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Abstract. Nonlinear systems are commonly able to display abrupt qualitative

changes (or transitions) in the dynamics. A particular type of these transitions

occurs when the size of a chaotic attractor suddenly changes. In this article,
we present such a transition through the observation of a chaotic interior crisis

in the Deng bursting-spiking model for the glucose-induced electrical activ-

ity of pancreatic β-cells. To this chaos-chaos transition corresponds precisely
the change between the bursting and spiking dynamics, which are central and

key dynamical regimes that the Deng model is able to perform. We provide
a description of the crisis mechanism at the bursting-spiking transition point

in terms of time series variations and based on certain amplitudes of invari-

ant intervals associated with return maps. Using symbolic dynamics, we are
able to accurately compute the points of a curve representing the transition

between the bursting and spiking regimes in a biophysical meaningfully param-

eter space. The analysis of the chaotic interior crisis is complemented by means
of topological invariants with the computation of the topological entropy and

the maximum Lyapunov exponent. Considering very recent developments in

the literature, we construct analytical solutions triggering the bursting-spiking
transition in the Deng model. This study provides an illustration of how an

integrated approach, involving numerical evidences and theoretical reasoning

within the theory of dynamical systems, can directly enhance our understand-
ing of biophysically motivated models.
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1. Motivation and preliminaries. Insulin secretion from electrically coupled β-
cells is governed by bursting electrical activity. Pancreatic β-cells are a well-known
example of emergent oscillations in interacting cell populations. The β-cells are or-
ganized into functional units of thousands of endocrine cells, called islets of Langer-
hans. There are recent works in the literature that support the β-cell behavior
predicted by different models. In the context of β-cells organization in the islets,
the reader is referred to [41], [31] and [43] and regarding the individual β-cell ac-
tivity, the works [5] and [17] represent a particularly relevant combination between
experiments and theory.

The membrane potential of these cells may experience a transition from bursting-
spiking oscillations to continuous spiking oscillations, in the presence of a stimula-
tory level of glucose. The bursting behavior, firstly identified by Rinzel, consists of
alternating active phases of spiking and quiescence whose particular form seen in
β-cells is essentially of ‘square wave’ [40]. The bursting dynamics has been studied
in the literature in a biophysical context (please see for instance [3], [4] and [24]).
The electrical activity is of vital importance for the biophysical function of the cells
since it governs oscillations in the intracellular calcium concentration, in particular
it is the trigger for the release of the insulin hormone.

One of the first models for bursting dynamics was proposed by Atwater et al. [2].
It was based on extensive experimental data, incorporating the important cellular
mechanisms that were thought to underlie bursting. Following this experimental
work, Chay and Keizer developed a mathematical model for the ionic and electrical
behavior of the pancreatic β-cells [6]. This model was reduced to a system of three
variables and studied in terms of chaotic dynamics by Chay [7].

In a purely deterministic context and with the purpose of studying a geometrical
mechanism for chaos generation, Bo Deng introduced a system that reproduces
phenomenologically the glucose-induced electrical activity on the pancreatic β-cells
[9]. The data were obtained experimentally by the technique of microelectrode
recording and were regenerated mathematically by recording six time series taken
from the work carried out in [42]. The researchers impaled a β-cell within an islet of
Langerhans and measure the collective glucose-induced electrical activity of around
1000 cells.

A great deal of nonlinear systems, in particular the Deng bursting-spiking model,
display different dynamical regimes depending on the systems parameters or exter-
nal inputs. An important result in the field of nonlinear dynamics and chaos has
been the discovery of different routes to chaos ([30] and [36]). These are periodic-
chaos transitions which have received major attention in the literature. They make
chaotic a non-chaotic system when a control parameter is changed and they may
include: periodic-doubling cascades (taking place the Feigenbaum phenomenon),
intermittency, the transition to chaos through a torus breakdown [35], among other
dynamical regimes. Despite their importance, less attention has been devoted to the
so-called chaos-chaos transitions in which relevant dynamical features of a chaotic
attractor suddenly change with the variation of a control parameter. Specifically,
when the changes on the control parameter occur in the neighborhood of a critical
transition point, an abrupt qualitative change (or transition) in the dynamics may
take place within the chaotic regime. This particular dynamical phenomenon has
been identified as a type of interior crisis. In this context, the term ‘crisis’ means



OBSERVATION OF AN INTERIOR GLUCOSE-INDUCED CRISIS 823

sudden increase or decrease in the size of a chaotic attractor as a system’s control pa-
rameter passes through a certain threshold value. A remarkable study of crisis tran-
sitions in excitable cell models has been carried out by Fan and Chay in [15]. The
analyzed dynamical systems represent the oscillatory behavior of membrane poten-
tials observed in excitable cells such as pancreatic β-cells, neuronal cells and cardiac
cells. The authors Fan and Chay examined the occurrence of the interior crisis in
these systems, in particular the bursting-spiking transition in the Hindmarsh-Rose
neuron model, by two means: (i) constructing bifurcation diagrams by numerically
integrating the systems of differential equations and (ii) computing the number of
unstable periodic orbits embedded within the chaotic attractors, which suddenly
increases or decreases at the crisis. Following this work, Fan and Chay showed
in [16] that the topological entropy changes discontinuously when an interior cri-
sis occurs in certain dissipative dynamical systems. In the context of chaos-chaos
transitions, the bursting-spiking behavior of the Hindmarsh-Rose neuron model was
also described by J. M. González-Miranda in [18] using different dynamical systems
techniques.

After the mentioned work of J. M. González-Miranda [18], a similar transition
was studied in a stochastic model of the electrophysiological behavior of the pan-
creatic β-cell [1], using similar methods and techniques of the theory of nonlinear
dynamics and chaos, namely return maps, Poincaré maps, Lyapunov exponents and
time series. Several results, related to the continuous interior crisis, have also been
reported in the study of complex bifurcation structures in different types of excitable
cells (in this context, please see [19], [20], [21], [45], [46] and [14]). It has been shown
that the existence and extent of those complex bifurcation structures might be use-
ful to understand the mechanisms used by neurons to encode information and give
rapid responses to external stimuli. In particular, the dynamics of meaningful math-
ematical systems, when studied as a function of significant control parameters, can
exhibit the continuous interior crisis [18], which provides a potential mechanism for
quick responses by switching between different dynamical behaviors. The complex-
ity of dynamical transitions, predicted by specific theoretical models of excitable
systems, has also been demonstrated using experimental evidences (please see [22],
[44], [38] and [23]). The experimental observations not only reveal the nonlinear dy-
namics of the complex firing patterns, of particular excitable biological systems, but
also provide an experimental demonstration of the existence of bifurcations from
bursting to spiking. This experimental approach represents a significant effort that
contributes for the validation of the models, giving realism and significance to the
obtained theoretical results. Indeed, the useful background information provided in
the literature previously described, helps the progress of the research on excitable
physiological systems, where abrupt changes of the dynamics, such as the interior
crisis [18], can occur in response to a small system parameter modification.

Without doubt, the exploratory studies that have been conducted are important
for the description of different dynamical behaviors. However, and to the best of our
knowledge, no systematic integrated approach, involving simultaneously numerical
algorithms and effective analytical methods for highly nonlinear problems like the
Homotopy Analysis Method, has been adopted to explore the effect of key control
parameters on abrupt qualitative changes (transitions) in the dynamics.

Inspired by the previously mentioned studies on the chaotic interior transitions,
particularly by the work carried out by J. M. González-Miranda in [18], the goal of
this article is to provide a contribution to the detailed analysis of a chaotic interior
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crisis of the Deng model [9], which is cast as a singularly perturbed system of
ordinary differential equations. We will see that the abrupt change of the attractor
size, when the system control parameters vary, is a key feature of the dynamics in the
vicinity of the transition point. More precisely, in this work we present a description
of the interior crisis, that corresponds to the transition between the bursting and the
spiking dynamics in the chaotic regime, through a systematic and comprehensive
study based simultaneously on: (i) time series variations within the crisis; (ii) return
maps, symbolic dynamics, invariant intervals; (iii) topological invariants in the crisis
regime and (iv) analytical solutions triggering the bursting-spiking transition.

Starting with the study of time series variations, we continue with the analysis of
appropriate return maps ([10] and [11]). The joined use of symbolic dynamics and
amplitudes of invariant intervals associated to the mentioned return maps, becomes
a new and elegant procedure to identify accurately the crisis transition point. The
chaotic behavior characterizing the crisis is quantified with the computation of the
topological entropy and the maximum Lyapunov exponent. A novel approach com-
plements our study and deserves to be emphasized - the newly developed analytical
solutions for the Deng bursting-spiking model [12] are particularly interesting and
allow the construction process of a solution triggering the bursting-spiking transi-
tion. It is well-known that numerical algorithms allow us to analyze the dynamics
at discrete points only and, in general, exact/closed-form solutions of nonlinear
equations are extremely difficult to obtain. As a consequence, in recent years there
has been a growing interest of many researchers in obtaining continuous solutions to
dynamical systems by means of analytical techniques. One such general analytical
technique used to get convergent series solutions of strongly nonlinear problems is
the so-called Homotopy Analysis Method (HAM), developed by Shijun Liao (see, for
instance, [27], [28] and [29]), with contributions of other researchers in theory and
applications. The existence of the transition, here studied for the Deng bursting-
spiking model, is of particular interest in biophysics, since it provides a mechanism
that allows rapid switching between different relevant dynamical behaviors.

For the sake of clarity we briefly describe in the following subsection the main
aspects of the studied Deng model.

1.1. Description of the Deng bursting-spiking model. The phenomenological
Deng model, that mimics the glucose-induced electrical activity on pancreatic β-
cells, is given by the following differential system

dC
dt = ε (V − ρ) ,

ξ dNdt = −r1N
3 + Γ1N

2 + Γ2N + Γ3NV −N2V+
+Γ4V + Γ5,

dV
dt = NmaxV

2 + Γ6V + r3CV N −NV 2 + Γ7CV+
+Γ8NV + Γ9CN + Γ10C + Γ11N + Γ12

(1)

with

Γ1 = Nmaxr1 + Vmax + 2r1Nmin,

Γ2 = −NmaxVmax − 2r1NmaxNmin −NminVmax−
− r1N

2
min − η1,
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Γ3 = Nmin +Nmax,

Γ4 = −NminNmax,

Γ5 = NminNmaxVmax + r1N
2
minNmaxη1r2,

Γ6 = −2NmaxVmin + r3CminNmax,

Γ7 = −r3Nmax,

Γ8 = −r3Cmin + 2Vmin,

Γ9 = −r3Vmin,

Γ10 = r3VminNmax,

Γ11 = −V 2
min + r3CminVmin − η2 − w,

Γ12 = NmaxV
2
min − r3CminVminNmax + η2Nmax+

+ wNmin,

and

r1 =
Vmax − Vspk
Nmax −Nmin

, r2 =
Nmax +Nmin

2
, r3 =

Vspk − Vmin

C∗ − Cmin
. (2)

The three dynamical variables are:

(1): the variable C that corresponds to the intracellular calcium Ca2+ concen-
tration gradient;

(2): the variable N that measures the fraction of open potassium channels;
(3): the variable V that corresponds to the membrane voltage.
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Figure 1. (a) Attractor of the system (1) for ρ =0.59625. (b)
Bursting orbit of V (t) with ρ =0.4. (c) Spiking orbit of V (t) with
ρ =0.8. In all situations ε =0.08.



826 JORGE DUARTE, CRISTINA JANUÁRIO AND NUNO MARTINS

In a physiological context, the membrane voltage (also called transmembrane
potential or membrane potential) is the difference in electric potential between the
interior and the exterior of biological cells. In particular, the membranes of excitable
cells are polarized or, in other words, exhibit a resting membrane potential. This
means that there is an unequal distribution of ions on the two sides of the excitable
cell membrane. The sign minus of a negative resting potential means that the
inside is negative relative to (or compared to) the outside of the cell. A resting
potential occurs when a membrane is not being stimulated. This resting state
will be maintained until the membrane is disturbed or stimulated. The dynamic
changes in the membrane potential in response to a sufficiently strong stimulus is
called an action potential. The voltage arises from specific changes in membrane
permeabilities for potassium, sodium, calcium, and chloride ions.

In the context of β-cells, voltage gated calcium ion channels and ATP-sensitive
potassium ion channels are embedded in each cell surface membrane. These ATP-
sensitive potassium ion channels are normally open and the calcium ion channels
are normally closed. Potassium ions diffuse out of the cell, down their concentration
gradient, making the inside of the cell more negative with respect to the outside (as
potassium ions carry a positive charge). At rest, this creates a potential difference
across the cell surface membrane of -70 mV (millivolts). When the potential dif-
ference across the membrane becomes more positive (as potassium ions accumulate
inside the cell), this change opens the voltage-gated calcium channels, which allows
calcium ions from outside the cell to diffuse in and down their concentration gradi-
ent. In physiology, a concentration gradient (particularly, the concentration gradi-
ent of the dynamical variable C) results from an unequal distribution of ions across
the cell membrane. The sign minus of a negative concentration gradient means that
the inside is negative relative to (or compared to) the outside of the cell. Membrane
voltage and concentration gradients are noteworthy and eye-catching features of the
excitable cells behavior.

The parameters are: w, Nmin, Nmax, Vmin,Vmax,Vspk, Cmin, C∗, η1, η2, ξ, ε and
ρ. The parameters η1, η2, ξ and ε are non-negative small parameters, which control
the singular perturbation processes of the model.

The particular parameter ρ is central in our study and it represents the glucose
concentration of the system. For further information concerning the biophysical
significance and meaning of the variables and parameters, the reader is referred to
the papers [9] and [10]. Later on, in the interpretation of the obtained results, we
will devote special attention to the β-cells activity in the production of insulin and
to the role of glucose level in the bloodstream.

1.2. Numerical simulations. The bursting and spiking regimes. At this mo-
ment of our study, we can gain some insights about the geometry of the trajectories
in the long run by numerically integrating the Deng system (1). Using the Stiff-
nessSwitching NDSolve method from MATHEMATICA 10.0, which is regarded as
one of the powerful techniques for numerically computing highly accurate solutions
of differential equations, a structure emerges when the solution (C(t), N(t), V (t)) is
visualized as a trajectory in three-dimensional space (see an example of the chaotic
attractor in Figure 1(a)). Depending on the value of parameter ρ, the wave forms
of the temporal behavior of variable V demonstrates two qualitatively different
regimes, namely bursting oscillations and spiking oscillations. These two types of
behaviors are respectively displayed in Figure 1(b) and in Figure 1(c).



OBSERVATION OF AN INTERIOR GLUCOSE-INDUCED CRISIS 827

0 25 50 75 100
-0.5
-0.25

0
0.25

t

C

Before Crisis

0 25 50 75 100

-0.5
-0.25

0
0.25

t

C

After Crisis

0 25 50 75 100
0

0.3

0.6

0.9

t

N

0 25 50 75 100
0

0.3

0.6

0.9

t

0 25 50 75 100
-0.7

0

0.7

1.4

t

V

0 25 50 75 100
-0.7

0

0.7

1.4

t

V

Figure 2. Samples of time series of the three model variables be-
fore the interior glucose-induced crisis, with ρ =0.58, and after the
interior glucose-induced crisis, with ρ =0.64. In all situations
ε =0.08.

The bursting oscillations alternates between the silent phase and the active phase
and occurs for lower values of ρ. The spiking oscillations correlate well with insulin
secretion and we expect that the higher the glucose concentration, the longer the
period of time a typical trajectory spends in the active phase, therefore giving way
to continuous spiking [2]. This regime occurs for higher values of ρ near Vmax.

In our study we will use throughout standard values of the parameters suggested
in [10], w = 1.0, Nmin = 0.0, Nmax = 1.0, Vmin = −0.5, Vmax = 2.0, Vspk = 0.0,
Cmin = −0.5, C∗ = 0.0, η1 = 0.05, η2 = 0.05, ξ = 0.005, and we will consider ρ and
ε as the control parameters. The dynamics is studied for these particular values
of the parameters due to the fact that the time series of the membrane voltage
match very well with the experimental membrane records in the literature ([9] and
[10]). As we stated earlier, the parameter ρ is the glucose concentration and ε
is one of the parameters that controls the singular perturbation processes of the
model. In our analysis we consider 0.42 ≤ ρ ≤ 0.642 and 0.05 ≤ ε < 1, since the
interior glucose-induced crisis can be clearly observed for these ranges of the control
parameters.

After the previous considerations, we are able to provide a description of the
interior crisis. In Figure 2, we exhibit the time series of the three model variables
before and after the studied interior glucose-induced crisis that we are going to
analyze.

2. Interior crisis in the Deng bursting-spiking system. At this moment,
particularly inspired by the work carried out by González-Miranda in [18], we are
able to present in this section numerical evidences and theoretical reasoning which



828 JORGE DUARTE, CRISTINA JANUÁRIO AND NUNO MARTINS

show that the Deng system for pancreatic β-cells is able to undergo a continuous
interior crisis when the transition from bursting to spiking dynamics occurs. The
detailed description of the crisis mechanism at the transition point is provided by
means of: (i) time series ranges of variations; (ii) amplitudes of invariant intervals
and symbolic dynamics associated to a family of unimodal iterated Poincaré return
maps (making possible a more accurate identification of the crisis transition point);
(iii) computation of topological invariants (namely, the topological entropy and the
maximum Lyapunov exponent).

For a bursting-spiking system in general, and in particular for the Deng system,
it is convenient to study the dependence of the intracellular calcium concentration
gradient, C(t), on the control parameters since to each relative maximum of C(t)
corresponds a spike (a peak) in the time series of the membrane voltage V (t). As a
consequence, the study of C(t) is simultaneously elegant and representative of the
noteworthy and eye-catching features of the dynamics.

2.1. Time series variations within the crisis. To start with, we present in
Figure 3(a) numerical results for the maximum Lyapunov exponent (according to
the procedure explained in a following subsection dedicated to topological invari-
ants) and in Figure 3(b) the bifurcation diagram given from the consecutive relative
maxima, Cmax, reached by C(t) when ε = 0.08 and 0.42 ≤ ρ ≤ 0.642. As we are
about to realize, the displayed results of Figure 3 provide clear evidence of a key
dynamical feature - the Deng system’s attractor undergoes a sudden change around
ρ = ρ∗≈ 0 .594 . By coincidence, the largest Lyapunov exponent attains a maxi-
mum λmax ≈ 0.1 for ρ∗ ≈ 0.594. In fact, the abrupt qualitative transition around
ρ∗ ≈ 0.594 when ρ increases, as seen in the bifurcation diagram, bears a fast de-
crease of the size of the three-dimensional attractor and does affects the nature of
the dynamics. As far as this aspect is concerned, Figure 3(c) is particularly insight-
ful, where the values of range of variation of C(t), ∆C = CMax − CMin (difference
between the absolute maximum (CMax) and absolute minimum (CMin) of C), ap-
pear as a function of ρ (similar results (not shown) have also been obtained for N(t)
and V (t)).

As also described in [18] for the Hindmarsh-Rose neuron model, the three-
dimensional attractor decreases in size along a curve which displays a inflection
point (in our case at ρ = ρ∗ ≈ 0.594), which is identified as the transition point
for ρ. This sudden continuous change is called continuous interior crisis. In order
to get a more complete characterization of the chaos-chaos transition, the func-
tion ∆C(ρ) and its derivative d∆C(ρ)/dρ, have been displayed in a narrow interval
[0.590, 0.598], a close neighborhood around the transition point (Figure 3(d) and
Figure 3(e)). In all situations, we have found a value for the transition point around
ρ∗ ≈ 0.594. This detailed study of the time series of C(t) suggests that the crisis
implies deep and significant variations in the dynamical properties before and after
the crisis transition. A 3D-representation of functions ∆C(ρ) for different values of ε
is depicted in Figure 4. Naturally, to each curve corresponds a particular transition
pair (ρ∗, ε∗) of control parameters.

After the previous considerations, let us establish a dynamical measure S(ρ)
given by the product

S(ρ) = ∆C(ρ).∆N (ρ).∆V (ρ),

where ∆C(ρ) = CMax(ρ) − CMin(ρ), ∆N (ρ) = NMax(ρ) − NMin(ρ) and ∆V (ρ) =
VMax(ρ)− VMin(ρ). The quantity S(ρ) represents the volume of a rectangular par-
allelepiped whose boundary surfaces enclose a 3D set where the attractor could be
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Figure 3. Characterization of the Deng bursting system given by
Eqs. 1. (a) The maximum Lyapunov exponent. (b) Bifurcation
diagram computed using the successive maxima of C(t), consider-
ing ρ ∈[0.42,0.642] and ε =0.08. (c) Estimate of the size of the
attractor given by the range of variation of ∆C(ρ). (d) The func-
tion ∆C(ρ) and (e) its derivative d∆C

dρ , both displayed in a narrow

interval arround the transition point, ρ∗.

placed in. This volume provides us direct quantitative insights about the system’s
trajectories in the three-dimensional space. This strategy allows us to work with
dynamical features, such as shrinking and enlargement of the attractor, which rep-
resent different states of the informally called ‘size of the attractor’. In Figure 5, we
represent the variation of S with the parameter ρ. As expected, the function S(ρ)
has the same key dynamical features of ∆C(ρ), depicted in Figure 3(c). In particu-
lar, with the curve corresponding to S(ρ), we are also able to find the approximation
for the crisis transition point, ρ = ρ∗ ≈ 0.594....

2.2. Return maps, symbolic dynamics and invariant intervals. The cri-
sis transition point. In order to gain more significant qualitative insights into
the principles and mechanisms underlying the interior crisis, we analyze in this
paragraph a family of unimodal maps which are low-dimensional maps that incor-
porate representative dynamical properties of the phenomenon (logistic-like maps
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Figure 5. Representation of function S(ρ) for ρ ∈[0.42,0.642] and ε=0.08.

presented in [10] and [11]). These maps are constructed by recording the succes-
sive relative (local) maxima of the numerical solution C(t) and by considering pairs

(C
(n)
max, C

(n+1)
max ), where C

(n)
max denotes the nth local maximum. As mentioned pre-

viously, each local maxima corresponds to a peak in the membrane voltage time
series. (please see Figures 6(a) and 6(b)). As shown in Figure 6(c), the data from
the chaotic time series appear to fall on a logistic curve. Indeed, treating the graph

as a function C
(n+1)
max = f(C

(n)
max) allow us to reveal particularly interesting features

about the dynamics on the attractor. The obtained iterated maps dynamically
behave like unimodal maps, which have found significant applications on symbolic
dynamics theory. In this context, a unimodal map f on the interval I = [a, b] is
a two-piecewise monotone map with one turning point cρ. The interval I is then
subdivided into the sets:

IL = [a, cρ[, IC∗
ρ

= {cρ}, IR =]cρ, b],

in such way that the restriction of f to interval IL is strictly increasing and the
restriction of f to interval IR is strictly decreasing (see Figure 6(c)). Beginning
with the turning point of f , cρ (relative extremum), we obtain the orbit

O (cρ) =
{
xi : xi = f i (cρ) , i ∈ N

}
.

The turning point cρ plays an important role. The dynamics of the interval is
completely characterized by a symbolic sequence associated to the turning point
orbit. The ordered sequence of elements xi of O (cρ) determines the dynamical
invariant interval I =

[
f2(cρ), f(cρ)

]
= [x2, x1]. The variation of the extrema of

these invariant intervals (leftmost and rightmost points), for ρ ∈ [0.42, 0.642], are
depicted in Figure 7(a).



OBSERVATION OF AN INTERIOR GLUCOSE-INDUCED CRISIS 831

HaL
0 50 100 150 200

0
0.5

1
1.5

2

t

Cmax
HnL
�

Cmax
Hn+1L

¯

HbL
0 50 100 150 200

-0.2
0

0.2
0.4

t

C

HcL
-0.1 0 0.1 0.2 0.3 0.4

-0.1

0

0.1

0.2

0.3

0.4

Cmax
HnL

Cmax
Hn+1L
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in the time series of the membrane voltage V (t)). (c) Iterated map
constructed from the successive local maxima of variable C. In all
situations ρ =0.5927 and ε =0.08.

Now, let us take the previous considerations in the context of the interior crisis.
Interestingly, the graph of the amplitudes of the invariant intervals I as a function of
ρ, ∆I (ρ), represented in Figure 7(b), has the same key features of ∆C(ρ), depicted
in Figure 3(c). In particular, with the curve corresponding to ∆I (ρ), we are also
able to obtain the approximation for the transition point ρ = ρ∗ ≈ 0.594, within the
interior crisis. This detailed characterization of the invariant intervals of the form
I =

[
f2(c), f(c)

]
, constructed using the return maps, also suggests that the crisis

implies deep and significant variations in the attractor dynamical properties along
the crisis transition. Each curve corresponding to ∆I (ρ) provides us with precisely
the same transition pairs of control parameters (ρ∗, ε∗) obtained with the curves
∆C(ρ). Given the importance of the transition points, it is crucial to focus our
attention on a procedure for their computation. Remarkably, the transition occurs
for ρ and ε corresponding to f2(cρ) = 0 (please see the dotted line represented
in Figure 7(a)). Having stated this, an elegant, effective and accurate method of
solving the equation f2(cρ) = 0, i.e., a way of determining a transition point, arrives
with the use of symbolic dynamics theory. Specifically, taking a return map (Figure
6(c)), we associate to the orbit O (cρ) a sequence of symbols, S = S1S2, where
Sj ∈ A = {L,O,R} and
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Figure 8. Curve of critical points in the (ρ, ε)-plane separating
bursting from spiking dynamics, for ρ ∈[0.580,0.6004] and
ε ∈[0.05,0.1].

Sj = L if f j (x) < 0
Sj = O if f j (x) = 0
Sj = R if f j (x) > 0.

Naturally, S1 is associated to the iterate f(cρ) and S2 is associated to the iterate
f2(cρ). The symbolic sequences S are always of the form S = RS2. Given a
particular return map, the solution of f2(cρ) = 0, in terms of ρ and ε, is obtained
recording the sequences S = RS2, varying ρ (or ε), and picking up the value of ρ (or
ε) corresponding theoretically to the sequence S = RO (which in practice occurs
after S = RL and before S = RR) with a desired precision for ρ (or ε).

Using the previous procedure of symbolic dynamics theory, we are now able to
provide a more accurate value for ρ∗ (or ε∗) in the context of the chosen characteri-
zation of the interior crisis (ε = 0.08 and ρ ∈ [0.42, 0.642]). As a result, for ε = 0.08
we obtain the transition point ρ∗ = 0.59439.... In Figure 8, we exhibit the transi-
tion phase diagram of the interior crisis for ρ ∈ [0.580, 0.6004] and ε ∈ [0.05, 0.1].
It is displayed a set of critical points in the (ρ, ε)-plane separating bursting from
spiking dynamics. Interestingly, we have found out that the critical points follow
the function ε(ρ) = 120.19887ρ2 − 138.89324ρ+ 40.16240. This identification allow
us to establish a clear crisis transition between the two key dynamical behaviors of
the Deng model - bursting and spiking regimes.
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The outlined methodology for the description of the crisis provides us another
illustration of the powerful and insightful use of low-dimensional maps incorporating
representative dynamical properties of the phenomenon, in the context of symbolic
dynamics theory.

2.3. Topological invariants in the crisis regime. In this paragraph, we exam-
ine the degree of chaoticity of the Deng model, along the curve of critical points
identified previously in Figure 8, by means of topological invariants with the com-
putation of the topological entropy and the maximum Lyapunov exponent.

We start with by taking up the generalized problem of characterizing the chaotic-
ity of the dynamics with symbolic dynamics theory considering an accurate estimate
of the topological entropy, a central measure related to orbit growth.

Let us consider again the unimodal family of maps f and the interval I subdivided
into the sets IL = [a, cρ[, IC∗

ρ
= {cρ} and IR =]cρ, b]. As mentioned before, the

function f is monotonically increasing for x ∈ IL and monotonically decreasing for
x ∈ IR (Figure 6(c)). We call a lap of f each of such maximal intervals where the
map f is strictly increasing or strictly decreasing. The total number of distinct laps
is called the lap number of f and it is usually denoted by ` = ` (f). The left and
the right subintervals are labeled by the letters L and R, respectively and the set
IC∗

ρ
will be denoted by C∗. The symbolic sequence starting from f(cρ) plays an

important role in the symbolic dynamics of one-dimensional maps and it is called
kneading sequence. Consequently, let us consider the orbit of the critical point of f
, O (cρ), obtained by iterating the map, that is, O (cρ) =

{
xi : xi = f i (cρ) , i ∈ N

}
.

From this numerical orbit, O (cρ) , we get a symbolic sequence (symbolic orbit)

S = S1S2...Sj ..., where

 Sj = L if f j (x) < cρ,
Sj = C∗ if f j (x) = cρ
Sj = R if f j (x) > cρ

,

that characterizes the dynamics. When O(cρ) is a k-periodic orbit, we obtain a
sequence of symbols that can be characterized by a block of length k, the kneading
sequence S(k) = S1S2...Sk−1C

∗. The orbit O (cρ), which is made of ordered points

xi, determines a partition P(k−1) of the invariant range I =
[
f2(cρ), f(cρ)

]
=

[x2, x1] into a finite number of subintervals labeled by I1, I2,..., Ik−1. This partition
is associated to a (k− 1)× (k− 1) transition matrix M = [aij ], where the rows and
columns are labeled by the subscript of subintervals and the matrix elements are
defined as aij = 1 if Ij ⊂ f (Ii) and aij = 0 if Ij  f (Ii).

The topological entropy represents the exponential growth rate for the number
of orbit segments distinguishable with arbitrarily fine but finite precision. This
numerical invariant describes in a suggestive way the exponential complexity of the
orbit structure with a single nonnegative real number [25]. For a system given by
an iterated function, the topological entropy represents the exponential growth rate
of the number of distinguishable orbits of the iterates. More precisely, the growth
rate of the lap number of fk (kth-iterate of f) is

s (f) = lim
k→∞

k

√
`(fk)

and the topological entropy of a unimodal interval map f , denoted by htop (f), is
given by

htop (f) = log s (f) = log λmax(M (f)),
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where λmax(M (f)) is the spectral radius of the transition matrix M (f) ([33], [26]
and [34]). The following example illustrates the computation of the topological
entropy using the established procedure.

Example. Let us consider the orbit of a turning point defined by the period-6
kneading sequence (RLLLLC)∞. Putting the orbital points in order we obtain

x2 < x3 < x4 < x5 < x0 < x1 .

The corresponding transition matrix is

M(f) =


0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1
1 1 1 1 1


which has the characteristic polynomial

p(λ) = det(M(f)−λI) = 1 + λ+ λ2 + λ3 + λ4 − λ5.

The growth number s(f) (the spectral radius of matrix M(f)) is 1.96595.... There-
fore, the value of the topological entropy can be given by

htop (f) = log s (f) = 0.675975... .

The maximum Lyapunov exponent is a convenient indicator of the exponential
divergence of initially close points, characteristic of the chaotic attractors ([32], [8]
and [39]). A discussion about the Lyapunov exponents as a quantitative measure of
the rate of separation of infinitesimally close trajectories, as well as a computation
method, can be found in [37]. In the next lines, we will briefly explain the procedure
used to compute the Lyapunov exponents. The characteristic Lyapunov exponents
measure the typical rate of exponential divergence of nearby trajectories in the
phase space, i. e., they give us information on the rate of growth of a very small
perturbation of the initial state of the system.

Let us consider a set of nonlinear evolution equations of the form

dx

dt
= F (x, t) (3)

where x = (x1, x2, ..., xn) ∈ Rn (n ≥ 3) and F = (F1, F2, ..., Fn) is a differentiable
function. Assuming that the motion takes place in a bounded region of the phase
space, we study the infinitesimal distance between two trajectories, δx(t) = x(t)−
x∗(t), which is regarded as a vector, η(t) = (η1(t), η2(t), ..., ηn(t))

T
, satisfying the

linear equation dη
dt = J η. Solving this linear law over the time range t0 ≤ t ≤ tf ,

we obtain a solution of vectors νi(t) ∈ Rn (i = 1, 2, ..., n). Now, let us consider
orthogonal vectors to νi(t), with norm represented by Ni(j), for every time step

τ = tj+1 − tj , j = 0, 1, ...,m and m =
tf−t0
τ . The Lyapunov exponents for the

nonlinear system of differential equations are given by

λi = lim
m−→+∞

m∑
j=1

lnNi(j)

mτ
(i = 1, 2, ..., n) . (4)

In order to gain insights about the degree of chaoticity of the Deng model, along
the curve of critical points identified previously in Figure 8, we display in Figure
9(a) the maximum Lyapunov exponent and the topological entropy, along the crisis
transition curve. The positivity of the largest Lyapunov exponent and the positivity
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Figure 9. Dynamics along the crisis transition curve. (a) Values
of the largest Lyapunov exponent and values of the Topological
entropy. (b) Typical bifurcation diagram with ρ as control param-
eter.

of the topological entropy are an indication that the system stays chaotic along this
curve, i.e., a signature of chaos along the interior crisis transition between bursting
and spiking regimes. Indeed, this fact justifies the designation ‘chaos-chaos crisis’.
As far as the computation of the topological entropy and the largest Lyapunov
exponent are concerned, the reader is referred to additional illustrative examples
provided in [11] and in [13].

The characterization of the crisis transition in the (ρ, ε)-plane is complemented
with the presentation in Figure 9(b) of a typical bifurcation diagram along the
curve of critical points.

2.4. Interpretation of the results. As mentioned previously, parameter ρ rep-
resents the glucose concentration of the system. Glucose is an important source of
energy for the cells in our bodies, but it’s too big to simply diffuse into the cells
by itself. Instead, it needs to be transported into the cells. By facilitating glucose
transport into cells from the bloodstream, insulin lowers blood glucose levels. When
blood glucose levels start to rise, pancreatic β−cells quickly respond by producing
and by secreting insulin. Therefore, the hormone insulin is responsible for regulating
level of glucose in the blood.

A damage to the β−cells, can lead to increased levels of blood glucose. This can
be due to insulin not being produced at all, or not in quantities sufficient to be able
to reduce the blood glucose level. As important as insulin is to preventing too high
of a blood glucose level, it is just as important that there not be too much insulin.
Lower levels of glucose are associated to hypoglycemia and higher levels of glucose
are a signature of hyperglycemia.

Glucose levels in the blood are usually measured in terms of milligrams per
deciliter (mg/dl). The range of ≈70 to ≈105 mg/dl is commonly considered as
normal. When the system is functioning properly, the pancreas continually mon-
itors blood glucose levels and responds accordingly. The importance of insulin is
juxtaposed with that of glucose. Both are required for life.

In the context of the interior glucose-induced crisis, the electrical activity of
pancreatic β−cells exhibits a transition from a bursting regime to spiking regime.
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As far as the Deng model is concerned, the glucose concentration ρ is a value in
the interval [0,1], which can also be interpreted as a percentage of glucose in the
bloodstream related to a particular threshold. A crisis critical value ρ*=0.59439. . .
(obtained in the previous Subsection B) means that a concentration of glucose higher
than 59,439. . . % of the considered threshold represents a build-up of glucose in the
blood and a situation of hyperglycemia. Taking into account that, for certain pa-
tients, a sustained concentration of 180 mg/dl is considered chronic hyperglycemia
associated with damage to the blood vessels, heart attacks and death, a concen-
tration of 59.439. . . % of this dangerous level of glucose (the threshold 180 mg/dl),
corresponds, in fact, to a glucose concentration of 106,9902. . . mg/dl, which can be
taken as a starting concentration level of hyperglycemia (a concentration higher
than the rightmost value of the considered normal range ≈70 to ≈105 mg/dl). The
crisis can represent a failure in the production of insulin.

3. Analytical solutions triggering the bursting-spiking transition. Based
on the newly developed analytical results for the Deng equations [12], we exhibit in
this section explicit series solutions, focusing our attention on the membrane voltage
V (t), triggering the transition from bursting to spiking behaviors along the critical
points within the interior crisis. In [12], the authors give all the details concerning
the use of the homotopy analysis method (HAM) to construct the analytical solu-
tions of the Deng equations (1). Here, for clarity reasons, we just provide the very
last results of the HAM application to the Deng model.

According to the notations and definitions provided in [12], a M th-order approxi-
mate analytic solution of the Deng equations (which corresponds to a series solution
with M + 1 terms) of practical interest is given by

CM (t) = C0(t) +

M∑
m=1

Cm(t), (5)

NM (t) = N0(t) +

M∑
m=1

Nm(t), (6)

VM (t) = V0(t) +

M∑
m=1

Vm(t), (7)

where

Cm(t) = χm Cm−1(t) + h e−t
t∫

0

eτR1,m [−→u m−1] dτ, (8)

Nm(t) = χm Nm−1(t) + h e−t
t∫

0

eτR2,m [−→u m−1] dτ, (9)

and

Vm(t) = χm Vm−1(t) + h e−t
t∫

0

eτR3,m [−→u m−1] dτ. (10)

Defining the vector−→u m−1 = (Cm−1(t), Nm−1(t), Vm−1(t)) , we have
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R1,m [−→u m−1] = dCm−1(t)
dt − εVm−1(t) + (1− χm) ερ,

R2,m [−→u m−1] = ξ dNm−1(t)
dt +

+r1

m−1∑
k=0

[(
k∑
j=0

Nk−j(t) Nj(t)

)
Nm−1−k(t)

]
−

−Γ1

m−1∑
k=0

(Nm−1−k(t) Nk(t))− Γ2Nm−1(t)−

−Γ3

m−1∑
k=0

(Vm−1−k(t) Nk(t)) +

+
m−1∑
k=0

[(
k∑
j=0

Nk−j(t) Nj(t)

)
Vm−1−k

]
−

−Γ4Vm−1(t)− (1− χm) Γ5

and

R3,m [−→u m−1] = dVm−1(t)
dt −

−Nmax

m−1∑
k=0

(Vm−1−k(t) Vk(t))− Γ6Vm−1(t)−

−r3

m−1∑
k=0

[(
k∑
j=0

Nk−j(t) Cj(t)

)
Vm−1−k(t)

]
+

+
m−1∑
k=0

[(
k∑
j=0

Vk−j(t) Vj(t)

)
Nm−1−k(t)

]
−

−Γ7

m−1∑
k=0

(Vm−1−k(t) Ck(t))−

−Γ8

m−1∑
k=0

(Vm−1−k(t) Nk(t))−

−Γ9

m−1∑
k=0

(Nm−1−k(t) Ck(t))−

−Γ10Cm−1(t)− Γ11Nm−1(t)−

− (1− χm) Γ12.

In order to have an effective analytical approach of Eqs. (1) for higher values of
t, we use the step homotopy analysis method (SHAM), in a sequence of subintervals
of time step ∆t, and we consider the 6-term SHAM series solutions (5th-order
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approximations)

C(t) = C(t∗) +

5∑
m=1

Cm(t− t∗), (11)

N(t) = N(t∗) +

5∑
m=1

Cm(t− t∗), (12)

V (t) = V (t∗) +

5∑
m=1

Vm(t− t∗). (13)

at each subinterval. As an example, the SHAM initial terms of the series corre-
sponding to m = 1 and m = 2, take the form

C1(t) = 0.26625εh− 0.26625εhe−(t−t∗) + ερh−

− ερhe−(t−t∗),

N1(t) = 1.92621 ∗ 10−6h− 1.92621 ∗ 10−6he−(t−t∗),

V1(t) = 0.0964916h− 0.0964916e−(t−t∗)h,

and

C2(t) = 0.26625εh− 0.26625εhe−(t−t∗) − 0.0964916εh2+

+ 0.0964916εh2e−(t−t∗) + εhρ− εhρe−(t−t∗)+

+ 0.362742εh2(t− t∗)e−(t−t∗)+

+ εh2ρ(t− t∗)e−(t−t∗)

N2(t) = 1.92621 ∗ 10−6h− 1.92621 ∗ 10−6he−(t−t∗)−

− 0.00104701h2 + 0.00104701h2e−(t−t∗)+

+ 0.00104702h2(t− t∗)e−(t−t∗)

V2(t) = 0.0964916h− 0.0964916he−(t−t∗) + 0.033392h2−

− 0.033392h2e−(t−t∗) + 0.0615503εh2−

− 0.0615503εh2e−(t−t∗) + 0.231175ερh2−

− 0.231175ερh2e−(t−t∗)+

+ 0.0630997h2(t− t∗)e−(t−t∗)−

− 0.0615503εh2(t− t∗)e−(t−t∗)−

− 0.231175ερh2e−(t−t∗),

with t∗ the time corresponding to the beginning of each interval. Identical changes
occur naturally for the other terms. It’s important to emphasize that in the explicit
series solutions, the parameters ε and ρ are our control parameters and h is an
artificial parameter that can be freely chosen to adjust and control the solution
convergence region. This parameter h has a key role on the homotopy analysis
methodology. For additional explanations concerning the detailed construction of
the analytical solution of the Deng model by means of HAM/SHAM, the reader is
referred to [12] and references therein.

Let us consider again the glucose induced interior crisis. In order to obtain
solutions triggering the chaotic bursting-spiking transition in the pancreatic β-cells
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Figure 10. (a) Variation of the triggering interval Jρ with the
control parameter ρ. (b) Bursting orbit of the derived analytical
solution (with h= - 0.660746), for ρ =0.59439 and δ =0.02815. (c)
Continuous spiking orbit of the derived analytical solution (with
h= - 0.73926), for ρ =0.59439 and δ= - 0.02184.

system, along the curve corresponding to ε(ρ) of Figure 8, we establish a new
function, called triggering function,

T (ρ, δ) = ε(ρ) + δ,

where δ is a switching parameter such that δ ∈ Jρ = [0.05− ε(ρ), 0.1− ε(ρ)]. Ac-
cording to Figure 10(a), which illustrates the variation of the interval Jρ with ρ
within the crisis, we obtain:

(i) the bursting regime for a positive value of δ, such that δ ∈ ]0, 0.1− ε(ρ)];
(ii) the spiking regime for a negative value of δ, such that δ ∈ [0.05− ε(ρ), 0[.
Now, considering the Solutions (11)-(13), we replace ε by the triggering function

T (ρ, δ). This procedure allows us to obtain the derived analytical membrane voltage
solution V (t) for different values of δ, in the established neighborhood of the crisis
transition points. The bursting behavior is depicted in Figure 10(b) and the spiking
behavior is shown in Figure 10(c). We emphasize that the triggering function,
T (ρ, δ), represents an elegant and effective context to perform the bursting-spiking
transition, where simply positive values of δ ∈ Jρ correspond to bursting behavior
and negative values of δ ∈ Jρ correspond to spiking behavior.

4. Final considerations. Phenomenological models developed to reproduce the
behavior of excitable cell membranes have provided many nontrivial examples of
dynamical behavior.

A chaotic transition from bursting to spiking behaviors has been identified as
a crisis and analyzed by Fan and Chay in [15] and by González-Miranda for the
Hindmarsh-Rose neuron model in [18]. Following the identification criteria of the
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bursting-spiking transition provided in [18], i.e. the existence of a drop in the size
of the three-dimensional attractor, we presented in this article the observation of
an interior glucose-induced crisis in the Deng model, which mimics the electrical
activity of pancreatic β-cells. The description of the interior crisis in the Deng
bursting-spiking equations presented here stands out to be relevant for the theory
of chaotic nonlinear systems, particularly for the analysis of biophysical models.
Indeed, the Deng model addresses interesting mathematical and physical questions.
In the literature, the sharp chaos-chaos transitions, characterized by an abrupt
reduction of the attractor size, are less represented. However, they are extremely
important in the context of the theory of excitable systems. The existence of an
interior crisis in the Deng model for pancreatic β-cells has potential applications
in biophysics because it provides a switching mechanism by which a tiny change
on a system’s control parameter can toggle the dynamics between two significantly
different dynamic regimes.

Our characterization of the chaotic bursting-spiking transition in the Deng model
started with the study of the time series variations. This procedure allowed us to
gain the first insights into the principles and mechanisms underlying the interior cri-
sis, namely: the critical point and the narrow critical interval region around it. The
largest Lyapunov exponent does not provide convincing and conclusive evidence for
the occurrence of some interior crisis transitions (please see [15] and [16]). However,
there are models for which the largest Lyapunov exponent attains a peak within the
interior crisis. this coincidence does happen in the work of J. M. González-Miranda
([18]) and also in our study of the Deng bursting-spiking model. The introduction of
iterated one-dimensional maps, related to the calcium dynamics, became extremely
effective for the analysis of the crisis in terms of symbolic dynamics and invariant
intervals. In particular, we were able to accurately identify a curve of critical points
in a biophysically meaningful parameter space of ρ (the glucose concentration) and
of ε (a singular perturbation parameter). Interestingly, we found out that each
transition point occurs when the second iterate of the map’s turning point is equal
to zero (f2(cρ) = 0). The degree of chaoticity of the Deng system along the curve
of critical points was characterized based on the computation of the topological
entropy and the maximum Lyapunov exponent. The positivity of these numeri-
cal invariants are a signature of chaos along the interior crisis transition between
bursting and spiking behaviors.

By means of explicit series solutions of the Deng equations presented in [12],
we have created a triggering function, that tuned the system close the continuous
interior crisis, with the property - small changes on this function produce very rapid
changes in the temporal pattern of membrane voltage.

Given the nature of our work, using different tools for the characterization of the
chaotic glucose-induced crisis in the Deng pancreatic -cells system, we are lead to re-
state the natural applications of our study in different fields, namely: in biophysics,
where bursting-spiking chaotic systems are common, or in chemistry, where chaos-
chaos transitions frequently occur. Our systematic integrated approach, involving
simultaneously numerical methods and analytical solutions given by effective meth-
ods for highly nonlinear problems like the HAM, brings novelty to our study and it
is likely to inspire applications of the HAM analytical procedure for studying abrupt
qualitative changes in nonlinear problems arising in theoretical biology, as well as
in other fields of science. An exhaustive study into the dynamics essence of abrupt
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qualitative transitions, considering multiple parameter variation, together with an
analytical methodology, is an avenue of future research.
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Kurths and R. L. Viana. Phase synchronization of bursting neurons in clustered small-world

networks, Phys. Rev. E , 86 (2012), 016211.

[5] R. Bertram and A. Sherman, Dynamical complexity and temporal plasticity in pancreatic
beta cells, J. Biosci., 25 (2000), 197–209.

[6] T. R. Chay and J. Keizer, Minimal model for membrane oscillations in the pancreatic beta-cel,
Biophys. J., 42 (1983), 181–190.

[7] T. R. Chay, Chaos in a three-variable model of an excitable cell, Physica D, 16 (1984),

233–242.
[8] L. O. Chua, M. Komuro and T. Matsumoto, The double scroll family, IEEE Trans. Circuits

Syst., 32 (1985), 797–818.

[9] B. Deng, A mathematical model that mimics the bursting oscillations in pancreatic β-cells,
Math. Biosciences, 119 (1994), 241–250.

[10] B. Deng, Glucose-induced period-doubling cascade in the electrical activity of pancreatic β-

cells, J. Math. Biol., 38 (1999), 21–78.
[11] J. Duarte, C. Januário and N. Martins, Topological entropy and the controlled effect of glucose

in the electrical activity of pancreatic beta-cells, Physica D , 238 (2009), 2129–2137.

[12] J. Duarte, C. Januário and N. Martins, Explicit series solution for a glucose-induced electrical
activity model of pancreatic cells, Chaos, Solitons & Fractals, 76 (2015), 1–9.

[13] J. Duarte, C. Januário, C. Rodrigues and J. Sardany és, Topological complexity and pre-
dictability in the dynamics of a tumor growth model with Shilnikov’s chaos, Int. J Bifurcation

Chaos, 23 (2013), 1350124, 12pp.

[14] H. Fallah, Symmetric fold / super-Hopf bursting, chaos and mixed-mode oscillations in
Pernarowski model, Int. J Bifurcation Chaos, 26 (2016), 1630022, 14pp.

[15] Y.-S. Fan and T. R. Chay, Crisis Transitions in excitable cell models, Chaos, Solitons &

Fractals, 3 (1993), 603–615.
[16] Y.-S. Fan and T. R. Chay, Crisis and topological entropy, Physical Review E , 51 (1995),

1012–1019.
[17] L. E. Fridlyand, N. Tamarina and L. H. Philipson, Bursting and calcium oscillations in pan-

creatic beta cells: Specific pacemakers, Am J Physiol Endocrinol Metab., 299 (2010), E517–

E532.
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[20] J. M. González-Miranda, Nonlinear dynamics of the membrane potential of a bursting pace-

maker cell, Chaos, 22 (2012), 013123.
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