λτπj1(τ)dτ.

Substituting the above expression for ȳjh(a) into the first equation of (20), we can
obtain

λ+ µv + αjv = βjhS
∗
v0S
∗
h0

∫ ∞
0

mj
h(τ)e−λτπj1(τ)dτ

∫ ∞
0

βjv(a)e−λaπj2(a)da. (21)

Now we are able to state the following result.

Theorem 3.1. If

R0 = max{R1
0, · · · ,Rn0} < 1,

then the disease-free equilibrium is locally asymptotically stable. If R0 > 1, it is
unstable.

Proof. We first prove the first result. Let us assume R0 < 1. For ease of notation,
set

LHS
def
= λ+ µv + αjv,

RHS
def
= G1(λ) = βjhS

∗
v0S
∗
h0

∫ ∞
0

mj
h(τ)e−λτπj1(τ)dτ

∫ ∞
0

βjv(a)e−λaπj2(a)da.
(22)

We can easily verify that

|LHS| ≥ µv + αjv,

|RHS| ≤ G1(<λ) ≤ G1(0) = βjhS
∗
v0S
∗
h0

∫ ∞
0

mj
h(τ)πj1(τ)dτ

∫ ∞
0

βjv(a)πj2(a)da

=
βjhΛvΛh
µvµh

∫ ∞
0

mj
h(τ)πj1(τ)dτ

∫ ∞
0

βjv(a)πj2(a)da

= Rj0(µv + αjv) < |LHS|,

for any λ,<λ ≥ 0. There is a contradiction. The contradiction implies that the equa-
tion (21) cannot have any roots with non-negative real parts. Hence, the disease-free
equilibrium is locally asymptotically stable.
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Next, let us assume max{R1
0, · · · ,Rn0} = Rj00 > 1. We rewrite the characteristic

equation (21) in the form

G2(λ) = 0, (23)

where

G2(λ)

= (λ+ µv + αj0v )− βj0h S
∗
v0S
∗
h0

∫ ∞
0

mj0
h (τ)e−λτπj01 (τ)dτ

∫ ∞
0

βj0v (a)e−λaπj02 (a)da.

It is easily verified that

G2(0) = (µv + αj0v )− βj0h S
∗
v0S
∗
h0

∫ ∞
0

mj0
h (τ)πj01 (τ)dτ

∫ ∞
0

βj0v (a)πj02 (a)da

= (µv + αj0v )(1−Rj00 ) < 0,

and

lim
λ→+∞

G2(λ) = +∞.

Hence, the characteristic equation (23) has a real positive root. Therefore, the
disease free equilibrium E0 is unstable. This concludes the proof.

We have proved that the disease-free equilibrium is locally stable if R0 < 1. It
also follows from Theorem 2.3 that strain j will die out if Rj0 < 1. Therefore we
have the following result.

Theorem 3.2. If

R0 = max{R1
0, · · · ,Rn0} < 1,

then the disease-free equilibrium E0 is globally asymptotically stable.

4. Existence and stability of boundary equilibria. In this section, we mainly
investigate the existence and stability of the boundary equilibria. For ease of nota-
tion, let

∆j =
βjhΛhΛv

µhµv(µv + αjv)
,

bj =

∫ ∞
0

mj
h(τ)πj1(τ)dτ

∫ ∞
0

βjv(a)πj2(a)da,

bj(λ) =

∫ ∞
0

mj
h(τ)e−λτπj1(τ)dτ

∫ ∞
0

βjv(a)e−λaπj2(a)da.

(24)

From Theorem 2.3, it follows that strain j will die out if Rj0 < 1. Thus in later

sections we always assume that Rj0 > 1 for all j, j = 1, 2, · · · , n. If Rj0 > 1,
straightforward computation yields that system (2) has a corresponding single-strain
equilibrium Ej which is given by

Ej = (Sj∗v , 0, · · · , 0, Ij∗v , 0, · · · , 0, S
j∗
h , 0, · · · , 0, E

j∗
h (τ), Ij∗h (a), 0, · · · , 0).

The non-zero components Ij∗v , E
j∗
h and Ij∗h are in positions j + 1, n + 2j + 1 and

n+ 2j + 2, respectively, and

Ij∗v =
µvµh(Rj0 − 1)

βjh(Λhbj + µv)
,

Sj∗v =
Λv − (µv + αjv)I

j∗
v

µv
=
βjhΛv(µv + Λhbj)− µvµh(µv + αjv)(R

j
0 − 1)

βjhµv(µv + Λhbj)
,
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Sj∗h =
Λh

βjhI
j∗
v + µh

=
Λh(µv + Λhbj)

µh(µvRj0 + Λhbj)
,

Ej∗h (τ) = Ej∗h (0)πj1(τ), Ej∗h (0) = βjhS
j∗
h I

j∗
v ,

Ij∗h (a) = Ij∗h (0)πj2(a), Ij∗h (0) = Ej∗h (0)

∫ ∞
0

mj
h(τ)πj1(τ)dτ.

(25)

The results on the local stability of single-strain equilibrium Ej0 are summarized
below:

Theorem 4.1. Assume Rj00 > 1 for a fixed j0 and

Rj0 < R
j0
0 for all j 6= j0.

Then single-strain equilibrium Ej0 is locally asymptotically stable. If there exists i0
such that

Ri00 > Rj00 ,
then the single-strain equilibrium Ej0 is unstable.

Proof. Without loss of generality, we assume that R1
0 > 1 and Ri0 < R1

0 for i =
2, · · · , n. Let

Sv(t) = S1∗

v + xv(t), Sh(t) = S1∗

h + xh(t),

I1v (t) = I1
∗

v + y1v(t), E1
h(τ, t) = E1∗

h (τ) + z1h(τ, t), I1h(a, t) = I1
∗

h (a) + y1h(a, t),

Iiv(t) = yiv(t), Eih(τ, t) = zih(τ, t), Iih(a, t) = yih(a, t),

where i = 2, · · · , n. Then the linearization system of system (2) at the equilibrium
E1 can be expressed as

dxv(t)

dt
= −S1∗

v

∫ ∞
0

β1
v(a)y1h(a, t)da− xv(t)

∫ ∞
0

β1
v(a)I1

∗

h (a)da

−
n∑
i=2

S1∗

v

∫ ∞
0

βiv(a)yih(a, t)da− µvxv(t),

dy1v(t)

dt
= S1∗

v

∫ ∞
0

β1
v(a)y1h(a, t)da+ xv(t)

∫ ∞
0

β1
v(a)I1

∗

h (a)da− (µv + α1
v)y

1
v(t),

dyiv(t)

dt
= S1∗

v

∫ ∞
0

βiv(a)yih(a, t)da− (µv + αiv)y
i
v(t),

dxh(t)

dt
= −β1

hS
1∗

h y
1
v(t)− β1

hxh(t)I1
∗

v −
n∑
i=2

βihS
1∗

h y
i
v(t)− µhxh(t),

∂zjh(τ, t)

∂τ
+
∂zjh(τ, t)

∂t
= −(µh +mj

h(τ))zjh(τ, t),

z1h(0, t) = β1
hS

1∗

h y
1
v(t) + β1

hxh(t)I1
∗

v ,

zih(0, t) = βihS
1∗

h y
i
v(t),

∂yjh(a, t)

∂a
+
∂yjh(a, t)

∂t
= −(µh + αjh(a) + rjh(a))yjh(a, t),

yjh(0, t) =

∫ ∞
0

mj
h(τ)zjh(τ, t)dτ.

(26)
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An approach similar to [14] (see Appendix B in [14]) can show that the linear
stability of the system is determined by the eigenvalues of the linearized system
(26). In order to investigate the linear stability of the linearized system (26), we
consider exponential solutions (see the case of the disease-free equilibrium) and
obtain a linear eigenvalue problem. For the whole system, we only consider the
equations for strains i, i = 2, · · · , n, and obtain the following eigenvalue problem:

dyiv(t)

dt
= S1∗

v

∫ ∞
0

βiv(a)yih(a, t)da− (µv + αiv)y
i
v(t),

∂zih(τ, t)

∂τ
+
∂zih(τ, t)

∂t
= −(µh +mi

h(τ))zih(τ, t),

zih(0, t) = βihS
1∗

h y
i
v(t),

∂yih(a, t)

∂a
+
∂yih(a, t)

∂t
= −(µh + αih(a) + rih(a))yih(a, t),

yih(0, t) =

∫ ∞
0

mi
h(τ)zih(τ, t)dτ.

(27)

For each i, i 6= 1, by using the same argument to equation (21), we obtain the
following characteristic equation

λ+ µv + αiv = βihS
1∗
v S

1∗

h

∫ ∞
0

mi
h(τ)e−λτπi1(τ)dτ

∫ ∞
0

βiv(a)e−λaπi2(a)da. (28)

Notice that Sj∗v and Sj∗h satisfy

βjhS
j∗
v S

j∗
h

∫ ∞
0

mj
h(τ)πj1(τ)dτ

∫ ∞
0

βjv(a)πj2(a)da = µv + αjv, (29)

for j = 1, · · · , n. It then follows from (6) and (24) that we have

S1∗

v S
1∗

h =
µv + α1

v

β1
hb1

=
ΛvΛh
µvµhR1

0

. (30)

Substituting (30) into the equation (28), we get the following characteristic equation

λ+ µv + αiv = βih
ΛvΛh
µvµhR1

0

bi(λ), (31)

where bi(λ) is defined in (24).

First, assume that Ri00 > R1
0 for some i0, and set

Gi0(λ)
def
= (λ+ µv + αi0v )− βi0h

ΛvΛh
µvµhR1

0

bi0(λ).

Straightforward computation yields that

Gi0(0) = (µv + αi0v )− βi0h
ΛvΛh
µvµhR1

0

bi0 = (µv + αi0v )(1− Ri00
R1

0

) < 0.

Furthermore, for λ real, Gi0(λ) is an increasing function of λ such that limGi0(λ)→
+∞ as λ→ +∞. Hence Intermediate Value Theorem implies that the equation (31)
has a unique real positive solution. We conclude that in that case E1 is unstable.

Next, assume Ri0 < R1
0 for all i = 2, · · · , n, and set

G3(λ)
def
= λ+ µv + αiv, G4(λ)

def
= βih

ΛvΛh
µvµhR1

0

bi(λ). (32)
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Consider λ with <λ ≥ 0. For such λ, following from (32), we have

|G3(λ)| ≥ µv + αiv,

|G4(λ)| ≤ G4(<λ) ≤ G4(0) =
1

R1
0

βih
ΛvΛh
µvµh

∫ ∞
0

mi
h(τ)πi1(τ)dτ

∫ ∞
0

βiv(a)πi2(a)da

=
Ri0
R1

0

(µv + αiv) < |G3(λ)|.

This gives a contradiction. Hence, the equation (31) have no solutions with positive
real part and all eigenvalues of these equations have negative real parts. Therefore,
the stability of E1 depends on the eigenvalues of the following system

λxv = −S1∗

v

∫ ∞
0

β1
v(a)y1h(a)da− xv

∫ ∞
0

β1
v(a)I1

∗

h (a)da− µvxv,

λy1v = S1∗

v

∫ ∞
0

β1
v(a)y1h(a)da+ xv

∫ ∞
0

β1
v(a)I1

∗

h (a)da− (µv + α1
v)y

1
v ,

λxh = −z1h(0)− µhxh,

dz1h(τ)

dτ
= −(λ+ µh +m1

h(τ))z1h(τ),

z1h(0) = β1
hS

1∗

h y
1
v + β1

hI
1∗
v xh,

dy1h(a)

da
= −(λ+ µh + α1

h(a) + r1h(a))y1h(a),

y1h(0) =

∫ ∞
0

m1
h(τ)z1h(τ)dτ.

(33)

Solving the differential equation, we have

z1h(τ) = z1h(0) e−λτπ1
1(τ),

y1h(a) = y1h(0) e−λaπ1
2(a) = z1h(0) e−λaπ1

2(a)

∫ ∞
0

m1
h(τ) e−λτπ1

1(τ)dτ.

Substituting the above expression for y1h(a) into the first and the second equations
of (33) yileds that

(λ+ µv +

∫ ∞
0

β1
v(a)I1

∗

h (a)da)xv + S1∗

v b1(λ)z1h(0) = 0,

−xv
∫ ∞
0

β1
v(a)I1

∗

h (a)da+ (λ+ µv + α1
v)y

1
v − S1∗

v b1(λ)z1h(0) = 0,

(λ+ µh)xh + z1h(0) = 0,

−β1
hI

1∗

v xh − β1
hS

1∗

h y
1
v + z1h(0) = 0.

(34)

Direct calculation yields the following characteristic equation

(λ+ µv +

∫ ∞
0

β1
v(a)I1

∗

h (a)da)(λ+ µv + α1
v)(λ+ µh + β1

hI
1∗

v )

=β1
hS

1∗

h S
1∗

v b1(λ)(λ+ µv)(λ+ µh).

(35)

Dividing both sides by (λ+ µv)(λ+ µh) gives

G5(λ) = G6(λ), (36)
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where

G5(λ) =
(λ+ µv +

∫∞
0
β1
v(a)I1

∗

h (a)da)(λ+ µv + α1
v)(λ+ µh + β1

hI
1∗

v )

(λ+ µv)(λ+ µh)
,

G6(λ) = β1
hS

1∗

h S
1∗

v b1(λ)

= β1
hS

1∗

h S
1∗

v

∫ ∞
0

m1
h(τ)e−λτπ1

1(τ)dτ

∫ ∞
0

β1
v(a)e−λaπ1

2(a)da.

(37)

If λ is a root with <λ ≥ 0, it follows from equation (37) that

|G5(λ)| > |λ+ µv + α1
v| ≥ µv + α1

v. (38)

From (29), we have

|G6(λ)| ≤ |G6(<λ)| ≤ G6(0) = β1
hS

1∗

h S
1∗

v

∫ ∞
0

m1
h(τ)π1

1(τ)dτ

∫ ∞
0

β1
v(a)π1

2(a)da

= µv + α1
v < |G5(λ)|.

(39)

This leads to a contradiction. The contradiction implies that (36) has no roots such
that <λ ≥ 0. Thus, the characteristic equation for strain one has only roots with
negative real parts. Thus, the single strain equilibrium E1 is locally asymptotically
stable if R1

0 > 1 and Ri0 < R1
0, i = 2, · · · , n. This concludes the proof.

5. Preliminary results and uniform persistence. In the previous section, we
proved that if the disease reproduction number is less than one, all strains are
eliminated and the disease dies out. Our next step is to show that the competitive
exclusion principle holds for system (2). In the later sections, we always assume
that R0 > 1. Without loss of generality, we assume that

R1
0 = max{R1

0, · · · ,Rn0} > 1.

In the following we will show that strain 1 persists while the other strains die
out if Ri0/R1

0 < bi/b1 < 1, i 6= 1, where bj denotes the probability of a given
susceptible vector being transmitted by an infected host with strain j. Hence,
the strain with the maximal reproduction number eliminates all the rest and the
competitive exclusion principle will be established for system (2).

Mathematically speaking, establishing the competitive exclusion principle means
establishing the global stability of the single-strain equilibrium E1. From Theorem
4.1 we know that if Ri0/R1

0 < 1, i 6= 1, the equilibrium E1 is locally asymptotically
stable. In the following we only need to show that E1 is a global attractor. The
method used here to show this result is similar to the one used in [1, 12, 13, 20].

Set

f(x) = x− 1− lnx.

It is easy to check that f(x) ≥ 0 for all x > 0 and f(x) reaches its global minimum
value f(1) = 0 when x = 1. Next, let us define the following Lyapunov function

U(t) = U1(t) + U1
2 (t) +

n∑
i=2

U i2(t) + U3(t) + U1
4 (t) +

n∑
i=2

U i4(t) + U1
5 (t) +

n∑
i=2

U i5(t),

(40)
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where

U1(t) =
1

q1(0)
∫∞
0
m1
h(τ)π1

1(τ)dτ
f

(
Sv
S1∗
v

)
,

U1
2 (t) =

1

S1∗
v q1(0)

∫∞
0
m1
h(τ)π1

1(τ)dτ
I1
∗

v f

(
I1v
I1∗v

)
,

U i2(t) =
1

S1∗
v q1(0)

∫∞
0
m1
h(τ)π1

1(τ)dτ
Iiv,

U3(t) = S1∗

h f

(
Sh
S1∗
h

)
,

U1
4 (t) =

1

R1
0

∫ ∞
0

p1(τ)E1∗

h (τ)f

(
E1
h(τ, t)

E1∗
h (τ)

)
dτ,

U i4(t) =
1

∆iq1(0)
∫∞
0
m1
h(τ)π1

1(τ)dτ

∫ ∞
0

pi(τ)Eih(τ, t)dτ,

U1
5 (t) =

1

q1(0)
∫∞
0
m1
h(τ)π1

1(τ)dτ

∫ ∞
0

q1(a)I1
∗

h (a)f

(
I1h(a, t)

I1
∗
h (a)

)
da.

U i5(t) =
1

q1(0)
∫∞
0
m1
h(τ)π1

1(τ)dτ

∫ ∞
0

qi(a)Iih(a, t)da,

(41)

and

qj(a) =

∫ ∞
a

βjv(s)e
−

∫ s
a
(µh+α

j
h(σ)+r

j
h(σ))dσds,

pj(τ) = ∆jqj(0)

∫ ∞
τ

mj
h(s)e−

∫ s
τ
(µh+m

j
h(σ))dσds.

(42)

Direct computation gives

pj(0) = Rj0,
and

q′j(a) = −βjv(a) + (µh + αjh(a) + rjh(a))qj(a),

p′j(τ) = −∆jqj(0)mj
h(τ) + (µh +mj

h(τ))pj(τ).
(43)

The main difficulty with the Lyapunov function U above is that the Lyapunov
function U is well defined. Thus in the following we first show that strain one
persists both in the hosts and in the vectors as the other strains die out. Let

X̂1 =

{
ϕ1 ∈ L1

+(0,∞)

∣∣∣∣∃s ≥ 0 :

∫ ∞
0

m1
h(τ + s)ϕ1(τ)dτ > 0

}
,

X̂2 =

{
ψ1 ∈ L1

+(0,∞)

∣∣∣∣∃s ≥ 0 :

∫ ∞
0

β1
v(a+ s)ψ1(a)da > 0

}
,

and define

X0 = R+ ×
n∏
j=1

R+ × R+ × X̂1 × X̂2 ×
n∏
i=2

(L1(0,∞)× L1(0,∞)),

Ω0 = Ω ∩X0.

Note that Ω0 is forward invariant. This is because (3) show that Ω is forward

invariant. To see X0 is forward invariant, we firstly demonstrate that X̂2 is forward
invariant. Let us assume that the inequality holds for the initial condition. The
inequality says that the support of β1

v(a) will intersect the support of the initial
condition if it is transferred s units to the right. Since the support of the initial
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condition only moves to the right, the intersection will take place for any other
time if that happens for the initial time. Similarly, X̂1 is also forward invariant.
Therefore, Ω0 is forward invariant.

Now let us recall two important definitions.

Definition 5.1. Strain one is called uniformly weakly persistence if there exists
some γ > 0 independent of the initial conditions such that

lim sup
t→∞

∫ ∞
0

E1
h(τ, t)dτ > γ whenever

∫ ∞
0

ϕ1(τ)dτ > 0,

lim sup
t→∞

∫ ∞
0

I1h(a, t)da > γ whenever

∫ ∞
0

ψ1(a)da > 0,

and

lim sup
t→∞

I1v (t) > γ whenever I1v0 > 0,

for all solutions of system (2).

One of the important implications of uniform weak persistence of the disease is
that the disease-free equilibrium is unstable.

Definition 5.2. Strain one is uniformly strongly persistence if there exists some
γ > 0 independent of the initial conditions such that

lim inf
t→∞

∫ ∞
0

E1
h(τ, t)dτ > γ whenever

∫ ∞
0

ϕ1(τ)dτ > 0,

lim inf
t→∞

∫ ∞
0

I1h(a, t)da > γ whenever

∫ ∞
0

ψ1(a)da > 0,

and

lim inf
t→∞

I1v (t) > γ whenever I1v0 > 0,

for all solutions of model (2).

It is evident from the definitions that, if the disease is uniformly strongly persis-
tent, it is also uniformly weakly persistent.

Now we are able to state the main results in this section.

Theorem 5.3. Assume R1
0 > 1 and Ri0 < R1

0 for i = 2, · · · , n. Furthermore,
assume that the other strains except stain 1 will die out, i.e.,

lim sup
t→+∞

Iiv(t) = 0, lim sup
t→+∞

∫ ∞
0

Eih(τ, t)dτ = 0 and lim sup
t→+∞

∫ ∞
0

Iih(a, t)da = 0,

for i = 2, · · · , n. Then strain 1 is uniformly weakly persistent for the initial condi-
tions that belong to Ω0, i.e., there exists γ > 0 such that

lim sup
t→+∞

β1
hI

1
v (t) ≥ γ, lim sup

t→+∞

∫ ∞
0

m1
h(τ)E1

h(τ, t)dτ ≥ γ, lim sup
t→+∞

∫ ∞
0

β1
v(a)I1h(a, t)da ≥ γ.

Proof. We argue by contradiction. Assume that strain 1 also dies out. For any
ε > 0 and every initial condition in Ω0 such that

lim sup
t→+∞

β1
hI

1
v (t) < ε, lim sup

t→+∞

∫ ∞
0

m1
h(τ)E1

h(τ, t)dτ < ε, lim sup
t→+∞

∫ ∞
0

β1
v(a)I1h(a, t)da < ε.

Following that there exist T > 0 such that for all t > T we have

βjhI
j
v(t) < ε,

∫ ∞
0

mj
h(τ)Ejh(τ, t)dτ < ε,

∫ ∞
0

βjv(a)Ijh(a, t)da < ε, j = 1, · · · , n.
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We may assume that the above inequality holds for all t ≥ 0 by shifting the dynam-
ical system. From the first equation in (2) we have

S′v(t) ≥ Λv − nεSv − µvSv, S′h(t) ≥ Λh − nεSh − µhSh.

Exploiting the comparison principle, we have

lim sup
t→+∞

Sv(t) ≥ lim inf
t→+∞

Sv(t) ≥
Λv

nε+ µv
, lim sup
t→+∞

Sh(t) ≥ lim inf
t→+∞

Sh(t) ≥ Λh
nε+ µh

.

Since B1
E(t) = E1

h(0, t), B1
I (t) = I1h(0, t), it then follows from system (2) that

B1
E(t) = E1

h(0, t) = β1
hShI

1
v (t) ≥ β1

h

Λh
nε+ µh

I1v (t),

dI1v (t)

dt
≥ Λv
nε+ µv

∫ ∞
0

β1
v(a)I1h(a, t)da− (µv + α1

v)I
1
v (t).

(44)

By using the equations in (7), we can easily obtain the following inequalities on
B1
E(t), B1

I (t) and I1v (t):

B1
E(t) ≥ β1

h

Λh
nε+ µh

I1v (t),

B1
I (t) =

∫ ∞
0

m1
h(τ)E1

h(τ, t)dτ ≥
∫ t

0

m1
h(τ)B1

E(t− τ)π1
1(τ)dτ,

dI1v (t)

dt
≥ Λv
nε+ µv

∫ t

0

β1
v(a)B1

I (t− a)π1
2(a)da− (µv + α1

v)I
1
v (t).

(45)

Let us take the Laplace transform of both sides of inequalities (45). Since all
functions above are bounded, the Laplace transforms of the functions exist for
λ > 0. Denote the Laplace transforms of the functions B1

E(t), B1
I (t) and I1v (t) by

B̂1
E(λ), B̂1

I (λ) and Î1v (λ), respectively. Furthermore, set

K̂1(λ) =

∫ ∞
0

m1
h(τ)π1

1(τ)e−λτdτ, K̂2(λ) =

∫ ∞
0

β1
v(a)π1

2(a)e−λada. (46)

Using the convolution property of the Laplace transform, we obtain the following
inequalities for B̂1

E(λ), B̂1
I (λ) and Î1v (λ):

B̂1
E(λ) ≥ β1

h

Λh
nε+ µh

Î1v (λ),

B̂1
I (λ) ≥ K̂1(λ)B̂1

E(λ),

λÎ1v (λ)− I1v (0) ≥ Λv
nε+ µv

K̂2(λ)B̂1
I (λ)− (µv + α1

v)Î
1
v (λ).

(47)

Eliminating B̂1
I (λ) and Î1v (λ) yields

B̂1
E(λ) ≥ β1

hΛvΛhK̂1(λ)K̂2(λ)

(nε+ µv)(nε+ µh)(λ+ µv + α1
v)
B̂1
E(λ) +

β1
hΛh

(nε+ µh)(λ+ µv + α1
v)
I1v (0).

(48)
This is impossible since

β1
hΛvΛhK̂1(0)K̂2(0)

µvµh(µv + α1
v)

:= R1
0 > 1,
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we can choose ε and λ small enough such that

β1
hΛvΛhK̂1(λ)K̂2(λ)

(nε+ µv)(nε+ µh)(λ+ µv + α1
v)
> 1.

The contradiction implies that there exists γ > 0 such that for any initial condition
in Ω0, we have

lim sup
t→+∞

β1
hI

1
v (t) ≥ γ, lim sup

t→+∞

∫ ∞
0

m1
h(τ)E1

h(τ, t)dτ ≥ γ, lim sup
t→+∞

∫ ∞
0

β1
v(a)I1h(a, t)da ≥ γ.

In addition, the equation for I1v can be rewritten in the form

dI1v
dt
≥ Λvγ

nγ + µv
− (µv + α1

v)I
1
v ,

which implies a lower bound for I1v . This concludes the proof.

Next, we claim that system (2) has a global compact attractor T. Firstly, define
the semiflow Ψ : [0,∞)× Ω0 → Ω0 generated by the solutions of system (2)

Ψ

(
t;Sv0 , I

1
v0 , · · · , I

n
v0 , Sh0

, ϕ1(·), ψ1(·), · · · , ϕn(·), ψn(·)
)

=

(
Sv(t), I

1
v (t), · · · , Inv (t), Sh(t), E1

h(τ, t), I1h(a, t), · · · , Enh (τ, t), Inh (a, t)

)
.

Definition 5.4. A set T in Ω0 is called a global compact attractor for Ψ if T is a
maximal compact invariant set and for all open sets U containing T and all bounded
sets B of Ω0 there exists some T > 0 such that Ψ(t,B) ⊆ U holds for t > T .

Theorem 5.5. Under the hypothesis of Theorem 5.3, there exists T, a compact
subset of Ω0, which is a global attractor for the semiflow Ψ on Ω0. Moreover, we
have

Ψ(t, x0) ⊆ T for every x0 ∈ T, ∀t ≥ 0.

Proof. We split the solution semiflow into two components. For an initial condition
x0 ∈ Ω0, let Ψ(t, x0) = Ψ̂(t, x0) + Ψ̃(t, x0), where

Ψ̂

(
t;Sv0 , I

1
v0 , · · · , I

n
v0 , Sh0

, ϕ1(·), ψ1(·), · · · , ϕn(·), ψn(·)
)

=

(
0, 0, · · · , 0, 0, Ê1

h(τ, t), Î1h(a, t), · · · , Ênh (τ, t), Înh (a, t)

)
,

(49)

Ψ̃

(
t;Sv0 , I

1
v0 , · · · , I

n
v0 , Sh0

, ϕ1(·), ψ1(·), · · · , ϕn(·), ψn(·)
)

=

(
Sv(t), I

1
v (t), · · · , Inv (t), Sh(t), Ẽ1

h(τ, t), Ĩ1h(a, t), · · · , Ẽnh (τ, t), Ĩnh (a, t)

)
,

(50)

and Ejh(τ, t) = Êjh(τ, t) + Ẽjh(τ, t), Ijh(a, t) = Îjh(a, t) + Ĩjh(a, t) for j = 1, · · · , n.

Êjh(τ, t), Îjh(a, t), Ẽjh(τ, t), Ĩjh(a, t) are the solutions of the following equations
∂Êjh
∂t

+
∂Êjh
∂τ

= −(µh +mj
h(τ))Êjh(τ, t),

Êjh(0, t) = 0,

Êjh(τ, 0) = ϕj(τ),

(51)
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∂Îjh
∂t

+
∂Îjh
∂a

= −(µh + αjh(a) + rjh(a))Îjh(a, t),

Îjh(0, t) = 0,

Îjh(a, 0) = ψj(a),

(52)

and 
∂Ẽjh
∂t

+
∂Ẽjh
∂τ

= −(µh +mj
h(τ))Ẽjh(τ, t),

Ẽjh(0, t) = βjhShI
j
v ,

Ẽjh(τ, 0) = 0,

(53)



∂Ĩjh
∂t

+
∂Ĩjh
∂a

= −(µh + αjh(a) + rjh(a))Ĩjh(a, t),

Ĩjh(0, t) =

∫ ∞
0

mj
h(τ)Ẽjh(τ, t)dτ,

Ĩjh(a, 0) = 0.

(54)

We can easily see that system (51) and (52) are decoupled from the remaining
equations. Using the formula (7) to integrate along the characteristic lines, we
obtain

Êjh(τ, t) =


0, t > τ,

ϕj(τ − t)
πj1(τ)

πj1(τ − t)
, t < τ,

(55)

Îjh(a, t) =


0, t > a,

ψj(a− t)
πj2(a)

πj2(a− t)
, t < a.

(56)

Integrating Êjh with respect to τ yields∫ ∞
t

ϕj(τ − t)
πj1(τ)

πj1(τ − t)
dτ =

∫ ∞
0

ϕj(τ)
πj1(t+ τ)

πj1(τ)
dτ ≤ e−µht

∫ ∞
0

ϕj(τ)dτ → 0

as t→∞. Integrating Îjh with respect to a, we have∫ ∞
t

ψj(a− t)
πj2(a)

πj2(a− t)
da =

∫ ∞
0

ψj(a)
πj2(t+ a)

πj2(a)
da ≤ e−µht

∫ ∞
0

ψj(a)da→ 0

as t → ∞. This implies that Ψ̂(t, x0) → 0 as t → ∞ uniformly for every x0 ∈ B ⊆
Ω0, where B is a ball of a given radius.

In the following we need to show Ψ̃(t, x) is completely continuous. We fix t and
let x0 ∈ Ω0. Note that Ω0 is bounded. We have to show that the family of functions
defined by

Ψ̃(t, x0) =

(
Sv(t), I

1
v (t), · · · , Inv (t), Sh(t), Ẽ1

h(τ, t), Ĩ1h(a, t), · · · , Ẽnh (τ, t), Ĩnh (a, t)

)
is a compact family of functions for that fixed t, which are obtained by taking
different initial conditions in Ω0. The family

{Ψ̃(t, x0)|x0 ∈ Ω0, t− fixed} ⊆ Ω0,
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and, therefore, it is bounded. Thus, we have established the boundedness of
the set. To show that Ψ̃(t, x) is precompact, we first see the third condition of

limt→∞
∫∞
t
Ẽjh(τ, t)dτ = 0 and limt→∞

∫∞
t
Ĩjh(a, t)da = 0 in the Frechet-Kolmogorov

Theorem of [21]. The third condition in [21] is trivially satisfied since Ẽjh(τ, t) = 0

for τ > t and Ĩjh(a, t) = 0 for a > t. To use the second condition of the Frechet-
Kolmogorov Theorem in [21], we must bound by two constants the L1-norms of

∂Ejh/∂τ and ∂Ijh/∂a. Notice that

Ẽjh(τ, t) =


B̃jE(t− τ)πj1(τ), t > τ,

0, t < τ,

Ĩjh(a, t) =

 B̃jI (t− a)πj2(a), t > a,

0, t < a,

(57)

where

B̃jE(t) = βjhSh(t)Ijv(t),

B̃jI (t) =

∫ ∞
0

mj
h(τ)Ẽjh(τ, t)dτ =

∫ t

0

mj
h(τ)B̃jE(t− τ)πj1(τ)dτ.

(58)

B̃jE(t) is bounded because of the boundedness of Sh and Ijv . Hence, the B̃jE(t)
satisfies

B̃jE(t) ≤ k1.
Therefore, we obtain

B̃jI (t) =

∫ t

0

mj
h(τ)B̃jE(t− τ)πj1(τ)dτ

≤ k2
∫ t

0

B̃jE(t− τ)dτ = k2

∫ t

0

B̃jE(τ)dτ

≤ k1k2t.
Next, we differentiate (57) with respect to τ and a:∣∣∣∣∂Ẽjh(τ, t)

∂τ

∣∣∣∣ ≤
 |(B̃

j
E(t− τ))′|πj1(τ) + B̃jE(t− τ)|(πj1(τ))′|, t > τ,

0, t < τ,∣∣∣∣∂Ĩjh(a, t)

∂a

∣∣∣∣ ≤
 |(B̃

j
I (t− a))′|πj2(a) + B̃jI (t− a)|(πj2(a))′|, t > a,

0, t < a.

We see that |(B̃jE(t − τ))′|, |(B̃jI (t − a))′| are bounded. Differentiating (58), we
obtain

(B̃jE(t))′ = βjh

(
S′h(t)Ijv(t) + Sh(t)(Ijv(t))′

)
,

(B̃jI (t))
′ = mj

h(t)B̃jE(0)πj1(t) +

∫ t

0

mj
h(τ)(B̃jE(t− τ))′πj1(τ)dτ.

(59)

Taking an absolute value and bounding all terms, we can rewrite the above equality
as the following inequality:

|(B̃jE(t))′| ≤ k3, |(B̃jI (t))
′| ≤ k4.
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Putting all these bounds together, we have

‖ ∂τ Ẽjh ‖ ≤ k3
∫ ∞
0

πj1(τ)dτ + k1(µh + m̄h)

∫ ∞
0

πj1(τ)dτ < b1,

‖ ∂aĨjh ‖ ≤ k4
∫ ∞
0

πj2(a)da+ k1k2(µh + ᾱh + r̄h)t

∫ ∞
0

πj2(a)da < b2,

where m̄h = supτ,j{m
j
h(τ)}, ᾱh = supa,j{α

j
h(a)}, r̄h = supa,j{r

j
h(a)}. To complete

the proof, we notice that∫ ∞
0

|Ẽjh(τ + h, t)− Ẽjh(τ, t)|dτ ≤‖ ∂τ Ẽjh ‖ |h| ≤ b1|h|,∫ ∞
0

|Ĩjh(a+ h, t)− Ĩjh(a, t)|da ≤‖ ∂aĨjh ‖ |h| ≤ b2|h|.

Thus, the integral can be made arbitrary small uniformly in the family of functions.
That establishes the second condition of the Frechet-Kolmogorov Theorem. We
conclude that the family is asymptotically smooth.

(3) means that the semigroup Ψ(t) is point dissipative and the forward orbit of
boundedness sets is bounded in Ω0. Thus, we prove Theorem 5.5 in accordance
with Lemma 3.1.3 and Theorem 3.4.6 in [8].

Now we have all components to establish the uniform strong persistence. The
next proposition states the uniform strong persistence of I1v , E

1
h and I1h.

Theorem 5.6. Under the hypothesis of Theorem 5.3 strain one is uniformly strongly
persistent for all initial conditions that belong to Ω0, that is, there exists γ > 0 such
that

lim inf
t→+∞

β1
hI

1
v (t) ≥ γ, lim inf

t→+∞

∫ ∞
0

m1
h(τ)E1

h(τ, t)dτ ≥ γ, lim inf
t→+∞

∫ ∞
0

β1
v(a)I1h(a, t)da ≥ γ.

Proof. We apply Theorem 2.6 in [19]. We consider the solution semiflow Ψ on Ω0.
Let us define three functionals ρl : Ω0 →R+, l = 1, 2, 3 as follows:

ρ1(Ψ(t, x0)) = β1
hI

1
v (t),

ρ2(Ψ(t, x0)) =

∫ ∞
0

m1
h(τ)Ẽ1

h(τ, t)dτ,

ρ3(Ψ(t, x0)) =

∫ ∞
0

β1
v(a)Ĩ1h(a, t)da.

Theorem 5.3 implies that the semiflow is uniformly weakly ρ-persistent. Theorem
5.5 shows that the solution semiflow has a global compact attractor T. Total orbits
are solutions to the system (2) defined for all times t ∈ R. Since the solution
semiflow is nonnegative, we have

β1
hI

1
v (t) = β1

hI
1
v (s)e−(µv+α

1
v)(t−s),∫ ∞

0

m1
h(τ)Ẽ1

h(τ, t)dτ = B̃1
I (t) =

∫ t

0

m1
h(τ)B̃1

E(t− τ)π1
1(τ)dτ

≥ k1
∫ t

0

B̃1
E(t− τ)dτ = k1

∫ t

0

B̃1
E(τ)dτ

= k1
∫ t

0

β1
hSh(τ)I1v (τ)dτ ≥ k2

∫ t

0

I1v (τ)dτ
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= k2
∫ t

0

I1v (s)e−(µv+α
1
v)(τ−s)dτ

=
k2I1v (s)

µv + α1
v

e(µv+α
1
v)s(1− e−(µv+α

1
v)t),∫ ∞

0

β1
v(a)Ĩ1h(a, t)da =

∫ t

0

β1
v(a)B̃1

I (t− a)π1
2(a)da ≥ k3

∫ t

0

B̃1
I (t− a)da

= k3
∫ t

0

B̃1
I (a)da

≥ k2k3I1v (s)

µv + α1
v

e(µv+α
1
v)s

∫ t

0

(1− e−(µv+α
1
v)a)da,

for any s and any t > s. Therefore,

β1
hI

1
v (t) > 0,

∫ ∞
0

m1
h(τ)Ẽ1

h(τ, t)dτ > 0,

∫ ∞
0

β1
v(a)Ĩ1h(a, t)da > 0

for all t > s provided Ĩ1v (s) > 0. Theorem 2.6 in [19] now implies that the semiflow
is uniformly strongly ρ-persistent. Hence, there exists γ such that

lim inf
t→+∞

β1
hI

1
v (t) ≥ γ, lim inf

t→+∞

∫ ∞
0

m1
h(τ)E1

h(τ, t)dτ ≥ γ, lim inf
t→+∞

∫ ∞
0

β1
v(a)I1h(a, t)da ≥ γ.

According to Theorem 5.6, we obtain that for all initial conditions that belong
to Ω0, strain 1 persists. Furthermore we had verified that the solutions of (2) with
nonnegative initial conditions belong to the positive cone for all t ≥ 0. All the
solutions are in a positively invariant set. Therefore we can obtain the following
Theorem 5.7 from Theorem 5.6.

Theorem 5.7. Under the hypothesis of Theorem 5.3, ∀t ∈ R, there exists constants
ϑ > 0 and M > 0 such that

ϑ ≤ Sv(t) ≤M, ϑ ≤ Sh(t) ≤M,

and

ϑ ≤ β1
hI

1
v (t) ≤M, ϑ ≤

∫ ∞
0

m1
h(τ)E1

h(τ, t)dτ ≤M, ϑ ≤
∫ ∞
0

β1
v(a)I1h(a, t)da ≤M,

for each orbit (Sv(t), I
1
v (t), · · · , Inv (t), Sh(t), E1

h(τ, t), I1h(a, t), · · · , Enh (τ, t), Inh (a, t))
of Ψ in T.

6. Principle of competitive exclusion. In this section we mainly state the main
result of the paper.

Theorem 6.1. Assume R1
0 > 1,Ri0/R1

0 < bi/b1 < 1, i = 2, · · · , n. Then the
equilibrium E1 is globally asymptotically stable.

Proof. From Theorem 4.1 we know that the endemic equilibrium E1 is locally asymp-
totically stable. In the following we only need to show that the endemic equilibrium
E1 is global attractor. From Theorem 5.5 there exists an invariant compact set T
which is global attractor of system (2). Furthermore, it follows from Theorem 5.7
that there exist ε1 > 0 and M1 > 0 such that

ε1 ≤
I1v
I1∗v
≤M1, ε1 ≤

E1
h(τ, t)

E1∗
h (τ)

≤M1, ε1 ≤
I1h(a, t)

I1
∗
h (a)

≤M1
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for any solution in Ψ. This makes the Lyapunov function defined in (40) well
defined.

After extensive computation, differentiating U(t) along the solution of system
(2) yields that

dU1(t)

dt

=
1

S1∗
v q1(0)

∫∞
0
m1
h(τ)π1

1(τ)dτ

(
1− S1∗

v

Sv

)[
S1∗

v

∫ ∞
0

β1
v(a)I1

∗

h (a)da+ µvS
1∗

v

− Sv
∫ ∞
0

β1
v(a)I1h(a, t)da− µvSv −

n∑
i=2

Sv

∫ ∞
0

βiv(a)Iih(a, t)da

]

=− µv(Sv − S1∗

v )2

S1∗
v Svq1(0)

∫∞
0
m1
h(τ)π1

1(τ)dτ

+
1

q1(0)
∫∞
0
m1
h(τ)π1

1(τ)dτ

∫ ∞
0

β1
v(a)I1

∗

h (a)

(
1− S1∗

v

Sv
− SvI

1
h(a, t)

S1∗
v I

1∗
h (a)

+
I1h(a, t)

I1
∗
h (a)

)
da

−
n∑
i=2

Sv
∫∞
0
βiv(a)Iih(a, t)da− S1∗

v

∫∞
0
βiv(a)Iih(a, t)da

S1∗
v q1(0)

∫∞
0
m1
h(τ)π1

1(τ)dτ
;

(60)

dU1
2 (t)

dt

=

(1− I1
∗
v

I1v
)

(
Sv
∫∞
0
β1
v(a)I1h(a, t)da− S1∗

v

∫∞
0
β1
v(a)I

1∗
h (a)da

I1∗v
I1v

)
S1∗
v q1(0)

∫∞
0
m1
h(τ)π1

1(τ)dτ

=

(1− I1
∗
v

I1v
)S1∗

v

∫∞
0
β1
v(a)I1

∗

h (a)

(
SvI

1
h(a,t)

S1∗
v I1

∗
h (a)

− I1v
I1∗v

)
da

S1∗
v q1(0)

∫∞
0
m1
h(τ)π1

1(τ)dτ

=

∫∞
0
β1
v(a)I1

∗

h (a)

(
SvI

1
h(a,t)

S1∗
v I1

∗
h (a)

− I1v
I1∗v
− SvI

1
h(a,t)I

1∗
v

S1∗
v I1

∗
h (a)I1v

+ 1

)
da

q1(0)
∫∞
0
m1
h(τ)π1

1(τ)dτ
;

(61)

dU i2(t)

dt
=
Sv
∫∞
0
βiv(a)Iih(a, t)da− (µv + αiv)I

i
v

S1∗
v q1(0)

∫∞
0
m1
h(τ)π1

1(τ)dτ
; (62)

dU3(t)

dt
=

(
1− S1∗

h

Sh

)(
E1∗

h (0) + µhS
1∗

h − E1
h(0, t)− µhSh −

n∑
i=2

βihShI
i
v

)
= −µh(Sh − S1∗

h )2

Sh
+

(
E1∗

h (0)− E1
h(0, t)− S1∗

h

Sh
E1∗

h (0) +
S1∗

h

Sh
E1
h(0, t)

)
−

n∑
i=2

(
Eih(0, t)− βihS1∗

h I
i
v

)
,

(63)
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and

dU1
4 (t)

dt

=
1

R1
0

∫ ∞
0

p1(τ)E1∗
h (τ)f ′

(
E1
h(τ, t)

E1∗
h (τ)

)
1

E1∗
h (τ)

∂E1
h(τ, t)

∂t
dτ

= − 1

R1
0

∫ ∞
0

p1(τ)E1∗
h (τ)f ′

(
E1
h(τ, t)

E1∗
h (τ)

)
1

E1∗
h (τ)

(
∂E1

h(τ, t)

∂τ
+ (µh +m1

h(τ))E1
h(τ, t)

)
dτ

= − 1

R1
0

∫ ∞
0

p1(τ)E1∗
h (τ)df

(
E1
h(τ, t)

E1∗
h (τ)

)
= − 1

R1
0

[
p1(τ)E1∗

h (τ)f

(
E1
h(τ, t)

E1∗
h (τ)

)∣∣∣∣∞
0

−
∫ ∞
0

f

(
E1
h(τ, t)

E1∗
h (τ)

)
d

(
p1(τ)E1∗

h (τ)

)]
=

1

R1
0

[
p1(0)E1∗

h (0)f

(
E1
h(0, t)

E1∗
h (0)

)
−∆1q1(0)

∫ ∞
0

m1
h(τ)E1∗

h (τ)f

(
E1
h(τ, t)

E1∗
h (τ)

)
dτ

]

= E1∗
h (0)f

(
E1
h(0, t)

E1∗
h (0)

)
−

∫∞
0
m1
h(τ)E1∗

h (τ)f(
E1
h(τ,t)

E1∗
h

(τ)
)dτ∫∞

0
m1
h(τ)π1

1(τ)dτ

= E1
h(0, t)− E1∗

h (0)− E1∗
h (0) ln

E1
h(0, t)

E1∗
h (0)

−

∫∞
0
m1
h(τ)E1∗

h (τ)f(
E1
h(τ,t)

E1∗
h

(τ)
)dτ∫∞

0
m1
h(τ)π1

1(τ)dτ
.

(64)

The above equality follows from (24) and the fact

p′1(τ)E1∗

h (τ) + p1(τ)(E1∗

h (τ))′

=

[
−∆1q1(0)m1

h(τ) + (µh +m1
h(τ))p1(τ)

]
E1∗

h (τ)− p1(τ)(µh +m1
h(τ))E1∗

h (τ)

= −∆1q1(0)m1
h(τ)E1∗

h (τ).

We also have

q′1(a)I1
∗
h (a) + q1(a)(I1

∗
h (a))′

=

[
− β1

v(a) + (µh + α1
h(a) + r1h(a))q1(a)

]
I1
∗
h (a)− q1(a)(µh + α1

h(a) + r1h(a))I1
∗
h (a)

= −β1
v(a)I1

∗
h (a).

Similar to the differentiation of U1
4 (t), we have

dU1
5 (t)

dt

=
1

q1(0)
∫∞
0
m1
h(τ)π1

1(τ)dτ

∫ ∞
0

q1(a)I1
∗

h (a)f ′
(
I1h(a, t)

I1
∗
h (a)

)
1

I1
∗
h (a)

∂I1h(a, t)

∂t
da

=
1

q1(0)
∫∞
0
m1
h(τ)π1

1(τ)dτ

∫ ∞
0

q1(a)I1
∗

h (a)df

(
I1h(a, t)

I1
∗
h (a)

)

=
q1(0)I1

∗

h (0)f(
I1h(0,t)

I1
∗
h (0)

)−
∫∞
0
β1
v(a)I1

∗

h (a)f(
I1h(a,t)

I1
∗
h (a)

)da

q1(0)
∫∞
0
m1
h(τ)π1

1(τ)dτ

=

∫∞
0
m1
h(τ)E1∗

h (τ)(
I1h(0,t)

I1
∗
h (0)

− 1− ln
I1h(0,t)

I1
∗
h (0)

)dτ∫∞
0
m1
h(τ)π1

1(τ)dτ
−

∫∞
0
β1
v(a)I1

∗

h (a)f(
I1h(a,t)

I1
∗
h (a)

)da

q1(0)
∫∞
0
m1
h(τ)π1

1(τ)dτ
.

(65)
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Noting that (43), we differentiate the last two terms with respect to t, and have

dU i4(t)

dt

=
1

∆iq1(0)
∫∞
0
m1
h(τ)π1

1(τ)dτ

∫ ∞
0

pi(τ)
∂Eih(τ, t)

∂t
dτ

= − 1

∆iq1(0)
∫∞
0
m1
h(τ)π1

1(τ)dτ

∫ ∞
0

pi(τ)

[
∂Eih(τ, t)

∂τ
+ (µh +mi

h(τ))Eih(τ, t)

]
dτ

= −
∫∞
0
pi(τ)dEih(τ, t) +

∫∞
0

(µh +mi
h(τ))pi(τ)Eih(τ, t)dτ

∆iq1(0)
∫∞
0
m1
h(τ)π1

1(τ)dτ

= −
pi(τ)Eih(τ, t)|∞0 −

∫∞
0
Eih(τ, t)dpi(τ) +

∫∞
0

(µh +mi
h(τ))pi(τ)Eih(τ, t)dτ

∆iq1(0)
∫∞
0
m1
h(τ)π1

1(τ)dτ

=
pi(0)Eih(0, t)−∆iqi(0)

∫∞
0
mi
h(τ)Eih(τ, t)dτ

∆iq1(0)
∫∞
0
m1
h(τ)π1

1(τ)dτ

=
Ri0Eih(0, t)

∆iq1(0)
∫∞
0
m1
h(τ)π1

1(τ)dτ
− qi(0)Iih(0, t)

q1(0)
∫∞
0
m1
h(τ)π1

1(τ)dτ

=
bi
b1
Eih(0, t)− qi(0)Iih(0, t)

q1(0)
∫∞
0
m1
h(τ)π1

1(τ)dτ
.

(66)
Similarly, we have

dU i5(t)

dt

= −

∫∞
0
qi(a)

[
∂Iih(a,t)
∂a + (µh + αih(a) + rih(a))Iih(a, t)

]
da

q1(0)
∫∞
0
m1
h(τ)π1

1(τ)dτ

=
qi(0)Iih(0, t)

q1(0)
∫∞
0
m1
h(τ)π1

1(τ)dτ
−

∫∞
0
βiv(a)Iih(a, t)da

q1(0)
∫∞
0
m1
h(τ)π1

1(τ)dτ
.

(67)

Adding all five components of the Lyapunov function, we have

U ′(t) = U1 + U2,

where

U1(t)

= − µv(Sv − S1∗

v )2

S1∗
v Svq1(0)

∫∞
0
m1
h(τ)π1

1(τ)dτ

+

∫∞
0
β1
v(a)I1

∗

h (a)

(
1− S1∗

v

Sv
− SvI

1
h(a,t)

S1∗
v I1

∗
h (a)

+
I1h(a,t)

I1
∗
h (a)

)
da

q1(0)
∫∞
0
m1
h(τ)π1

1(τ)dτ

+

∫∞
0
β1
v(a)I1

∗

h (a)

(
SvI

1
h(a,t)

S1∗
v I1

∗
h (a)

− I1v
I1∗v
− SvI

1
h(a,t)I

1∗
v

S1∗
v I1

∗
h (a)I1v

+ 1

)
da

q1(0)
∫∞
0
m1
h(τ)π1

1(τ)dτ

−µh(Sh − S1∗

h )2

Sh
+

(
E1∗

h (0)− E1
h(0, t)− S1∗

h

Sh
E1∗

h (0) +
S1∗

h

Sh
E1
h(0, t)

)
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+E1
h(0, t)− E1∗

h (0)− E1∗

h (0) ln
E1
h(0, t)

E1∗
h (0)

−

∫∞
0
m1
h(τ)E1∗

h (τ)f(
E1
h(τ,t)

E1∗
h (τ)

)dτ∫∞
0
m1
h(τ)π1

1(τ)dτ

+

∫∞
0
m1
h(τ)E1∗

h (τ)(
I1h(0,t)

I1
∗
h (0)

− 1− ln
I1h(0,t)

I1
∗
h (0)

)dτ∫∞
0
m1
h(τ)π1

1(τ)dτ
−

∫∞
0
β1
v(a)I1

∗

h (a)f(
I1h(a,t)

I1
∗
h (a)

)da

q1(0)
∫∞
0
m1
h(τ)π1

1(τ)dτ
,

(68)
and

U2(t)

= −
n∑
i=2

Sv
∫∞
0
βiv(a)Iih(a, t)da− S1∗

v

∫∞
0
βiv(a)Iih(a, t)da

S1∗
v q1(0)

∫∞
0
m1
h(τ)π1

1(τ)dτ

+

n∑
i=2

Sv
∫∞
0
βiv(a)Iih(a, t)da− (µv + αiv)I

i
v

S1∗
v q1(0)

∫∞
0
m1
h(τ)π1

1(τ)dτ
−

n∑
i=2

(
Eih(0, t)− βihS1∗

h I
i
v

)
+

n∑
i=2

(
bi
b1
Eih(0, t)− qi(0)Iih(0, t)

q1(0)
∫∞
0
m1
h(τ)π1

1(τ)dτ

)
+

n∑
i=2

(
qi(0)Iih(0, t)

q1(0)
∫∞
0
m1
h(τ)π1

1(τ)dτ
−

∫∞
0
βiv(a)Iih(a, t)da

q1(0)
∫∞
0
m1
h(τ)π1

1(τ)dτ

)
.

(69)
Canceling terms, (68) can be simplified as

U1(t)

= − µv(Sv − S1∗

v )2

S1∗
v Svq1(0)

∫∞
0
m1
h(τ)π1

1(τ)dτ
− µh(Sh − S1∗

h )2

Sh

+

∫∞
0
β1
v(a)I1

∗

h (a)(3− S1∗
v

Sv
− I1v

I1∗v
− SvI

1
h(a,t)I

1∗
v

S1∗
v I1

∗
h (a)I1v

+ ln
I1h(a,t)

I1
∗
h (a)

)da

q1(0)
∫∞
0
m1
h(τ)π1

1(τ)dτ

+E1∗

h (0)

(
− S1∗

h

Sh
+
S1∗

h E
1
h(0, t)

ShE1∗
h (0)

− ln
E1
h(0, t)

E1∗
h (0)

)

+

∫∞
0
m1
h(τ)E1∗

h (τ)(
I1h(0,t)

I1
∗
h (0)

− E1
h(τ,t)

E1∗
h (τ)

+ ln
E1
h(τ,t)

E1∗
h (τ)

I1
∗
h (0)

I1h(0,t)
)dτ∫∞

0
m1
h(τ)π1

1(τ)dτ
.

(70)

Direct computation yields that∫ ∞
0

m1
h(τ)E1∗

h (τ)

(
I1h(0, t)

I1
∗
h (0)

− E1
h(τ, t)

E1∗
h (τ)

)
dτ

=
I1h(0, t)

I1
∗
h (0)

∫ ∞
0

m1
h(τ)E1∗

h (τ)dτ −
∫ ∞
0

m1
h(τ)E1

h(τ, t)dτ

=
I1h(0, t)

I1
∗
h (0)

I1
∗

h (0)− I1h(0, t) = 0,∫ ∞
0

m1
h(τ)E1∗

h (τ)

(
E1
h(τ, t)

E1∗
h (τ)

I1
∗

h (0)

I1h(0, t)
− 1

)
=

I1
∗

h (0)

I1h(0, t)

∫ ∞
0

m1
h(τ)E1

h(τ, t)dτ −
∫ ∞
0

m1
h(τ)E1∗

h (τ)dτ

=
I1
∗

h (0)

I1h(0, t)
I1h(0, t)− I1

∗

h (0) = 0.

(71)
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By using (71), (70) can be simplified as

U1(t) = − µv(Sv − S1∗

v )2

S1∗
v Svq1(0)

∫∞
0
m1
h(τ)π1

1(τ)dτ
− µh(Sh − S1∗

h )2

Sh

−

∫∞
0
β1
v(a)I1

∗

h (a)[f(
S1∗
v

Sv
) + f(

I1v
I1∗v

) + f(
SvI

1
h(a,t)I

1∗
v

S1∗
v I1

∗
h (a)I1v

)]da

q1(0)
∫∞
0
m1
h(τ)π1

1(τ)dτ

− 1∫∞
0
m1
h(τ)π1

1(τ)dτ

∫ ∞
0

m1
h(τ)E1∗

h (τ)f

(
E1
h(τ, t)I1

∗

h (0)

E1∗
h (τ)I1h(0, t)

)
dτ

+E1∗

h (0)

[
− f

(
S1∗

h

Sh

)
+ f

(
S1∗

h E
1
h(0, t)

ShE1∗
h (0)

)]
.

(72)

Noting that E1
h(0, t) = β1

hShI
1
v , E

1∗

h (0) = β1
hS

1∗

h I
1∗

v , we get

S1∗

h E
1
h(0, t)

ShE1∗
h (0)

=
S1∗

h β
1
hShI

1
v

Shβ1
hS

1∗
h I

1∗
v

=
I1v
I1∗v

. (73)

Furthermore, from (25) and (42) we have∫∞
0
β1
v(a)I1

∗

h (a)f(
I1v
I1∗v

)da

q1(0)
∫∞
0
m1
h(τ)π1

1(τ)dτ
=

∫∞
0
β1
v(a)I1

∗

h (a)da

q1(0)
∫∞
0
m1
h(τ)π1

1(τ)dτ
f(

I1v
I1∗v

)

=
I1
∗

h (0)∫∞
0
m1
h(τ)π1

1(τ)dτ
f(

I1v
I1∗v

)

= E1∗

h (0)f(
I1v
I1∗v

).

(74)

Finally, simplifying (72) with (73) and (74), we obtain

U1(t) = − µv(Sv − S1∗

v )2

S1∗
v Svq1(0)

∫∞
0
m1
h(τ)π1

1(τ)dτ
− µh(Sh − S1∗

h )2

Sh

−

∫∞
0
β1
v(a)I1

∗

h (a)[f(
S1∗
v

Sv
) + f(

SvI
1
h(a,t)I

1∗
v

S1∗
v I1

∗
h (a)I1v

)]da

q1(0)
∫∞
0
m1
h(τ)π1

1(τ)dτ

−

∫∞
0
m1
h(τ)E1∗

h (τ)f

(
E1
h(τ,t)I

1∗
h (0)

E1∗
h (τ)I1h(0,t)

)
dτ∫∞

0
m1
h(τ)π1

1(τ)dτ
− E1∗

h (0)f

(
S1∗

h

Sh

)
.

(75)

Canceling terms, (69) can be simplified as

U2(t)

=

n∑
i=2

[(
bi
b1
− 1

)
Eih(0, t) +

(
βihS

1∗

h −
µv + αiv

S1∗
v q1(0)

∫∞
0
m1
h(τ)π1

1(τ)dτ

)
Iiv

]
.

(76)

Simplifying (76) with (25), we get

U2(t) =

n∑
i=2

[(
bi
b1
− 1

)
Eih(0, t) +

βihΛh(µv + Λhb1)

µh(µvR1
0 + Λhb1)

(
1− R

1
0bi
Ri0b1

)
Iiv

]
. (77)
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Hence, by using (75) and (77) we obtain

U ′(t) = − µv(Sv − S1∗

v )2

S1∗
v Svq1(0)

∫∞
0
m1
h(τ)π1

1(τ)dτ
− µh(Sh − S1∗

h )2

Sh

−

∫∞
0
β1
v(a)I1

∗

h (a)[f(
S1∗
v

Sv
) + f(

SvI
1
h(a,t)I

1∗
v

S1∗
v I1

∗
h (a)I1v

)]da

q1(0)
∫∞
0
m1
h(τ)π1

1(τ)dτ

−

∫∞
0
m1
h(τ)E1∗

h (τ)f

(
E1
h(τ,t)I

1∗
h (0)

E1∗
h (τ)I1h(0,t)

)
dτ∫∞

0
m1
h(τ)π1

1(τ)dτ
− E1∗

h (0)f

(
S1∗

h

Sh

)
+

n∑
i=2

[(
bi
b1
− 1

)
Eih(0, t) +

βihΛh(µv + Λhb1)

µh(µvR1
0 + Λhb1)

(
1− R

1
0bi
Ri0b1

)
Iiv

]
.

(78)

Since f(x) ≥ 0 for x > 0, Ri0/R1
0 < bi/b1 < 1, i 6= 1 we have U ′ ≤ 0. Define,

Θ2 =

{
(Sv, I

1
v , · · · , Inv , Sh, E1

h, I
1
h, · · · , Enh , Inh ) ∈ Ω0

∣∣∣∣U ′(t) = 0

}
.

We want to show that the largest invariant set in Θ2 is the singleton E1. First, we
notice that equality in (78) occurs if and only if Sv(t) = S1∗

v , Sh(t) = S1∗

h , E
i
h(0, t) =

0, Iiv = 0, and

I1h(a, t)I1
∗

v

I1
∗
h (a)I1v

= 1,
E1
h(τ, t)I1

∗

h (0)

E1∗
h (τ)I1h(0, t)

= 1. (79)

Thus, we obtain
I1h(a, t)

I1
∗
h (a)

=
I1v (t)

I1∗v
. (80)

It is obvious that the left term
I1h(a,t)

I1
∗
h (a)

of (80) is a function with a, t, while the right

term
I1v(t)

I1∗v
is a function with t. So we can assume that I1h(a, t) = I1

∗

h (a)g(t). Thus

we have

I1v = I1
∗

v g(t). (81)

It follows from (2) we can also obtain

I1
′

v (t) = Sv

∫ ∞
0

β1
v(a)I1h(a, t)da− (µv + α1

v)I
1
v ,

= S1∗

v

∫ ∞
0

β1
v(a)I1

∗

h (a)g(t)da− (µv + α1
v)I

1
v ,

= g(t)S1∗

v

∫ ∞
0

β1
v(a)I1

∗

h (a)da− (µv + α1
v)I

1
v ,

= g(t)(µv + α1
v)I

1∗

v − (µv + α1
v)I

1
v ,

= (µv + α1
v)(I

1∗

v g(t)− I1v ) = 0.

(82)

Therefore, we can get

I1v = I1
∗

v .

Subsequently, it follows from (80) we have

I1h(a, t) = I1
∗

h (a).

Specially, when a = 0, we have I1h(0, t) = I1
∗

h (0). Thus from (79) we get

E1
h(τ, t) = E1∗

h (τ).
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Since Eih(0, t) = 0, then Eih(τ, t) = Eih(0, t − τ)πi1(τ) = 0 for t > τ, i = 2, · · · , n.
Similarly, we also have Iih(0, t) =

∫∞
0
mi
h(τ)Eih(τ, t)dτ = 0, Iih(a, t) = Iih(0, t −

a)πi2(a) = 0 for t > a. At last we conclude that the largest invariant set in Θ2 is the
singleton E1. Since Ψ(t)Ω+

0 ⊂ Ω+
0 , the global attractor, T, is actually contained in

Ω+
0 . Furthermore, the interior global attractor T is invariant. By using the above

result, we show that the compact global attractor T = {E1}. This completes the
proof of Theorem 6.1.

7. Discussion. In this paper, we formulate a multi-strain partial differential equa-
tion (PDE) model describing the transmission dynamics of a vector-borne disease
that incorporates both incubation age of the exposed hosts and infection age of
the infectious hosts, respectively. The formulas for the reproduction number Rj0 of
strain j, j = 1, · · · , n are obtained from the biological meanings of models. And we
define the basic number of the disease as the maximum of the reproduction numbers
of each strain. We show that if R0 < 1, the disease-free equilibrium is locally and
globally asymptotically stable. That means the disease dies out and the number
of infected with each strain goes to zero. If R0 > 1, without loss of generality,
assuming R1

0 = max{R1
0, · · · ,Rn0} > 1, we show that the single-strain equilibrium

E1 corresponding to strain one exists. The single-strain equilibrium E1 is locally
asymptotically stable when R1

0 > 1 and Ri0 < R1
0, i = 2, · · · , n.

The main purpose in this article is to extend the competitive exclusion result
established by Bremermann and Thieme in [2], who using a multiple-strain ODE
model derives that if multiple strains circulate in the population only the strain with
the largest reproduction number persists, the strains with suboptimal reproduction
numbers are eliminated. The proof of the competitive exclusion principle is based
on the proof of the global stability of the single-strain equilibrium E1. We approach
the result by using a Lyapunov function under a stronger condition that

Ri0
R1

0

<
bi
b1
< 1, i 6= 1. (83)

Our results do not include the case of

max{R1
0, · · · ,Rn0} = R1

0 = R2
0 = · · · = Rm0 > 1, m ≤ n, m ≥ 2.

According to Proposition 3.3 in [16], where the authors proved and simulated by
data that if there is no mutation between two strains and if the basic reproduction
numbers corresponding to the two strains are the same, then for the two strain epi-
demic model there exist many coexistence equilibria, we guess that the coexistence
of multi-strains may occur and it is impossible for competitive exclusion in this case.

From the expression (6) of the basic reproduction number Rj0 corresponding to
strain j and the inequality Ri0/R1

0 < bi/b1, i 6= 1, it follows that

ri < r1,

where

rj =
βjh

µv + αjv
, for j = 1, 2, · · · , n.

rj represents the transmission rate of an infectious vector with strain j during
its entire infectious period. The condition (83) implies that the following three
inequalities hold at the same time,

Ri0 < R1
0, ri < r1, bi < b1, i 6= 1.
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Recall that bj denotes the probability of a given susceptible vector being trans-
mitted by an infected host with strain j. Then the condition (83) for the occurrence
of competition exclusion of strain 1 means that the basic reproduction number cor-
responding to strain 1, the transmission rate of an infectious vector with strain 1
during its entire infectious period, and the probability of a given susceptible vector
being transmitted by an infected host with strain 1 are all biggest comparing to
three quantities of other strains.
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