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Abstract. This paper investigates the spatial dynamics of a zebrafish model
with cross-diffusions. Sufficient conditions for Hopf bifurcation and Turing bi-

furcation are obtained by analyzing the associated characteristic equation. In

addition, we deduce amplitude equations based on multiple-scale analysis, and
further by analyzing amplitude equations five categories of Turing patterns are

gained. Finally, numerical simulation results are presented to validate the theo-

retical analysis. Furthermore, some examples demonstrate that cross-diffusions
have an effect on the selection of patterns, which explains the diversity of ze-

brafish pattern very well.

1. Introduction. Patterns, which represent a kind of organized yet heterogeneous
macroscopic structure in time or space or space-time, are widely investigated using
the reaction diffusion equations [24, 8, 3]. In the natural world, many animals have
fascinating color patterns on their skins, exemplified by the coloration of zebrafish
and tigers [20]. Such patterns are one of the most obvious traits of animals and
serve a variety of functions. For example, patterns have been successfully used
in camouflage, warning, social aggregation, mate choice, adaptive radiation, and
other strategies [23, 14, 18]. Given patterns’ prominence and ecological functions,
zebrafish patterns often are determined by natural selection and are of particu-
lar interest to biologists [16]. These patterns elicited long-standing interest from
developmental and cell biologists as well: their accessibility to observation and ma-
nipulation has made them a classic and enduring system for studying basic genetic
and cellular mechanisms [16, 22, 19].
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In recent years, some research results have been brought to bear on zebrafish
patterns. In [4, 5], the authors established three different models to investigate the
molecular mechanisms of zebrafish patterns, and discussed one-dimensional pat-
terns. Schnackenberg [17] studied the following reaction-diffusion zebrafish model,{

∂u
∂t = ∇2u+ γ(a− u+ u2v)
∂v
∂t = d∇2v + γ(b− u2v),

(1)

where u and v denote the concentration of activator and substrate, respectively; a
and b are the basic production rate of two substances; γ is the reaction rate. In this
work, Schnackenberg studied a two-component chemical reaction system that had
to involve at least three reactions for exhibiting limit cycle behavior. Under this
condition, possible candidates for chemical limit systems were selected by postulat-
ing their steady state to be an instable focus. [12] also gave an account of various
biological pattern formation phenomena, including the zebrafish patterns. The pat-
terns are formed in the early developmental stages. In particular, the number of
stripes did not change in an animal’s life time, even when the body size increased
considerably. However, the phenomenon has not always existed in nature. The
authors [10] proved that when fish are growing, their skin patterns change, and this
change in their patterns could be explained by a simple reaction-diffusion system.
Based on the molecular mechanisms, it was suggested that leopard gene produc-
tion is a component of putative reaction-diffusion system [1, 9], which also showed
that mutations in the zebrafish gene, leopard, changed the pattern from stripes to
spots. All the pattern variations of leopard mutations could be generated in a sim-
ulation by changing a parameter value that corresponds to the reaction kinetics in
a putative reaction-diffusion system. [11, 26] discussed the discovery that zebrafish
patterns appeared independent of the internal tissues or the body structures, and
these patterns were robust against perturbation. In [21], Hiroto et al. studied Tur-
ing instability, and they controlled the variation of one parameter to discuss the
directionality of the tripes of fish in terms of the anisotropy of diffusion. Two zebra
fish of the same species have two different spots on the skin, their hybrid offspring
may be give rise to spot-stripe mixtures on the skin [13], then the authors investi-
gated the intermediate patterns and obtained the numerical result, which explained
the hybridization of zebrafish in nature very well.

As is well known, the above existing zebrafish spatio-temporal models in ecolog-
ical networks only concentrate on self-diffusion. However, zebrafish gene products
can freely diffuse within a cell, apart from the random motion of individuals, i.e.
self-diffusion, one production of genes tends to diffuse in the direction of the other.
More precisely, the movement of a gene at any particular location is influenced
by the gradient of the concentration of the other at that location. In biomathe-
matics, such a scenario can be well described by reaction-diffusion systems with
cross-diffusion terms [27], but it has not been applied to study zebrafish patterns.
Therefore, considering the effect of cross-diffusions between zebrafishes will provide
a new insight into pattern formation.

In light of the above discussions, based on system (1), the zebrafish pattern model
can be formulated by the following equation with cross-diffusion terms:

∂u(t,x,y)
∂t = d11∇2u(t, x, y) + d12∇2v(t, x, y) +R(a− u2(t, x, y)

+u2(t, x, y)v(t, x, y))
∂v(t,x,y)

∂t = d21∇2u(t, x, y) + d22∇2v(t, x, y) +R(b− u2(t, x, y)v(t, x, y))

(2)
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for t > 0, (x, y) ∈ Ω = [0, L]× [0, L] with homogeneous Neumann boundary condi-
tions

∂u

∂ν
(t, x, y) =

∂v

∂ν
(t, x, y) = 0, t ≥ 0, (x, y) ∈ ∂Ω,

and initial conditions {
u(0, x, y) = u0 ≥ 0
v(0, x, y) = v0 ≥ 0

(3)

where u and v denote the concentration of activator and substrate, respectively; a
and b are the basic production rate of two substances; R is the reaction rate. Ω is a
bounded domain in Rn with smooth boundary ∂Ω, ν is the outward normal vector.

∇ denotes the Laplacian operator in Rn, namely, ∇2 = ∂2

∂x2 + ∂2

∂y2 . d11, d22 > 0 are

the self-diffusion coefficients, d12, d21 are the cross-diffusion coefficients, which may
take positive or zero values. A positive value shows that one species of molecules
tends to diffuse in the direction of the other concentration species. In this paper,
our main contributions are summarized as follows.

(1) Diffusion is a very important factor to selection of patterns, especially, cross-
diffusions. In this work, to better describe the zebrafish patterns, we propose a
new viewpoint to research zebrafish patterns, i.e. studying the spatial dynamics of
model (2) with cross-diffusions.

(2) Through bifurcation theory analysis of the equilibrium points for the proposed
model, we obtain the sufficient conditions of Hopf bifurcation and Turing instability,
respectively. To determine the selection of Turing patterns, we deduce the amplitude
equations based on multiple-scale analysis.

(3) It is easy to gain five categories of Turing patterns by analyzing amplitude
equations. The associated characteristic equation is established based on random
initial perturbation. Then through stability analysis, we obtain the corresponding
stable range of these patterns.

(4) Numerical results show that the five categories of patterns are decided by the
parameter of model (2) or the coefficients of cross-diffusions. It is important to note
that cross-diffusions also can change the selection of patterns, which is one reason
the coloration of zebrafish varies.

2. The model and the analysis. In this section, based on Hopf bifurcation and
Turing bifurcation theory, we will discuss the dynamical behavior of model (2).
Before our discussion, according to thermodynamics theroy one should consider the
following fact

d11d22 − d12d21 ≥ 0,

which implies that all eigenvalues of the diffusion matrix D =

(
d11 d12
d21 d22

)
are

positive definite.
For simplicity, one can rewrite model (2) as the following form{

∂u
∂t = d11∇2u+ d12∇2v + f(u, v)
∂v
∂t = d21∇2u+ d22∇2v + g(u, v),

(4)

where f(u, v) = R(a− u+ u2v), g(u, v) = R(b− u2v).
The steady state of this system is E0, E0 = (u∗, v∗) = (a+ b, b

(a+b)2 ), a+ b > 0

and b > 0 because of practical significance. Let us briefly recall here the results of
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the linear stability analysis around E0. The Jacobian matrix corresponding to E0

is

J =

(
a11 a12
a21 a22

)
, (5)

where a11 = ∂f
∂u |(u∗,v∗) = −Ra−b

a+b , a12 = ∂f
∂v |(u∗,v∗) = R(a + b)2, a21 =

∂g
∂u |(u∗,v∗) = −R 2b

a+b , a22 = ∂g
∂v |(u∗,v∗) = −R(a+ b)2.

Then we get the following linear equation{
∂u
∂t = d11∇2u+ d12∇2v + a11u+ a12v
∂v
∂t = d21∇2u+ d22∇2v + a21u+ a22v.

(6)

Expanding the variables in the Fourier space(
u
v

)
=

∞∑
k=0

(
c1k
c2k

)
exp(λkt+ ikr), (7)

where λk is the growth rate of perturbations in time t, i is the imaginary unit and
i2 = −1. r = (x, y) is the spatial vector in two dimensions. We substitute (7) into
(6), then obtaining the characteristic equation:

λ2 − trkλ+ ∆k = 0. (8)

According to (8), it is easy to show that the eigenvalues λk as follows

λk =
trk ±

√
tr2k − 4∆k

2
, (9)

where

trk = a11 + a22 − (d11 + d22)k2, (10)

∆k = (d11d22− d12d21)k4 + (a12d21 + a21d12− a11d22− a22d11)k2 + a11a22− a12a21.
(11)

Hopf bifurcation occurs when Im(λk) 6= 0, Re(λk) = 0, at k = 0, i.e. a11 +a22 =
0. So the critical value of the Hopf bifurcation parameter bH satisfies the following
equation

b3 + 3ab2 + (3a2 − 1)b+ a3 + a = 0. (12)

The unbalance changes of phases, corresponding to Turing branches, are the
transitions of model from the uniform state to the oscillatory state. After the
process, the formed patterns are called Turing patterns. From above discussion, we
can obtain the necessary conditions for causing Turing instability. For some k, we
have 

tr0 = −a−ba+b − (a+ b)2 < 0

∆0 = (a+ b)2 > 0
∆k = (d11d22 − d12d21)k4 +R((a+ b)2d21 − 2b

a+bd12 + a−b
a+bd22

+(a+ b)2d11)k2 +R2(a+ b)2 < 0.

(13)

(13) indicates that system (2) is unstable for some perturbations to the wave num-
ber. So getting ∆k = 0 at the critical value, namely, Turing bifurcation occurs when
Im(λk) = 0, Re(λk) = 0, at k = kT 6= 0. Therefore, the critical value of the Turing
bifurcation parameter bT satisfies the following equation

(a+ b)3(d11 + d21)− 2bd12 + (a− b)d22 + 2
√
d(a+ b)2 = 0, (14)

where d = d11d22 − d12d21.
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When Turing patterns come into being, the wave number kT satisfies

k2T = −
(a+ b)2d21 − 2b

a+bd12 + a−b
a+bd22 + (a+ b)2d11

2d
R. (15)

From the above analysis, it can be obtained that the simplified conditions of
Turing instability for model (2){

a− b+ (a+ b)3 > 0

(a+ b)3(d11 + d21)− 2bd12 + (a− b)d22 + 2
√
d(a+ b)2 < 0.

(16)

Remark 1. Eq. (16) shows that diffusion can damage stability. Moreover, if the
basic production rate of the activator is greater than the basic production rate of the
substrate, namely, a ≥ b, then the cross-diffusion coefficient d12 is the key factor to
damage stability and form Turing bifurcation. While, if the basic production rate of
the activator is less than the basic production rate of the substrate, namely, a < b,
then the self-diffusion coefficient d22 together with the cross-diffusion coefficient d12
are both the key factors to damage stability and form Turing bifurcation.

At the Turing bifurcation threshold, the spatial symmetry of system (2) is broken,
and the patterns are stationary in time and oscillatory in space with the correspond-
ing wavelength λT = 2π

kT
.

According to Hopf and Turing bifurcation conditions, we could get the Hopf
bifurcation region and Turing instability region. They are shown in the Figure 1.

Now let us observe the real parts of eigenvalues when b is decreasing. Figure 2
shows the change of the real parts of eigenvalues.
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Figure
1. Bifurcation di-
agram of model (2)
for R = 1, d11 = 1,
d12 = 2, d21 = 2,
d22 = 20.
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Figure 2. a = 0.14,
R = 1, d11 = 1, d12 =
2, d21 = 2, d22 = 20.

3. Turing pattern of zebrafish.

3.1. Pattern selection. In this section, we perform extensive numerical simula-
tions of the spatially extended model (2) in two-dimensional spaces, and the qual-
itative results are shown here. All our numerical simulations employ the non-zero
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initial and zero-flux boundary conditions with a system size of 100×100, The space
step is 4x = 1, 4y = 1, and the time step is 4t = 0.01.

Take a = 0.14, R = 1, d11 = 1, d12 = 2, d21 = 2, d22 = 20. By a simple
calculation, we find g1 = 2.4494, g2 = 14.6185, h = 1.7567, µ1 = −0.0243, µ2 = 0,
µ3 = 0.051, µ4 = 0.4067 in Appendix A and B. Obviously the parameter values
of g1, g2, and h have the following relations: g2 > g1 > |h| > 0, otherwise it is
necessary to include some other terms up to the fourth order or higher.

Initially, the entire system is placed in the stationary state (u∗, v∗). We run
the numerical simulations until they reach a stationary state or until they show
a behavior that does not seem to change its characteristics any longer. In the
numerical simulations, different types of dynamics are observed. It is also found
that the distribution of u and v are always the same type. Consequently, our
analysis of pattern formation can be restricted to one distribution. In this section,
the distribution of u is showed. In the following, it will show the Turing patterns for
the parameters (a, b) located in the Turing space. It is reasonable to take random
small initial perturbation of the stationary state (u∗, v∗).

Example 1. Let b = 1.4 and other parameters unchanged. By calculating, we
obtain µ = 0.0267 satisfying µ2 < µ < µ3. According to Conclusion (III), there is
only Hπ hexagon patterns. These facts are illustrated by the numerical simulations
in Figure 3, which shows that the Hπ hexagon patterns prevail over the whole
domain, and the dynamics of system (2) does not undergo any further changes.
The numerical simulation is compatible with the theoretical analysis. This pattern
can be seen in nature, such as Figure 4. From Figure 4, we find that if the basic
production rate of the substrate is 1.4 in a zebrafish, then the spot pattern of the
zebrafish is unchanged and it is always a hexagon pattern.

(a) (b) (c)

Figure 3. Pictures of the time evolution of u at different instants
with a = 0.14, b = 1.4, R = 1, d11 = 1, d12 = 2, d21 = 2,
d22 = 20 and the parameter values located in Turing space. (a)
200000 iteration; (b) 500000 iteration; (c) 5000000 iteration.

Example 2. Take b = 1.3, and other parameters are fixed. It is easy to gain
µ = 0.0962 satisfying µ3 < µ < µ4. According to Conclusion (II), (III), Hπ hexagon
patterns and stripe patterns appear. Figure 5 explains the fact that the stationary
stripe patterns and Hπ emerge at the same time. This phenomenon is called pinning
effect [7]. Combine with Figure 3, it can be obtained that when µ > µ3, Hπ hexagon
patterns begin to break up into stripe patterns gradually. Moreover, this pattern
can be searched in the skin of zebrafish (Figure 6). From Figure 6, we find that
if the basic production rate of the substrate is 1.3 in a zebrafish, then the spot
patterns of the zebrafish will be the hexagon patterns and the stripe patterns.
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Figure 4. Zebrafish with spot patterns in nature (www.sucaiw.com).

(a) (b) (c)

Figure 5. Pictures of the time evolution of u at different instants
with a = 0.14, b = 1.3, R = 1, d11 = 1, d12 = 2, d21 = 2,
d22 = 20 and the parameter values located in Turing space. (a)
200000 iteration; (b) 800000 iteration; (c) 2000000 iteration.

Figure 6. Zebrafish with spot-stripe patterns in nature (www.
nipic.com).

Example 3. Choose b = 1.2, and keep other parameters as above. By the cal-
culation, the parameter satisfies µ3 < µ = 0.1657 < µ4. According to Conclusion
(II), stripe patterns emerge. The fact is illustrated by the numerical simulations
in Figure 7. The numerical simulation is compatible with the theoretical analysis.
As above analysis, the Hπ hexagon patterns vanish. In other words, there are only
the stripe patterns. In nature, we can search this pattern on the body of zebra fish
(Figure 8). From Figure 8, we find that if the basic production rate of the substrate

www.sucaiw.com
www.nipic.com
www.nipic.com
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is 1.2 in a zebrafish, then the spot pattern of the zebrafish is always a stripe pattern.

(a) (b) (c)

Figure 7. Pictures of the time evolution of u at different instants
with a = 0.14, b = 1.2, R = 1, d11 = 1, d12 = 2, d21 = 2,
d22 = 20 and the parameter values located in Turing space. (a)
200000 iteration; (b) 600000 iteration; (c) 2000000 iteration.

Figure 8. Zebrafish with stripe patterns in nature (Baidu Baike).

Example 4. Let b = 0.96, and other parameters as Example 1. By a simple
calculation, we obtain µ = 0.3326, which satisfies µ3 < µ < µ4. According to
Conclusion (II), (III), H0 hexagon patterns and stripe patterns emerge. The fact
is illustrated by the numerical simulations in Figure 9. The numerical simulation
corresponds to the theoretical analysis. System (2) is bistable, that is to say, the
two kinds of patterns exist at the same time. When µ is close to the critical value
µ4, the stripe patterns begin to break up and system (2) transfers to H0 hexagon
patterns from the stripe patterns gradually. Actually, the beautiful pattern exists
in nature, such as Figure 10. From Figure 10, we find that if the basic production
rate of the substrate is 0.96 in a zebrafish, then the spot pattern of the zebrafish
becomes the hexagon pattern and the stripe pattern.

Example 5. Take b = 0.8, and fix other parameters. By calculating, the parameter
satisfies µ4 < µ = 0.4438. Figure 11 shows that there are only H0 hexagon patterns.
The numerical simulation can not correspond to the theoretical analysis. This
phenomenon can not be explained by the amplitude equations. This is the reentry
of the hexagon patterns and can be explained as follows: when the system gets
away from the Turing critical bifurcation line, some of the primary slave modes
turn into active modes. We can not adiabatically eliminate them when deducing
the amplitude equations. On the contrary, we should add them into the amplitude
equations. In addition, this pattern can be seen in nature, such as Figure 12. From
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(a) (b) (c)

Figure 9. Pictures of the time evolution of u at different instants
with a = 0.14, b = 0.96, R = 1, d11 = 1, d12 = 2, d21 = 2,
d22 = 20 and the parameter values located in Turing space. (a)
200000 iteration; (b) 1000000 iteration; (c) 2000000 iteration.

Figure 10. Zebrafish with spot-stripe patterns in nature (www.
pethoo.com).

Figure 12, we find that if the basic production rate of the substrate is 0.8 in a
zebrafish, then the spot pattern of the zebrafish is only the hexagon pattern.

(a) (b) (c)

Figure 11. Pictures of the time evolution of u at different instants
with a = 0.14, b = 0.8, R = 1, d11 = 1, d12 = 2, d21 = 2,
d22 = 20 and the parameter values located in Turing space. (a)
20000 iteration; (b) 40000 iteration; (c) 2000000 iteration.

www.pethoo.com
www.pethoo.com
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Figure 12. Zebrafish with spot patterns in nature (www.4908.cn).

3.2. Impact of cross-diffusions on pattern selection. Example 6. To observe
the impact of different cross-diffusions on the selection of patterns, we consider
system (2) with a = 0.14, b = 1.4, R = 1, d11 = 1, d22 = 20. In order to compare
with system (2) having cross-diffusion, it is necessary to take system (2) without
cross-diffusions into account, namely, d12 = d21 = 0. It is easy to obtain g1 =
20.5941, g2 = 42.9383, h = 0.3092, µ1 = −0.00022447, µ3 = 0.0039, µ4 = 0.0161,
µ = 0.0157. Obviously, µ3 < µ < µ4. From Figure 13, we can observe that the
stationary stripe patterns and H0 emerges.

(a) (b) (c)

Figure 13. Pictures of the time evolution of u at different instants
with a = 0.14, b = 1.4, R = 1, d11 = 1, d12 = 0, d21 = 0,
d22 = 20 and the parameter values located in Turing space. (a)
400000 iteration; (b) 2000000 iteration; (c) 4000000 iteration.

Example 7. Take d12 = d21 = 1, and other parameters show as above. By a
simple calculation, it is easy to show that g1 = 9.0002, g2 = 24.764, h = 1.2476,
µ1 = −0.0066, µ3 = 0.0564, µ4 = 0.2679, µ = 0.000785, µ2 < µ < µ3. According to
Conclusion (III), there are only Hπ hexagon patterns in Figure 14, which is different
from Figure 13. The numerical simulation corresponds to the theoretical analysis.
The result illustrates that cross-diffusions can change the selection of patterns. This
pattern can be seen in nature, such as Figure 15. From Figure 15, we find that the
cross-influence on the activator and the substrate in a zebrafish will result in the
single hexagon pattern.
Example 8. Choose d12 = 2, d21 = 1, and other parameters do not change.
By a simple calculation, g1 = 5.7966, g2 = 21.3726, h = 1.6727, µ1 = −0.0144,
µ3 = 0.0669, µ4 = 0.3802, µ = 0.11, µ3 < µ < µ4. According to Conclusion (II),

www.4908.cn
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(a) (b) (c)

Figure 14. Pictures of the time evolution of u at different instants
with a = 0.14, b = 1.4, R = 1, d11 = 1, d12 = 1, d21 = 1,
d22 = 20 and the parameter values located in Turing space. (a)
200000 iteration; (b) 1000000 iteration; (c) 2600000 iteration.

Figure 15. Zebrafish with spot patterns in nature (www.5tu.cn).

there are only stripe patterns. The patterns in Figure 15 is obviously different with
Figure 13. The numerical simulation is compatible with the theoretical analysis.
The result also implies the effect of cross-diffusions on the selection of patterns.
This pattern can be seen in nature, such as Figure 17. From Figure 17, we find that
the cross-influence on the activator and the substrate in a zebrafish can also result
in the single stripe pattern.

(a) (b) (c)

Figure 16. Pictures of the time evolution of u at different instants
with a = 0.14, b = 1.4, R = 1, d11 = 1, d12 = 2, d21 = 1,
d22 = 20 and the parameter values located in Turing space. (a)
200000 iteration; (b) 1000000 iteration; (c) 2600000 iteration.

www.5tu.cn
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Figure 17. Zebrafish with stripe patterns in nature (Baidu Baike).

4. Conclusions and discussions. On the one hand. The amplitude equations
for the active modes are established, which determines the stability of amplitudes
towards uniform and inhomogeneous perturbations. It presents all five categories of
Turing patterns by analyzing amplitude equations, which indicates that the model
dynamics exhibits complex pattern. In addition, system (2) perfectly simulates the
pattern on the body of zebrafish. More specifically, from Figure 3 to Figure 12, we
can find: in the range µ2 < µ < µ3, Hπ hexagon patterns emerge; in the range
µ3 < µ < µ4, Hπ-hexagon-stripe mixtures→ stripes→ H0-hexagon-stripe mixtures
can be observed; in the range µ4 < µ, H0 hexagon patterns appear. At the same
time, it is worth noting that µ is not close to the critical points µ2 and µ3, however,
the numerical results cannot correspond perfectly to our theoretical analysis. This
means that our theoretical analysis is appropriate just for the adjacent domains of
the critical points µ2 and µ3. In a word, we obtain that the sequence Hπ hexagons
→ Hπ-hexagon-stripe mixtures → stripes → H0-hexagon-stripe mixtures → H0

hexagons emerges by increasing the values of b. That implies parameter can lead
to the change of pattern.

On the other hand, we also discuss the effect of cross-diffusions on pattern se-
lection. From Figure 13, Figure 14,and Figure 16, it is obvious that H0 hexagon
patterns and stripe patterns coexist when system (2) have not cross-diffusions. How-
ever, there are only stripe patterns or hexagon patterns when the cross-diffusion
terms emerge and change. In other words, cross-diffusions can change the selection
of patterns. The methods and results in the present paper may enrich the research
of the pattern formation in the zebrafish model, or may be useful for other reaction-
diffusion systems. For example, the pattern research in reaction-diffusion ecological
system is common and the theory is mature. But, with the best of our knowledge,
a few researchers can combine the theoretical patterns with the realistic patterns.
That is to say, they can not find the realistic patterns to support their theoretical
analysis. This paper makes up these lacks and we have give some real zebrafish to
support our results.
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Appendix A: Amplitude equations. Based on the above discussion, we still
cannot determine the selection and competition of Turing patterns. In the follow-
ing, we will discuss the pattern selection close to the onset b = bT (Although we have
not given the exact expression of bT , we can also discuss the amplitude equations
near b = bT so long as bT being as an entirety. Moreover, in numerical simulations
we can calculate bT accurately.), the eigenvalues associated with the critical modes
are close to zero and they are slowly varying modes, but the off-critical modes relax
quickly, so only perturbations with k around kT need to be considered. Conse-
quently, all dynamics can be reduced to the dynamics of active slow modes [2], so
the stability and selection of different patterns close to the onset can be studied
by investigating the amplitude equations of the system. Driving the coefficients of
amplitude equations has two methods, one is symmetrical analysis and the other
is standard multiple-scale analysis. Symmetrical analysis is very concise, however,
it has many limits as well, especially on describing a partial differential equation,
which has specific relationship between coefficients and parameters of system. As
is well known, the standard multiple-scale analysis is one of the best way to derive
amplitude equations [15, 6]. The method is based on the theory near the instability
threshold. The basic state is unstable only with respect to perturbations with wave
numbers close to the critical value kT .

Let ū = u− u∗, v̄ = v− v∗ and drop the bars for simplicity of notations. System
(2) can be rewritten as the following form{

∂u
∂t = d11∇2u+ d12∇2v + a11u+ a12v +R(v∗u2 + 2u∗uv + u2v)
∂v
∂t = d21∇2u+ d22∇2v + a21u+ a22v −R(v∗u2 + 2u∗uv + u2v),

(17)

transforming the positive constant steady state E0 into the zero equilibrium. In the
following, we take Taylor series expansion and omit the terms o(x3). The solutions
of system (17) can be expanded as(

u
v

)
=

3∑
i=1

(
Aui
Avi

)
eikir + c.c, (18)

where c.c denotes the complex conjugate.
Setting

c =

(
u
v

)
, N =

(
N1

N2

)
.

Model (17) can be converted to the following system

∂c

∂t
= Lc+N, (19)

where

L =

(
a11 + d11∇2 a12 + d12∇2

a21 + d21∇2 a22 + d22∇2

)
, (20)

N =

(
R(v∗u2 + 2u∗uv + u2v)
−R(v∗u2 + 2u∗uv + u2v)

)
. (21)
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We only analyse the behavior of the controlled parameter which is close to the
onset b = bT for this system. Then expanding b in the following term with this
method

bT − b = ε2b2 +O(ε3), (22)

where ε is a small parameter.
By expanding the variable c and the nonlinear term N according to the small

parameter, we obtain the following results:

c =

(
u
v

)
= ε

(
u1
v1

)
+ ε2

(
u2
v2

)
+ · · · , (23)

N = ε2h2 + ε3h3 +O(h4), (24)

where h2, h3 correspond to the second and third order of ε in the expansion of the
nonlinear operator respectively. L can be expanded as follows

L = LT + (bT − b)M, (25)

where

LT =

(
a∗11 + d11∇2 a∗12 + d12∇2

a∗21 + d21∇2 a∗22 + d22∇2

)
, (26)

M =

(
b11 b12
b21 b22

)
, (27)

where a∗11 = a11|b=bT , a∗12 = a12|b=bT , a∗21 = a21|b=bT , a∗22 = a22|b=bT , b11 =
−R 2a

(a+bT )2 , b12 = −2R(a+ bT ), b21 = R 2a
(a+bT )2 , b22 = 2R(a+ bT ).

The core of the standard multiple-scale analysis is separating the dynamical
behavior of system (19) according to different time scale or spatial scale. It is needed
to separate the time scale for model (17). Each time scale Ti can be considered as
an independent variable. Ti corresponds to the dynamical behaviors of variable
whose scale are ε−i. Therefore, the derivative with respect to time converts to the
following term

∂

∂t
= ε2

∂

∂T2
+O(ε3). (28)

We substitute (20) ∼ (27) into (19) and expand (19) according to different orders
of ε, obtaining three equations
ε:

LT

(
u1
v1

)
= 0. (29)

ε2:

LT

(
u2
v2

)
=

(
−R(v∗u21 + 2u∗u1v1)
R(v∗u21 + 2u∗u1v1)

)
. (30)

ε3:

LT

(
u3
v3

)
=

∂

∂T2

(
u1
v1

)
− b2M

(
u1
v1

)
(31)

−
(

R(2v∗u1u2 + 2u∗u1v2 + 2u∗u2v1 + u21v1)
−R(2v∗u1u2 + 2u∗u1v2 + 2u∗u2v1 + u21v1)

)
.
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For the first order of ε, since LT is the linear operator of system (2) close to the
onset, (u1, v1)T is the linear combination of the eigenvectors that corresponds to
the eigenvalue zero. Therefore, solving the first order of ε, we will obtain(

u1
v1

)
=

(
S1

1

)
(W1e

ik1r +W2e
ik2r +W3e

ik3r) + c.c, (32)

where S1 = −a
∗
12−d12k

2
T

a∗11−d11k2T
, |kj | = kT , (j = 1, 2, 3). Wj is the amplitude of the mode

eikjr when the system is under the first-order perturbation. Its form is determined
by the perturbation term of the high order.

For the second order of ε, we have

LT

(
u2
v2

)
=

(
−R(v∗u21 + 2u∗u1v1)
R(v∗u21 + 2u∗u1v1)

)
=

(
Fu
Fv

)
. (33)

According to the Fredholm condition, to guarantee the existence of the nontrivial
solution of the equation, the vector function of the right-hand side of (31) must
be orthogonal with the zero eigenvectors of operator L+

T . L+
T is the adjoint and

transposed operator of LT . In the system, the zero eigenvectors of operator L+
T are(

1
S2

)
e−ikjr + c.c(j = 1, 2, 3), (34)

where S2 = −a
∗
11−d11k

2
T

a∗21−d21k2T
.

The orthogonality condition is

(1, S2)

(
F iu
F iv

)
= 0, (35)

where F iu, F iv, respectively, represent the coefficients corresponding to eikir in Fu,
Fv.

We might as well take eik1r as an example

(1, S2)

(
−R(2v∗S2

1W̄2W̄3 + 4u∗S1W̄2W̄3)
R(2v∗S2

1W̄2W̄3 + 4u∗S1W̄2W̄3)

)
= 0, (36)

Solving the above equation and obtaining W̄2W̄3 = 0, in a similar way, W̄3W̄1 = 0,
W̄1W̄2 = 0.

We suppose(
u2
v2

)
=

(
X0

Y0

)
+

3∑
i=1

(
Xi

Yi

)
eikir +

3∑
i=1

(
Xii

Yii

)
e2ikir+

(
X12

Y12

)
ei(k1−k2)r +

(
X23

Y23

)
ei(k2−k3)r +

(
X31

Y31

)
ei(k3−k1)r + c.c, (37)

the coefficients of (37) can be obtained by solving the set of linear equations about
e0, eikir, e2ikir, e2i(ki−kj)r. We have(

X0

Y0

)
=

(
C1

C2

)
(|W 2

1 |+ |W 2
2 |+ |W 2

3 |), (38)
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where

C1 = −R(2v∗S2
1 + 4u∗S1)(a∗12 + a∗22)

a∗11a
∗
22 − a∗12a∗21

,

C2 =
R(2v∗S2

1 + 4u∗S1)(a∗11 + a∗21)

a∗11a
∗
22 − a∗12a∗21

.

Xi = S1Yi(i = 1, 2, 3), (39)(
Xii

Yii

)
=

(
E1

E2

)
W 2
i , (40)

where

E1 = − R(a∗12 + a∗22 − 4d12k
2
T − 4d22k

2
T )(v∗S2

1 + 2u∗S1)

(a∗11 − 4d11k2T )(a∗22 − 4d22k2T )− (a∗12 − 4d12k2T )(a∗21 − 4d21k2T )
,

E2 =
R(a∗11 + a∗21 − 4d11k

2
T − 4d21k

2
T )(v∗S2

1 + 2u∗S1)

(a∗11 − 4d11k2T )(a∗22 − 4d22k2T )− (a∗12 − 4d12k2T )(a∗21 − 4d21k2T )
.

(
Xjk

Yjk

)
=

(
F1

F2

)
W 2
j W̄

2
k , (41)

where

F1 = − R(a∗12 + a∗22 − 3d12k
2
T − 3d22k

2
T )(v∗S2

1 + 2u∗S1)

(a∗11 − 3d11k2T )(a∗22 − 3d22k2T )− (a∗12 − 3d12k2T )(a∗21 − 3d21k2T )
,

F2 =
R(a∗11 + a∗21 − 3d11k

2
T − 3d21k

2
T )(v∗S2

1 + 2u∗S1)

(a∗11 − 3d11k2T )(a∗22 − 3d22k2T )− (a∗12 − 3d12k2T )(a∗21 − 3d21k2T )
.

For the third order of ε, we have

LT

(
u3
v3

)
=

∂

∂T2

(
u1
v1

)
− b2M

(
u1
v1

)

−
(

R(2v∗u1u2 + 2u∗u1v2 + 2u∗u2v1 + u21v1)
−R(2v∗u1u2 + 2u∗u1v2 + 2u∗u2v1 + u21v1)

)

=

(
Fu
Fv

)
. (42)

According to the orthogonality condition

(1, S2)

(
F iu
F iv

)
= 0, (43)

we have

(S1 + S2)
∂W1

∂T2
= b2(S1b11 + S1S2b21 + b12 + S2b22)W1+

2RS1(1−S2)(v∗S1 + 2u∗)(Ȳ2W̄3 + Ȳ3W̄2)− (G1|W 2
1 |+G2(|W 2

2 |+ |W 2
3 |))W1, (44)
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where

G1 = R(S2 − 1)(2v∗S1(E1 + C1) + 2u∗S1(E2 + C2) + 2u∗(E1 + C1) + 3S2
1),

G2 = R(S2 − 1)(2v∗S1(F1 + C1) + 2u∗S1(F2 + C2) + 2u∗(F1 + C1) + 6S2
1).

We expand amplitude A1 as the following form

A1 = εW1 + ε2Y1 + · · · . (45)

Substituting A1 into (44), we can obtain the amplitude equation corresponding to
A1 as follows

τ0
∂A1

∂t
= µA1 + hĀ2Ā3 − [g1|A1|2 + g2(|A2|2 + |A3|2)]A1, (46)

where

µ =
bT − b
bT

, τ0 =
(S1 + S2)

bT (S1b11 + S1S2b21 + b12 + S2b22)
,

h =
2RS1(1− S2)(v∗S1 + 2u∗)

bT (S1b11 + S1S2b21 + b12 + S2b22)
,

g1 =
G1

bT (S1b11 + S1S2b21 + b12 + S2b22)
,

g2 =
G2

bT (S1b11 + S1S2b21 + b12 + S2b22)
.

Another two equations can be obtained through the transformation of the sub-
script of A, we have

τ0
∂A1

∂t = µA1 + hĀ2Ā3 − [g1|A1|2 + g2(|A2|2 + |A3|2)]A1

τ0
∂A2

∂t = µA2 + hĀ3Ā1 − [g1|A2|2 + g2(|A1|2 + |A3|2)]A2

τ0
∂A3

∂t = µA3 + hĀ1Ā2 − [g1|A3|2 + g2(|A1|2 + |A2|2)]A3.

(47)

Appendix B: Turing pattern analysis. (47) can be decomposed to mode ρi =
|Ai| and corresponding phase angle ϕi[15, 28]. Therefore, we will gain four differ-
ential equations of the real variables in the following form:

τ0
∂ϕ
∂t = −h(ρ

2
1ρ

2
2+ρ

2
1ρ

2
3+ρ

2
2ρ

2
3) sinϕ

ρ1ρ2ρ3

τ0
∂ρ1
∂t = µρ1 + hρ2ρ3 cosϕ− g1ρ31 − g2(ρ22 + ρ23)ρ1

τ0
∂ρ2
∂t = µρ2 + hρ1ρ3 cosϕ− g1ρ32 − g2(ρ21 + ρ23)ρ2

τ0
∂ρ3
∂t = µρ3 + hρ1ρ2 cosϕ− g1ρ33 − g2(ρ21 + ρ22)ρ3,

(48)

where ϕ = ϕ1 + ϕ2 + ϕ3.

System (48) has four kinds of solutions.

(i) The stationary state (0, 0, 0) is given by

ρ1 = ρ2 = ρ3 = 0. (49)

(ii) Stripes (S) are given by

ρ1 =

√
µ

g1
, ρ2 = ρ3 = 0. (50)
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(iii) Hexagons (H0, Hπ) are given by

ρ1 = ρ2 = ρ3 =
|h| ±

√
h2 + 4(g1 + 2g2µ)

2(g1 + 2g2)
, (51)

and exist in the following condition

µ > µ1 =
−h2

4(g1 + 2g2)
, (52)

where ϕ = 0 corresponds to H0 Hexagon, ϕ = π corresponds to Hπ Hexagon.
(iv) The mixed states are given by

ρ1 =
|h|

g2 − g1
, ρ2 = ρ3 =

√
h− g1ρ21
g1 + g2

, (53)

with g2 > g1.
In the following, we will give a discussion about the stability of the above four

stationary solutions.
To stripes, we give a perturbation at stationary solution (ρ0, 0, 0) for studying

the stability of stationary solution (50), where ρ0 =
√

µ
g1

. Let ρ1 = ρ0 + ∆ρ1,

ρ2 = ∆ρ2, ρ3 = ∆ρ3, linearization of Eq.(48) can be written as

∂ρ

∂t
= L1 · ρ, (54)

where

L1 =

 µ− 3g1ρ
2
0 0 0

0 µ− g2ρ20 |h|ρ0
0 |h|ρ0 µ− g2ρ20

 , ρ =

 ∆ρ1
∆ρ2
∆ρ3

 . (55)

The characteristic equation of matrix L1 can be obtained as

λ3 + P1λ
2 + P2λ+ P3 = 0, (56)

where
P1 = (3g1 + 2g2)ρ20 − 3µ,
P2 = (6g1g2 + g22)ρ40 − (4µg2 + h2 + 6µg1)ρ20 + 3µ2,
P3 = 3g1g

2
2ρ

6
0 − (3g1h

2 + µg22 + 6µg1g2)ρ40 + 2µ2g2 + 3µ2g1 + µh2ρ20 − µ3.
The eigenvalues are

λ1 = µ− 3g1ρ
2
0, λ2 = µ+ hρ0 − g2ρ20, λ3 = µ− hρ0 − g2ρ20. (57)

Substituting ρ0 =
√

µ
g1

into Eq.(57), we obtain

λ1 = −2µ, λ2 = µ(1− g2
g1

) + |h|
√
µ

g1
, λ3 = µ(1− g2

g1
)− |h|

√
µ

g1
. (58)

It is all known to us that Eq.(58) has stable solutions when the eigenvalues λ1, λ2
and λ3 are all negative. since µ > 0, g2g1 > 1, the three eigenvalues are negative if

the following holds

µ > µ3 =
h2g1

(g2 − g1)2
. (59)

In the following, we discuss the stability of the hexagons, similar to the above
process, we perturb Eq.(51) at the point (ρ0, ρ0, ρ0) as follows

ρi = ρ0 + ∆ρi, (60)
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where ρ0 =
|h|±
√
h2+4(g1+2g2)µ

2(g1+2g2)
. Therefore, Eq.(48) can be linearized as

∂ρ

∂t
= L2 · ρ, (61)

where

L2 =

 µ− (3g1 + 2g2) |h|ρ0 − 2g2ρ
2
0 |h|ρ0 − 2g2ρ

2
0

|h|ρ0 − 2g2ρ
2
0 µ− (3g1 + 2g2) |h|ρ0 − 2g2ρ

2
0

|h|ρ0 − 2g2ρ
2
0 |h|ρ0 − 2g2ρ

2
0 µ− (3g1 + 2g2)

 , ρ =

 ∆ρ1
∆ρ2
∆ρ3

 .

(62)
The characteristic equation of L2 can be obtained as

λ3 +Q1λ
2 +Q2λ+Q3 = 0, (63)

where
Q1 = (9g1 + 6g2)ρ20 − 3µ,
Q2 = (27g21 + 36g1g2)ρ40 + 12|h|g2ρ30 − (18µg1 + 3h2 + 12µg2)ρ20 + 3µ2,
Q3 = (54g21g2 + 27g31)ρ60 + 36|h|g1g2ρ50 + (6h2g2 − 36µg1g2 − 9h2g1 − 27µg21)ρ40 −
(2|h|3 + 12µ|h|g2)ρ30 + (9µ2g1 + 6µ2g2 + 3µh2)ρ20 − µ3.
Solving the characteristic equation (63) and we have

λ1 = λ2 = µ− |h|ρ0 − 3g1ρ
2
0, λ3 = µ− 3g1ρ

2
0 − 63g2ρ

2
0 + 2|h|ρ0. (64)

Substituting ρ0 =
√

µ
g1

into Eq.(64), we can obtain two cases of stability as

follows.
For the stationary solution

ρ− =
|h| −

√
h2 + 4(g1 + 2g2µ)

2(g1 + 2g2)
,

λ1 and λ2 are always positive, so the corresponding pattern is also always unstable.
For the stationary solution

ρ+ =
|h|+

√
h2 + 4(g1 + 2g2µ)

2(g1 + 2g2)
,

λi(i = 1, 2, 3) is negative when the parameter µ satisfies the following condition

µ < µ4 =
2g1 + g2

(g2 − g1)2
h2. (65)

Based on the above analysis, we can conclude
(I) The stationary state (0,0,0) is stable for µ < µ2 = 0 and unstable for µ > µ2.
(II) The stripe is stable when µ > µ3.
(III) The hexagon Hπ is stable only for µ < µ4 and hexagon H0 is unstable.
(IV) the mixed states can exist for µ > µ3 and are always unstable.
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