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Abstract. Phloem transport is the process by which carbohydrates produced

by photosynthesis in the leaves get distributed in a plant. According to Münch,
the osmotically generated hydrostatic phloem pressure is the force driving

the long-distance transport of photoassimilates. Following Thompson and

Holbrook[35]’s approach, we develop a mathematical model of coupled water-
carbohydrate transport. It is first proven that the model presented here pre-

serves the positivity. The model is then applied to simulate the flow of phloem
sap for an organic tree shape, on a 3D surface and in a channel with orthotropic

hydraulic properties. Those features represent an significant advance in mod-

elling the pathway for carbohydrate transport in trees.

1. Introduction. Expanded knowledge of the carbohydrate pathway in trees is
critical in agriculture, forestry and ecology. Improving on our understanding of
translocation is particularly important in a climate change context so as to an-
ticipate the effects of future environmental conditions on tree growth and carbon
sequestration. Phloem transport is the process by which carbohydrates produced
by photosynthesis in the leaves get distributed within a plant. Efficient transport
ensures that the carbohydrate requirements of living tissues (respiration, growth)
are met throughout the organism. In most trees, the phloem is a tissue layer lo-
cated under the bark. Phloem is very thin (typically from 0.5 to 5 mm), i.e. at
least 2 orders of magnitude less than its other dimensions. Because of that, it can
be described as a three-dimensional manifold with a shape closely matching tree’s
external shape (minus the offset of bark’s thickness). In a schematic view, sap flows
in the phloem from leaves (sources) to roots (sinks). In reality, sinks are not only
located at one end but also distributed all along the pathway. Even leaves can act as
carbohydrate sinks when deciduous trees initiate new leaf growth at the beginning
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of the growing season. Phloem sap mostly consists in water carrying photosyn-
thates by bulk. Inside the phloem, the sap moves through a network of elongated
and interconnected cells. Those cells are referred to as sieve tube elements in an-
giosperms and as sieve cells in conifers. According to Münch [22], the osmotically
generated hydrostatic phloem pressure is the force driving the long-distance trans-
port of photoassimilates. Münch’s hypothesis is generally accepted. For over 60
years, it has served as the basis for mathematical models of the phloem transport
process [11, 2, 4, 7, 20, 29, 35, 15, 1].

We present the mathematical foundations and an implementation for a surface
dynamic, anisotropic model of phloem transport. The purpose of this model is not
to elaborate on the finer points of the physical process underlying phloem sap flow
such as the contribution of diffusion [25], the radial leakage of solutes [1] or the
presence of a relay mechanism [12]. Those aspects can be investigated individually.
We adopt a standard mathematical model of coupled water-solute transport that
is similar to Thomson and Holbrook’s [35]. In this study, the model has been
developed with large scale domains and arbitrary geometry in mind. In previous
modelling attempts, phloem transport is treated as a one-dimensional process with
the sap flowing though a file of sieve-tube elements connected end-to-end. Because
plant stems are generally elongated with a high aspect ratio, they appear to be
tubes or pipes. As a result, the 1D approach is also employed to simulate transport
at the scale of the entire organism [13, 19]. However, a 1D model implicitly assumes
that carbohydrates are in a common pool at any given position along stem’s length.
In trees, that assumption may not be valid.

Carbohydrates produced by a single branch are translocated along a downward,
helicoidal pathway on the stem surface [9, 16]. That singular trajectory highlights
two key points: i) carbohydrates predominantly follow the orientation of sieve el-
ements with little lateral dispersion and ii) the direction of translocation does not
correspond to the long axis of shoots and roots. In that context, most of the car-
bohydrates produced by a source are only available to sinks with a direct hydraulic
connection to the source. Therefore, the difference in hydraulic properties along
and across sieve elements as well as the lateral positioning of sources and sinks
are essential to understand phloem transport in trees. Taking those features into
account can be achieved by describing transport as a two-dimensional process [31].
The model we present is a surface model in that the flow of water and solute is ne-
glected within the thickness of the phloem (i.e. intra-phloem radial transport). In
mathematical terms, it does not present additional difficulty to extend the current
model to the full 3D case. However, there are several reasons not to do so. Firstly,
the macroscopic approach used here may not be applicable to a tissue less than a
dozen cells wide [8]. Secondly, the fact that width is several orders of magnitude
less than other conduit dimensions and that the computational domain must be
defined for its smaller dimension would make the problem numerically untractable.
Thirdly and more importantly, radial transport appears to follows a different cel-
lular pathway, through ray parenchyma [33, 26], and Münch’s hypothesis may not
apply. On the other hand, using a surface model is not incompatible with simulat-
ing transport for three-dimensional surfaces and describing radial flow to adjacent
tissues (as boundary conditions).

Other aspects relative to transport in trees have influenced the model’s design.
For instance, the model is based on the finite element method. Transport equa-
tions are integrated and solved numerically. The numerical approach provides the
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capability to carry out large-scale, long-time simulations. Any characteristic of the
conduit (i.e. phloem’s thickness or hydraulic conductivity) is defined on an element-
by-element basis. In that manner, spatial heterogeneity can be easily represented.
Finite elements also make it possible to solve transport equations for non-idealised
geometries. Common geometrical irregularities such as nodal swelling, scars, burls,
fluting and buttresses can be included in the model provided the biological shape
can be characterized in the first place. Finally, carbohydrate unloading in the model
can be represented as being time- and concentration-dependent, which allows com-
bining the effects of sink dynamics on the patterns of carbon allocation in trees [21]
with the effects associated to pathway’s structure.

The paper is organised as follows. The first section is devoted to the analysis and
qualitative properties of the model. The positivity conservation and the growth of
the carbohydrate mass are proven. Although theoretical, this phase is necessary to
ensure that the numerical approximated solutions preserve the properties of the bio-
physical process of transport. In the second section, we present numerical schemes
to solve the highly nonlinear system of partial differential equations coupling carbo-
hydrate transport and hydrostatic pressure in the phloem. Numerical simulations
are presented in a the third section in order to evaluate the model and illustrate
some of its capabilities. Those simulations include: a comparison and validation
with an existing model [35] for the one-dimensional case; a parametric study; the
application of the model to an existing tree; a preliminary investigation of the role
played by sieve element orientation on carbohydrate distribution; simulating phloem
transport on a branched, three-dimensional manifold.

2. Model description. In this section, we describe the model studied throughout
the paper. The model is composed of a reaction-diffusion equation, coupled with
a convection-reaction term. A schematic representation of a tree and of a phloem
surface element are shown in figure 1.

Figure 1. Schematic representation of a tree and the layered or-
ganisation of its secondary tissues: phloem, vascular cambium and
xylem (bark not shown). Flows of water/solute in a phloem ele-
ment also shown.
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2.1. Equations statement. The transport of a volume θ of water in a surface Ω,
a bounded domain of R2 of thickness e, is defined by the mass balance conservation

∂tθ +∇ · Jθ +Hθ = 0,

where J , the water flux, is given by Darcy’s law

Jθ = − e
µ

(k∇P ) .

Here P is phloem’s pressure in Pa, µ is the sap viscosity in Pa s and depends on the
concentration C in solute, and k in m2 is the orthotropic permeability matrix

k =

(
kx 0
0 ky

)
.

Typically, the C value is 20% (≈ 630 mol m−3). At that C value, µ is twice that of
pure water. C values up to 1000 mol m−3 and above are physiologically realistic.
The dependency of µ on C also theoretically affects flow efficiency [20]. It cannot
be neglected beforehand.
Hθ denotes the radial water flux at the boundary between phloem and xylem.

Here, the radial flux is function of the differential of water potential between phloem
and xylem [35, 13]:

Hθ = −LR(ψ − P +RTC)− VsU,
and LR the radial hydraulic conductivity in m Pa−1 s−1, ψ the xylem hydrostatic
pressure, R the gas constant (in J mol−1 K−1), T the temperature in K, Vs the
partial molal volume of sucrose in m3 mol−1 and U the sucrose unloading (radial).
It translates boundary conditions on entrance and exit as source and sink terms as
follows

U =


Ũ in Ωl the loading area (source)

− Ũ
C∗C in Ωu the unloading area (sink)

0 elsewhere.

Here Ũ denotes a constant loading rate (mol m−2 s−1) and C∗ a reference sucrose
concentration (mol m−3). On the other hand, the variation of the volume θ depends
on the pressure via the phloem thickness (e in m) and phloem Young’s modulus (E
in Pa) as

∂tθ =
e

E
∂tP.

In other terms, the phloem is deformable and thickness depends on P . Concerning
the amount of sucrose, the concentration C is governed by

e∂tC +∇ · JC +HC = 0,

where HC = U and JC = CJθ. To sum up, the mass balance conservation is written,
for x ∈ Ω and t > 0

e

E
∂tP −∇ ·

(
e

µ
(k∇P )

)
= LR (ψ − P +RTC) + VsU (1)

e∂tC −∇ ·
(
e

µ
C (k∇P )

)
= U, (2)

with initial data

P (0, x) = P0(x) and C(0, x) = C0(x). (3)
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For planar surfaces, we assume no flow of water or solute takes place on the
vertical sides of the domain. We remind that in and out flows are imposed through
the right hand side terms. We then impose Neumann boundary conditions:

∂nP (t, x) = ∂nC(t, x) = 0. (4)

2.2. Theoretical qualitative study. In this section, the sap viscosity and the
phloem thickness do not depend on the concentration of sucrose and the pressure,
we assume in the following that µ and e are also positive constants.

We first prove the conservation of the positivity.

Proposition 1. Let (P0, C0) ∈W 2,∞(Ω)×W 1,∞(Ω) be positive initial data. Then,
for all time t ≥ 0 and a.e. x ∈ Ω,

P (t, x) ≥ 0 and C(t, x) ≥ 0.

Proof. We have

∂tP −∇ ·
(
E

µ
(k∇P )

)
= f(P,C),

with

f(P,C) :=
ELR
e

(ψ − P +RTC) +
EVsU

e

= (f(P,C)− f(0, C)) + f(0, C) =
∂f

∂P
(θP,C)P + f(0, C),

where 0 ≤ θ ≤ 1. Consider Q = exp(λt)P , the equation becomes

∂tQ−∇ ·
(
E

µ
(k∇Q)

)
−
(
λ+

∂f

∂P
(θP,C)

)
Q = exp(−λt)f(0, C). (5)

If there exists (x∗, t∗) such that Q(t∗, x∗) = mint,xQ(t, x) < 0, then

∂tQ(x∗, t∗) = 0, ∇Q(x∗, t∗) = 0, ∆Q(x∗, t∗) ≥ 0,

and λ can be chosen such that the left-hand size of (5) and the right-hand size have
opposite sign.

We deal similarly for C.

The phloem fills up and empties with respect to in and out flows. If V(Ωl) =
V(Ωu), then the total amount of sucrose

∫
Ω
C(t, x)dx is increasing as soon as C < C∗

in Ωu, whereas it becomes decreasing when C > C∗ in Ωu. More precisely, we have:

Proposition 2. For all time t ≥ 0

d

dt

∫
Ω

C(t, x)dx =
Ũ

e

(
V(Ωl)−

∫
Ωu

C(t, x)

C∗
dx

)
.

Proof. Integrating (2) over Ω gives

d

dt

∫
Ω

Cdx =

∫
Ω

∇ ·
(

1

µ
C (k∇P )

)
+
U

e
dx

=

∫
Ω

U

e
dx =

Ũ

e

(
V(Ωl)−

∫
Ωu

C

C∗
dx

)
.
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Remark 1. Let C∗ > 0 be a given unloading strength. Then the steady state
solution C satisfies ∫

Ωu

C(x)dx = C∗V(Ωl).

Remark 2. It seems difficult to prove the well-posedness of the system (1)-(2). A
standard parabolic regularization ε∆ does not provide uniform estimates indepen-
dent of ε to evaluate the limit as ε → 0. We plan to study this issue in a future
work.

3. Algorithm framework. We describe the numerical discretization used to ap-
proximate the pressure and the carbohydrate concentration given by the equations
(1)-(2). To simulate large-time and large-space scales for realistic multi-dimensional
phloem domain, the stability of the proposed scheme should not be too restrictive.

Let n ∈ N∗. Pn, respectively Cn, denotes the approximation at time tn = n∆t
of the pressure P , respectively the carbohydrate concentration C.

3.1. Splitting. To deal with the nonlinearity, the equation (2) is successively split
[14] with a first order in time as, for x ∈ Ω and t ∈ [tn, tn+1]

∂tC̃ −
(
k

µ
∇P

)
· ∇C̃ − U

e
= 0 and ∂tC − C∇ ·

(
k

µ
∇P

)
= 0,

with C(x, tn) = C̃(x, tn+1). Since C(x, t) > 0 as soon as C0(x) > 0, the change of

variables C̆ = log(C) is applied to the second equation to obtain

∂tC̆ −∇ ·
(
k

µ
∇P

)
= 0.

Finally, the transformation C = exp(C̆) enforces the positivity.

3.2. Space and time discretization. Let ϕ1, ϕ2, ϕ3 be test functions, with ϕi,
∇ϕi in L2, for 1 ≤ i ≤ 3. Finite elements method in space is used, while the time
discretization is obtained with a semi-implicit scheme.

Algorithm 1 Semi-implicit scheme

Given P0, C0 and N ∈ N∗.
for n = 1 to N do

〈C
n+1/2 − Cn

∆t
, ϕ1〉 − 〈

(
k

µ
∇Pn

)
· ∇Cn, ϕ1〉 − 〈

Un

e
, ϕ1〉 = 0

C̆n+1/2 = log(Cn+1/2)

〈 C̆
n+1 − C̆n+1/2

∆t
, ϕ2〉+ 〈k

µ
∇Pn+1,∇ϕ2〉+

∫
∂Ω

k

µ
∂nP

n+1ϕ2 = 0

〈P
n+1 − Pn

∆t
, ϕ3〉+ 〈E

µ
k∇Pn+1,∇ϕ3〉 −

∫
∂Ω

E

µ
k∂nP

n+1ϕ3

−〈ELR
e

(ψ − Pn +RTCn, ϕ3〉 − 〈
VsU

n

e
, ϕ3〉 = 0

Cn+1 = exp(C̆n+1).
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This scheme is implemented using the software FreeFem++ [10]. The solution
P and C are computed with P2 and P1 elements respectively whereas the pure
convection terms are solved using the Characteristic-Galerkin method [27].

4. Numerical simulations. We present some numerical results obtained using
Algorithm 1. The objective of the simulations is to illustrate the domain of appli-
cability of the model. Geometries and parametrisation are case-specific; they are
not properties of the model itself.

4.1. Validation and comparison with an existing model. With no other 2D
dynamic model of phloem transport available, we consider a case analogous to a
1D system so as to compare with the results of [35], a reference implementation of
coupled water-solute transport. We simulate phloem transport in a 5 m-long, 10
cm-wide domain with a spatial step ∆x = 5 mm. A 24-hour period is simulated with
a time step ∆t = 1 s. The simulation starts with initial pressure and carbohydrate
concentration set to zero. Sap viscosity is a function of local solute concentration
as a 15th order polynomial fitted on experimental viscosity for sucrose solutions at
T = 293K [34]. Parameter values are given in Table 1. They are chosen to be
equivalent to those used in [35].

Symbol Description Value Units

LR Radial hydraulic conductivity 1.57× 10−13 m Pa−1 s−1

ψ Xylem hydrostatic pressure 0 Pa
R Gas constant 8.31 J mol−1 K−1

T Temperature 293 K
Vs Partial molal volume of sucrose 2.15× 10−4 m3 mol−1

kL Longitudinal permeability 9.28× 10−12 m2

kT Tangential permeability 9.28× 10−13 m2

e Phloem thickness 7.5× 10−6 m
E Phloem Young’s modulus 1.7× 107 Pa

Ũ Loading rate 3.375× 10−6 mol m−2 s−1

C∗ Reference sucrose concentration 500 mol m−3

µ Viscosity 10−3 at C = 0 Pa s

Table 1. Description of parameters employed in the model. Nu-
merical values correspond to the initial values used in section 4.1.

Figure 2 shows the predicted profiles of sucrose concentration (C), hydrostatic
pressure (P) and axial water flux (J). All profiles are qualitatively very similar
to those predicted in [35]. Peak positions, gradients magnitude and transitions
over time are well reproduced. The profiles are also quantitatively comparable:
the difference is within a few percent. It is only near steady-state, at t = 24 h,
that the variation becomes significant for C (less than 10% underestimation) and
P (less than 20% underestimation). Although the behaviour at t = 24 h is not
particularly physical - simulated P is twice as high as the highest known measured
value (2.4 MPa, [6]), loading and leaf dynamics are periodic, not constant [5] -
both models should yield closer predictions. While the source of the discrepancy
has not been identified, it could result from any of the following: differences in
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parametrisation due to domain geometry, numerical error, missing P derivative in
eq. (2), implementation details, or the different µ = f(C) function.

0:10

0:30

1:10

2:10

5:20

24:00

0

250

500

750

1000

1250

C
on

ce
nt

ra
tio

n 
(m

ol
 m

−3
) Thompson and Holbrook (2003)

Proposed model

0:10

0:30

1:10

2:10

5:20

24:00

0

1

2

3

4

5

P
re

ss
ur

e 
(M

P
a)

0:
10

0:30

1:10

2:10

24:00

0.0e+00

4.0e−14

8.0e−14

1.2e−13

0.00 0.25 0.50 0.75 1.00

Relative length

A
xi

al
 w

at
er

 fl
ux

 (
m

3  s
−1

)

Figure 2. Sucrose concentration (C), hydrostatic pressure (P) and
water flux (J) in the phloem as simulated with the model of [35]
(solid line) and with the proposed model (dashed line)

The discrepancy originates from the present model predicting a flow that is
slightly more efficient if compared to [35]. As a result less solute accumulates and
less pressure builds up in the phloem. The difference is larger near steady-state
because error accumulates at each time step. It is also more visible for C and P,
which appeared very sensitive to small alterations of the flux.
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In Figure 3, we show the numerical convergence of the scheme. Here different
values of ∆t and ∆x are computed uniformly from 0.5 s to 10 s and from 1 mm
to 100 mm respectively. We compute the maximum error by comparison with the
approximated solution for ∆t = 0.1 s, ∆x = 0.1 mm after 12 hours. We also plot
the lines ∆t and ∆x to demonstrate that the scheme is of order 1.
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Figure 3. Maximum of the relative error obtained by comparison
with the approximated solution for ∆t = 0.1s, ∆x = 0.1mm after
12 hours.

4.2. Parametric study. Several approaches are possible to simplify the governing
equations (1) and (2). Sap viscosity can be treated as a constant instead of a
function of sucrose concentration (µ = µ0). This eliminates one term from eq. (2)
and saves the computational cost of evaluating viscosity at all points of the grid.
Alternatively, the effect of sucrose’s partial molal volume can be neglected (Vs = 0).
Also, phloem’s thickness may also not be updated during the simulations (e = e0).
Each approach is considered individually as well as all at once and compared to
results of the previous section.

Figure 4 shows how the axial water flux is affected by the proposed simplifica-
tions. Small changes in the J profile can have large effects on both C and P profiles
(not shown here). With a constant sap viscosity, the flux is underestimated during
the earlier stages and gets overestimated in the final stage. The position of peak flux
also moves more slowly down the conduit with µ = µ0. Ignoring the contribution
of sucrose to sap volume (Vs = 0) causes the flux to be underestimated at any time.
Initially, the effect is weak while the sucrose concentration is low but progressively
increases in magnitude. Modelling the phloem thickness as being independent of
pressure introduces only marginal differences. Although the longitudinal gradient
of J is slightly higher between the loading zone and the front of the flow, the mag-
nitude is comparable to that of the reference simulation. Because the simplification
has only a minor influence on the J profile, it may seem advantageous to avoid
computing phloem’s deformation under flow. However, the simplification also has
little consequences from a computational point of view; it does not modify the gov-
erning equations and all terms must still be evaluated. As expected [19], the flux
predicted by combining all simplications is very close to the reference behaviour
in near steady-state conditions. On the other hand, the flux in the early phases
(0:10, 1:10) is strongly affected. Those simplifications are thus best avoided when
attempting to describe phloem dynamics and rapid transitioning. Overall, none of
the proposed simplifications appeared to be sufficiently beneficial to be included in
the model.
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Figure 4. Effects of model simplications on the axial water flux
at an early (10 minutes), intermediate (1h10) and late stage (24h).
The considered simplifications are a constant viscosity (µ = µ0,
dashed line); neglecting the partial molal volume of sucrose (Vs = 0,
dash-dot line); initial geometry (e = e0, dotted line); all simplifi-
cations combined (grey, solid line); no simplifications (black, solid
line).

4.3. Towards realistic designs. The objective of this application is to depict how
the model can help in studying the behaviour of living trees. We simulate sap flow
on the silhouette of an entire tree. In this application, a finite element mesh is
created by Delaunay triangulation from a photograph of Te Matua Ngahere (see
fig. 5). This kauri (Agathis australis) tree is the second largest in New Zealand.
The height, diameter and volume of the tree trunk are equal to 10.21 m, 5.22 m and
208.1 m3, respectively. There are obvious limitations to this approach. The surface
is reconstructed from a photographic projection and flat. It means that the mesh
is geometrically distorted compared to the actual 3D phloem layer and the results
in this application get more inaccurate towards lateral edges. The main objective
here is to show that the model can operate on a geometry that is not limited to
rectangular channel but that has been retrieved from natural objects.

Figure 6 shows the tentative profiles for sucrose concentration and pressure in the
phloem. Because of the aforementioned limitations, the profiles are not expected
to be realistic. To improve on the quality of the results would require further steps
such as reconstructing the surface of an existing tree stem in 3 dimensional space,
determining the pattern of sieve cells’ orientation on that surface, and identifying
the strength of all carbon sources and sinks. Undertaking those steps is beyond the
scope of this study.

4.4. Orthotropic transport. In this application, the potential for interaction be-
tween orthotropic (direction-dependent) transport and competing sinks is investi-
gated. A simulation is carried out for a plate of dimensions L = 1 m, w = 0.6 m
and e = 7.5 µm. Three sources, denoted ri ∀i ∈ [1, 3], are located near the top
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Figure 5. Mesh reconstruction of Te Matua Ngahere from a pho-
tograph (credit: D. Sellier).

Figure 6. Phloem pressure (P), sucrose concentration (C) and
water flux (J) distributions on a Te Matua Ngahere after 12 hours.

of the conduit. They are aligned diagonally to represent the spiral arrangement of
branches (phyllotaxis). They have identical strength with a loading flux equal to

Ũ . The botton region of the plate (y < 0.1 m) is divided into two sinks, s1 on
the left-hand side (x < 0.3 m) and s2 on the right-hand side (x > 0.3 m). The
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unloading at sinks is equal to Ui = piŨ
C
C∗ with p1 = 0.5 and p2 = 1. The lateral

permeability is set to kT = 0.01kL. The value is set arbitrarily to induce anisotropy
in the system but not so high as to completely inhibit lateral transport. It rep-
resents the intermediate between isotropic transport (kT = kL) and the very high
ratio (kT = 10−4kL) suggested by [31] to recreate experimental conditions.

The distributions of sap pressure (P), sucrose concentration (C) and water flux
(J) after 12 hours are shown in Figure 7. A vertical pressure ridge (P > 0.95
MPa) has formed on the left side of the conduit and a depression (0.7 MPa) has
developed in the bottom right region corresponding to s2. Like in the case of P,
the C isocontours are slightly oblique, as would be expected from the difference
of sink strength. Despite the fact that the three sources have the same strength,
sucrose concentration at each source is not equal. Sucrose gets more concentrated
as one moves leftward from one source to the next. The J pattern is opposite to
those of P and C. The flow reaches higher values on the right side of the conduit
because sources on that side are aligned with the stronger sink. In contrast, the sap
flows less efficiently on the left side, which is aligned with the weaker sink. This
causes a build-up in pressure and available sucrose. The role of sieve cell orientation
on phloem transport is highlighted by strong longitudinal features in all profiles.
Lateral transport is very limited. Nevertheless, the simulated distributions reveal a
remarkable amount of interaction between conduit orientation and sink priorities.

Figure 7. Phloem pressure (P), sucrose concentration (C) and
water flux (J) distributions on an orthotropic plate after 12 hours.

4.5. Three-dimensional surfaces. There are limitations associated to represent-
ing the phloem of real trees as a planar surfaces. Tree’s external surface must be
figuratively cut and unrolled. It involves conformal mapping and setting periodic
conditions at the lateral boundaries (for circumferential connectivity).

The alternative is to simulate transport directly on three-dimensional surfaces.
Figure 8 shows a simulation carried out with the present model on a 3D domain. The
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mesh was created from an implicit surface using DELISO software [3]. Transport is
simulated for a branched system, here a tree fork. Forks are common in deciduous,
urban trees. Sap and carbohydrates flow from the primary branches and merge
in the lower region, the main tree stem. Other geometrical features particular
to trees (e.g. scars, buttresses, burls) can be included in simulations as long as a
triangulated mesh can be generated to match the original geometrical configuration.
Such a mesh was not available for this application.

Figure 8. Phloem pressure (P), sucrose concentration (C) and
water flux (J) distributions in a 3D fork after 12 hours.

5. Conclusion. The model presented here takes the mechanistic description of an
osmotically-generated pressure flow and extends it to a phloem domain represented
by a surface with anisotropic transport properties. The key features of the model
were illustrated with applications. The model represents an important advance
towards modelling the transport process for real, living trees. The transport equa-
tions are solved using a finite element method; each subdivision of the domain is
assigned independent properties. The number of elements is only limited by the
available computational ressource. With this approach, large-scale simulations be-
come possible and the vast difference that exists between sieve cell dimensions and
tree size can be bridged. The finite element approach is also particularly appropriate
for describing a highly heterogenous biological material. As transport parameters
are defined on an element-by-element basis, virtually any distribution of hydraulic
properties and unloading rates can be represented in the model. Finally, the model
can describe transport and source/sink dynamics with a fine time scale (under a
second) for periods over several days. The effects on transport of heterogeneous
distribution of hydraulic properties, periodic loading and interactions between sieve
orientation and sink priority will all be investigated in future studies.

Major challenges have to be addressed before phloem transport can be computed
for real tree configurations. The first challenge is to generate the external surface
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of an experimental tree, which could be done using 3D laser scanner or terrestrial
LiDAR for trees of moderate size. Another challenge is to identify the distribution
of diameter and orientation of sieve elements in a tree. The flow grain analogy
[28] or models of auxin transport [17] could assist in approximating the pattern of
fibre orientation. A third, very significant challenge is to evaluate the individual
strength of all carbon sinks and sources within the tree over time. The emergence of
experimental techniques relying on radiotracers and Positron Emission Tomography
[23, 30] will be invaluable to monitor in vivo carbon dynamics and to inform models.

The presented model could be used to explore further additional aspects rela-
tive to the interaction between growth and transport. For example, it would be
interesting to research optimality in the conflicting demands of carbohydrates for
regulating transport (osmoregulation) and supplying living tissues (growth, respi-
ration). From both a mathematical and biological point of view, the feedback loop
between shape and transport is also of interest. On one hand, sap flow controls local
growth by supplying the building material. On the other hand, tree stem geometry,
derived from growth, impacts on where the sap flows. It has strong implications on
the origin and the patterns of shape formation in the plant kingdom. Exploring the
relation between tree shape and transport could be achieved by simulating phloem
transport for virtual growing trees [31] generated using a Level Set method [32].
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[12] T. Hölttä, M. Mencuccini and E. Nikinmaa, Linking phloem function to structure: Analysis
with a coupled xylem-phloem transport model, J. Theo. Bio., 259 (2009), 325–337.
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