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Abstract. In this paper, we consider a SEIR epidemiological model with
information–related changes in contact patterns. One of the main features of

the model is that it includes an information variable, a negative feedback on

the behavior of susceptible subjects, and a function that describes the role
played by the infectious size in the information dynamics. Here we focus in the

case of delayed information. By using suitable assumptions, we analyze the
global stability of the endemic equilibrium point and disease–free equilibrium

point. Our approach is applicable to global stability of the endemic equilibrium

of the previously defined SIR and SIS models with feedback on behavior of
susceptible subjects.

1. Introduction. Although mathematical models which describe the spread of
infectious diseases are among the most successful application of mathematics in
biology [14], they were classically derived by using methods of mean field theories
in statistical mechanics. In other words, the agents, who are persons or animals,
were approximated by means of particles. This constitutes maybe the main limit of
classical approach in mathematical epidemiology: agents involved in the infectious
spread are not particles, and their behavior, including the psychological aspects are
important in shaping the population dynamics. It was the first stressed by Capasso
and Serio [13] in seventies, but only in recent years it increasingly became clear that
the role of human behavior and also misconducts (as the pseudo-rational exemption)
ought thus to be included in some manner in the modeling of infectious disease
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spreading, which is triggering a large corpus of scientific research (see, just to name
a few of contributions, [1, 2, 3, 5, 6, 19, 20, 21, 23, 24, 43] and the collective book
[39]). Although there is a wide range of approaches [39], all these works explicitly
include the feedback (FB) that the information about an infectious disease has on
the agents’ behavior and thus on the spreading of the target disease [2, 15, 18, 43, 45].

A first type of FB is the one given by the influence of the information on the
behavior of healthy subjects [9, 18].

A second type of FB is the pseudo-rational exemption which is defined as the
family’s decision to not vaccinate children because of a pseudo-rational comparison
between the perceived risk of infection and the perceived risk of side effects caused
by the vaccine [7, 8, 15, 16, 17].

We shall focus on the first kind of feedback, which has first been introduced in the
above mentioned paper [13] in a SIR epidemic model, where the force of infection
was modeled as a decreasing function of the fraction of infectious subjects. In [18],
the pioneering work by Capasso and Serio was extended to take into the account
that the behavior inducing the reduction of the contact rate is in reality influenced
by the information on the spread. As previously stressed in [18] the information
does not only reflect the current state of the spread but also past states, both due
to delays and to memory of past epidemics. In case of exponentially fading memory
kernel in [18] it was shown that there is a unique endemic equilibrium point (EEP),
and that it is locally stable. Some sharp conditions for the global stability of EEP
were given in [9]. They use the so-called geometrical approach to global stability
problem, originally developed by Li and Muldowney [34, 35], which has gained some
popularity in recent years (see, e.g., [10, 11, 12, 36, 37, 40]).

The investigation of the global stability of EEP has not only an intrinsic math-
ematical interest, but also a practical one, since verifying the global behavior of
an EEP allows avoiding simulation for each specific set of parameters and initial
conditions.

We note that the idea of a population changing its behaviour in response to
external stimuli has been explored by other research groups [41, 42]. This developed
formalism has been applied to a model SIR type epidemics [41] and a predator-prey
model [42]. In [41], it is shown how one can model the response of the susceptible
agents to the stimuli such as information about the epidemics as switches, and,
thus, the authors obtained a model similar to the considered in [9, 18] for simple
switches, and also obtained a model with hysteresis and permanent memory of past
epidemics using bistable switches.

Here, we will introduce a SEIR model and define the effects of the information-
related behavior on the force of infection (FoI) of a disease. We will investigate
its global behavior by means of appropriate Lyapunov’s functions. In addition, we
will adopt similar methods to briefly assess the global behavior of the previously
defined SIR and SIS models with FB on behavior of susceptible subjects [9, 18].

The paper is organized as follows. In the next section, the general SEIR epidemic
model with contact rate as a function of the available information on the past disease
prevalence is introduced. In Section 3 some preliminary properties of the SEIR
model are presented. Section 4 is concerned with the global stability properties of
the equilibria by means of Lyapunov functions. In Section 5, we shall extend the
method of Lyapunov functions to SIR and SIS models with negative feedback.
Further comments on the biological relevance of our results and on the particulars
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of the chosen approach are stated in Section 6, together with a few concluding
remarks.

2. Modeling the influence of the behavior on the contact rate. In this
section, we consider the following family of SEIR epidemic models for a non fa-
tal disease in a constant population, with information–related changes in contact
patterns:

dS

dt
= µ(1− S)− β(M)SI,

dE

dt
= β(M)SI − (µ+ σ)E, (1)

dI

dt
= σE − (µ+ ν)I,

and

dR

dt
= νI − µR,

where S(t), E(t), I(t) and R(t) denote the subpopulations of susceptible, ex-
posed, infectious and recovered with permanent immunity, respectively. There is
no disease–related death. The natural death rate and birth rate are assumed to be
equal, denoted by µ > 0, and thus S(t) + E(t) + I(t) + R(t) = 1 for all time (the
constant population size). The parameter σ > 0 denote the transfer rate between
the exposed subpopulation and the infectious subpopulation. The parameter ν > 0
describes the rate that the infectious subpopulation becomes recovered. The con-
tact rate is a function of some information index M(t) summarizing the current and
the past history of the disease prevalence: FoI(M(t)) = β(M(t))I(t), where M(t)
is related to the past prevalence through a suitable function Fna as follows [8, 9, 18]:

M(t) =

∫ t

−∞
g(I(τ))Fna (t− τ)dτ.

The term Fna is a delaying kernel. Generally, Fna is the density function for a gamma
distribution:

Fna (u) =
an+1un

n!
e−au,

where a > 0 is a constant and n ≥ 0 is an integer. The average delay is defined by
τ = (n+ 1)/a, and n is called the order of the delay kernel.
Throughout this paper, we use the kernel with n = 0, that is,

F 0
a (u) = ae−au.

This kernel is called the weak exponential delay kernel or the exponentially fading
memory kernel because it pays a declining weight to the past. The parameter
“a” assumes the biological meaning of inverse of the average delay of the collected
information on the disease, as well as the average length of the historical memory
concerning the disease in study. Such kernel was also used in another infectious
disease models with negative feedback [7, 8, 9, 16, 17, 18]. In this case we have,

dM

dt
= ag(I)− aM. (2)

The function g(I) describes the role played by the infectious size in the information
dynamics.
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From the latter equality and the equations of system (1) we obtain the SEIR
model with information-dependent contact rate:

dS

dt
= µ(1− S)− β(M)SI,

dE

dt
= β(M)SI − (µ+ σ)E,

dI

dt
= σE − (µ+ ν)I, (3)

dM

dt
= ag(I)− aM.

Since R(t) does not appear in the equations of system (1), it is enough to consider
only the equations for S(t), E(t) and I(t).

The initial condition of ordinary differential equations (3) is given as

S(0) > 0, E(0) ≥ 0, I(0) > 0, M(0) ≥ 0. (4)

Finally, we shall make the following assumptions on the functions β(M) and g(I).

(H1): β(0) > 0; β(M) > 0 for M > 0.
(H2): β′(M) < 0 for M > 0.
(H3): g(0) = 0; g(I) > 0 for I > 0.
(H4): g′(I) > 0 for I > 0.

It is clear from assumptions (H1) and (H2) that system (3) is an epidemic system
with negative feedback. The following choice of a negative feedback is proposed in
[9, 18]: as a rational function β(M) = β0/(1 + pM), where β0 and p are positive
constants.

As for g(I), the following choice is proposed in [9, 18]: as a function of preva-
lence of infection g(I) = wI, where w is a parameter subsuming aspects such as
pathogenicity [3]; or as a saturating function g(I) = wI/(1 + qI), where w and q
are positive constants.

3. Preliminaries. The dynamics of infectious disease crucially depend on the basic
reproductive number R0. Following the definition of the basic reproductive number
given by van den Driessche and Watmough [44], the basic reproductive number for
system (3) is presented as

R0 =
σβ(0)

(µ+ σ)(µ+ ν)
. (5)

Direct calculation shows that system (3) has two possible equilibrium points in
the non-negative orthant R4

+ =
{

(S,E, I,M) ∈ R4 : S ≥ 0, E ≥ 0, I ≥ 0,M ≥ 0
}

:
the disease-free equilibrium point P0 = (1, 0, 0, 0), and a endemic equilibrium point
P ∗ = (S∗, E∗, I∗,M∗) where S∗ = µ/(µ + I∗β(g(I∗))), E∗ = (µ + ν)I∗/σ, M∗ =
g(I∗) and I∗ is the solution of

β(g(I∗))µ

µ+ I∗β(g(I∗))
− (µ+ ν)(µ+ σ)

σ
= 0. (6)

The number of solutions of equation (6) can be analyzed geometrically through
determining the points of intersection of the graphs of functions F1(I) and F2(I) in
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the first quadrant. The functions F1(I) and F2(I) are defined as

F1(I) =
µσ

(µ+ ν)(µ+ σ)

β(g(I))

(µ+ I · β(g(I)))
,

F2(I) = 1.

Using assumptions (H1) and (H3), and the expression of R0 in (5), we obtain

F1(0) =
σβ(0)

(µ+ σ)(µ+ ν)
= R0. (7)

We calculate the derivative of F1(I)

F ′1(I) =
µσ

(µ+ ν)(µ+ σ)

µβ′(g(I)) · g′(I)− β2(g(I))

(µ+ I · β(g(I)))2
.

By (H2) and (H4) holds, it is easy to see that F1(I) → 0 as I → +∞, and
that the function F1(I) is decreasing (F ′1(I) < 0). Note that if R0 = F1(0) > 1,
then the graphs of functions F1(I) and F2(I) intersect at a single point in the first
quadrant. This result indicates that if an EEP exists and it is unique. Note that an
epidemiologically meaningful P ∗ does not exist if R0 = F1(0) < 1, and it becomes
disease-free equilibrium point P0 when R0 = F1(0) = 1.

We summarize the results for the existence of equilibrium points in the following
theorem.

Theorem 3.1. Suppose that the functions β(M) and g(I) satisfy the conditions
(H1), (H2), (H3) and (H4). System (3) always has the disease-free equilibrium
point P0 = (1, 0, 0, 0). If R0 > 1, there is a unique endemic equilibrium point
P ∗ = (S∗, E∗, I∗,M∗).

Finally, we shall show that the system (3) is bounded.

Theorem 3.2. Let (S(t), E(t), I(t),M(t)) be the solution of system (3) satisfying
initial conditions (4). Then S(t), E(t), I(t), and M(t) are all bounded for all t > 0
at which the solution exists.

Proof. From the first equation of (3), we obtain

dS

dt
≤ µ(1− S),

and thus lim sup
t→∞

S ≤ 1. Adding the first three equations of (3), we get

d

dt
(S + E + I) = µ(1− S − E − I)− νI ≤ µ(1− S − E − I).

By a standard comparison theorem, we can conclude that lim sup
t→∞

(S + E + I) ≤ 1.

This relation and the fourth equation of (3) imply

dM

dt
= ag(I)− aM ≤ ag(1)− aM,

and thus lim sup
t→∞

M ≤ g(1). Therefore, S(t), E(t), I(t), and M(t) are all bounded

for all t > 0. This completes the proof.

The dynamics of system (3) can be analyzed in the following bounded feasible
region:

Γ =
{

(S,E, I,M) ∈ R4
+ : S, E, I ≥ 0, S ≤ 1, S + E + I ≤ 1, 0 ≤M ≤ g(1)

}
.

Furthermore, the region Γ is positively invariant with respect to model (3).
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4. Global stability of equilibrium points. In this section, we shall use the
following Lyapunov function for systems with negative feedback:

U(M) = M −M∗ −
∫ M

M∗

β(η)

β(M∗)
dη. (8)

Using assumptions (H1) and (H2), it is easy to verify that the function U (M) has
a global minimum at M = M∗ and satisfies U (M) ≥ U (M∗) with equal sign taken
when M = M∗.

The function U(M) is introduced to prove the global stability of the positive
equilibrium in virus dynamics models with nonlytic immune response [46, 48].

We shall use the family of Volterra–type Lyapunov function

V (x) = x− 1− lnx. (9)

Thus, the function V (x) has a global minimum at x = 1 and satisfies V (x) ≥ V (1)
the equality case being x = 1.

The Volterra–type function V (x) is extensively used to demonstrate the global
stability of the equilibria of Lotka-Volterra systems [22], infectious disease models
[4, 14, 25, 26] and virus dynamics models [27, 46, 47, 48]. The function V (x) was
originally discovered by Vito Volterra as the first integral of classic predator–prey
model.

We inspired by the Lyapunov function techniques that was developed during last
decade [28, 29, 30, 31, 32] and particularly by the recent works [46, 48], we will
determine the conditions for the global stability of the endemic equilibrium point
of the epidemic system (3).

Remark 1. The functions U and V can be generalized to the form

H (x, f) =

∫ x

x∗

(
1− f(x∗)

f(η)

)
dη.

Volterra-type function is H (x, x) and the function U is H
(
M, 1

β

)
.

In Section 2, we assume that β(M) satisfies assumptions (H1) and (H2). We
also make the following assumption about the negative feedback on behavior of
healthy subjects β(M).

(H5): (Mβ(M))
′
> 0 for M > 0.

This assumption is a technical one, required to prove Lemma 4.1 (and the Theorems
4.3 and 5.1).

The following lemmas are used in the proof of the global stability of the EEP.

Lemma 4.1. (See [48]) Let the hypotheses (H2) and (H5) hold, then(
β(M)

β(M∗)
− 1

)(
Mβ(M)

M∗β(M∗)
− 1

)
< 0

for all M > 0 and M 6= M∗.

4.1. Disease-free equilibrium point. In the absence of the infectious disease, the
system has a unique disease-free equilibrium point P0. By constructing a Lyapunov
function, we can prove the global stability of the disease-free equilibrium point P0

when the basic reproductive number is less than or equal to unity.

Theorem 4.2. Suppose that conditions (H1)–(H4) are satisfied. If R0 ≤ 1, then
the disease-free equilibrium point P0 of (3) is globally asymptotically stable in Γ.
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Proof. Let Ws = V (S) . Calculating the time derivative of Ws(S), we obtain

d

dt
[V (S)] =

(
1− 1

S

)
[µ(1− S)− β(M)SI] ,

= µ

(
2− S − 1

S

)
− β(M)SI + β(M)I. (10)

Let Wei = E + (µ+σ)
σ I. Next, we obtain

d

dt

[
E +

(µ+ σ)

σ
I

]
= β(M)SI − (µ+ σ)E +

(µ+ σ)

σ
[σE − (µ+ ν)I] ,

= β(M)SI − (µ+ σ)(µ+ ν)

σ
I. (11)

Now, define the Lyapunov function W : {(S,E, I,M) ∈ Γ : S > 0} → R by

W (S,E, I,M) = cWs + cWei, (12)

where c is a positive constant. Finally, adding (10) and (11), we obtain the derivative
of W along the solutions of system (3):

dW

dt
= c

dWs

dt
+ c

dWei

dt
,

= cµ

(
2− S − 1

S

)
+ cβ(M)I − c (µ+ σ)(µ+ ν)

σ
I.

Using assumptions (H2), we obtain β(M) < β(0)

dW

dt
< cµ

(
2− S − 1

S

)
− c (µ+ σ)(µ+ ν)

σ

[
1− σβ(0)

(µ+ σ)(µ+ ν)

]
I,

< −cµ
[
V (S) + V

(
1

S

)]
− c (µ+ σ)(µ+ ν)

σ
[1−R0] I.

V (S) and V
(

1
S

)
are Volterra–type functions. These functions are positive definite.

Thus, R0 ≤ 1 implies that dW/dt ≤ 0. If dW/dt = 0 then S = 1 and I = 0. Hence,
W is a Lyapunov function on Γ. Thus, (S,E, I)→ (1, 0, 0) as t→∞. Using I = 0
in the last equation of (3) shows that M → 0 as t→∞. Therefore, it follows from
the LaSalle’s Invariance Principle [33], that every solution of the equations in the
model (3), with initial conditions in Γ, approaches P0 as t → ∞. This completes
the proof.

4.2. Endemic equilibrium point. We get the global stability of the EEP for the
special case g(I) = wI.

Theorem 4.3. Suppose that conditions (H1)–(H5) are satisfied. Assume that
g(I) = wI. If R0 > 1 then the unique endemic equilibrium point P ∗ of system (3)
is globally asymptotically stable in the interior of the feasible region Γ.

Proof. At endemic equilibrium point, we have

µ = µS∗ + β(M∗)S∗I∗, (13)

µ+ σ =
β(M∗)S∗I∗

E∗
, (14)

µ+ ν =
σE∗

I∗
, (15)

M∗ = wI∗. (16)
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Let Ls = S∗V
(
S
S∗

)
. By using (13), we have

d

dt

[
S∗V

(
S

S∗

)]
=

(
1− S∗

S

)
[µ− µS − β(M)SI] ,

=

(
1− S∗

S

)[
µS∗

(
1− S

S∗

)
+β(M∗)S∗I∗

(
1− β(M)

β(M∗)

SI

S∗I∗

)]
,

= µS∗
(

2− S∗

S
− S

S∗

)
+ β(M∗)S∗I∗

(
1− β(M)

β(M∗)

SI

S∗I∗
− S∗

S
+

β(M)

β(M∗)

I

I∗

)
.(17)

Define Le = E∗V
(
E
E∗

)
. Using (14), we have

d

dt

[
E∗V

(
E

E∗

)]
=

(
1− E∗

E

)
[β(M)SI − (µ+ σ)E]

= β(M∗)S∗I∗
(

1− E∗

E

)[
β(M)

β(M∗)

SI

S∗I∗
− E

E∗

]
= β(M∗)S∗I∗

[
β(M)

β(M∗)

SI

S∗I∗
− E

E∗

− β(M)

β(M∗)

SIE∗

S∗I∗E
+ 1

]
. (18)

Let Li = I∗V
(
I
I∗

)
. By using (15), we have

d

dt

[
I∗V

(
I

I∗

)]
=

(
1− I∗

I

)
[σE − (µ+ ν)I] ,

= σE∗
(

1− I∗

I

)[
E

E∗
− I

I∗

]
,

= σE∗
[
E

E∗
− I

I∗
− I∗E

IE∗
+ 1

]
. (19)

Let Lm = U (M). Here we used (16).

d

dt
[U (M)] =

(
1− β(M)

β(M∗)

)
[awI − aM ] ,

= awI∗
(
I

I∗
− M

M∗
− β(M)

β(M∗)

I

I∗
+

β(M)

β(M∗)

M

M∗

)
. (20)

Let us consider the Lyapunov function

L(S,E, I,M) = kLs + kLe + k
β(M∗)S∗I∗

σE∗
Li + k

β(M∗)S∗

aw
Lm, (21)

where k is a positive constant. Computing the derivative of (21) along the solutions
of system (3), we obtain

dL

dt
= k

dLs
dt

+ k
dLe
dt

+ k
β(M∗)S∗I∗

σE∗
dLi
dt

+ k
β(M∗)S∗

aw

dLm
dt

. (22)
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Substituting (17)–(20) in (22), we obtain

dL

dt
= kµS∗

(
2− S∗

S
− S

S∗

)
+ kβ(M∗)S∗I∗

(
3− S∗

S
− β(M)

β(M∗)

SIE∗

S∗I∗E
− I∗E

IE∗

)
+ kβ(M∗)S∗I∗

(
− M

M∗
+

β(M)

β(M∗)

M

M∗

)
,

= kµS∗
(

2− S∗

S
− S

S∗

)
+ kβ(M∗)S∗I∗

(
4− S∗

S
− β(M)

β(M∗)

SIE∗

S∗I∗E
− I∗E

IE∗
− β(M∗)

β(M)

)
+ kβ(M∗)S∗I∗

(
β(M∗)

β(M)
− M

M∗
+

β(M)

β(M∗)

M

M∗
− 1

)
,

= −kµS∗
[
V

(
S

S∗

)
+ V

(
S∗

S

)]
− kβ(M∗)S∗I∗

[
V

(
S∗

S

)
+ V

(
β(M)

β(M∗)

SIE∗

S∗I∗E

)
+V

(
I∗E

IE∗

)
+ V

(
β(M∗)

β(M)

)]
+ kβ(M∗)S∗I∗

(
β(M)

β(M∗)
− 1

)(
Mβ(M)

M∗β(M∗)
− 1

)
β(M∗)

β(M)
. (23)

The terms between the brackets, in the expression (23), are Volterra–type functions.
These functions are positive definite.

By Lemma 4.1, (
β(M)

β(M∗)
− 1

)(
Mβ(M)

M∗β(M∗)
− 1

)
< 0

holds for all M > 0.
It is easy to see that dL/dt is negative in the interior of Γ. We have dL/dt = 0 if

and only if S
S∗ = 1, I∗E

IE∗ = 1 and M
M∗ = 1 holds. The largest compact invariant set

in {(S,E, I,M) ∈ Γ : dL/dt = 0} is the singleton {P ∗}, where P ∗ is the EEP. By
LaSalle’s invariance principle [33] then implies that P ∗ is globally asymptotically
stable in the interior of Γ. This completes the proof.

5. SIR and SIS epidemic models. Our approach is applicable for SIR and
SIS epidemic models with an information-dependent contact rate that have been
studied in [9, 18]. We give conditions for global stability of the endemic equilibrium
point, whenever it exists.

First, SIR model is given by the following system of ordinary differential equa-
tions [9, 18]:

dS

dt
= µ− µS − β(M)SI,

dI

dt
= β(M)SI − (µ+ ν)I, (24)

dM

dt
= ag(I)− aM,
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and the equation of the recovered subpopulation is given by dR(t)/dt = νI − µR.
The states variables and parameters are the same as in the SEIR model. For this
model, the feasible region is given by

Ω =
{

(S, I,M) ∈ R3
+ : 0 ≤ S + I ≤ 1, 0 ≤M ≤ g(1)

}
,

and the basic reproductive number is still given by

R
SIR

0 =
β(0)

µ+ ν
. (25)

For SIR model with special function g(I) = wI, we prove the global stability of
EEP in the following theorem.

Theorem 5.1. Suppose that conditions (H1)–(H6) are satisfied. Assume that

g(I) = wI. If R
SIR

0 > 1 then a unique endemic equilibrium P ∗ = (S∗, I∗,M∗) of
system (24) is globally asymptotically stable in the interior of Ω.

Proof. The proof is similar to the proof of Theorem 4.3, but with the following
Lyapunov function of the form

L(S, I,M) = kLs + kLi + k
β(M∗)S∗

aw
Lm, (26)

where k > 0. The functions Ls, Li and Lm are previously defined in subsection 4.2.
Define Li = I∗V

(
I
I∗

)
. By using (µ+ ν) = β(M∗)S∗, we have

d

dt

[
I∗V

(
I

I∗

)]
=

(
1− I∗

I

)
[β(M)SI − (µ+ ν)I]

= β(M∗)S∗I∗
(

1− I∗

I

)[
β(M)

β(M∗)

SI

S∗I∗
− I

I∗

]
= β(M∗)S∗I∗

[
β(M)

β(M∗)

SI

S∗I∗
− I

I∗
− β(M)

β(M∗)

S

S∗
+ 1

]
. (27)

The derivative of (26) along solution of (24) is given by

dL

dt
= k

dLs
dt

+ k
dLi
dt

+ k
β(M∗)S∗

aw

dLm
dt

.

By using (17), (27) and (20), we obtain

dL

dt
= kµS∗

(
2− S∗

S
− S

S∗

)
+ kβ(M∗)S∗I∗

(
3− S∗

S
− β(M)

β(M∗)

S

S∗
− β(M∗)

β(M)

)
+ kβ(M∗)S∗I∗

(
β(M)

β(M∗)
− 1

)(
M

M∗
− β(M∗)

β(M)

)
,

= −kµS∗
[
V

(
S

S∗

)
+ V

(
S∗

S

)]
− kβ(M∗)S∗I∗

[
V

(
S∗

S

)
+ V

(
β(M)

β(M∗)

S

S∗

)
+ V

(
β(M∗)

β(M)

)]
+ kβ(M∗)S∗I∗

(
β(M)

β(M∗)
− 1

)(
Mβ(M)

M∗β(M∗)
− 1

)
β(M∗)

β(M)
≤ 0.

Clearly, dL/dt ≤ 0, the conclusions are similar to the proof of Theorem 4.3.
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Second, the differential equations for the SIS model are [9]:

dS

dt
= µ− µS − β(M)SI + δI,

dI

dt
= β(M)SI − (µ+ δ)I, (28)

dM

dt
= ag(I)− aM.

Here the parameter δ > 0 is the recovery rate. The other parameters and variables
are the same as in the previous models.

To analyze the global stability of the EEP, first of all, we reduce the model to
a two-dimensional model as follows. The system (28) is subject to the restriction
S(t) + I(t) = 1, and using S(t) = 1− I(t) in the model, we can eliminate S(t) from
the equations. This substitution gives the simpler model:

dI

dt
= I (β(M)(1− I)− (µ+ δ)) , (29)

dM

dt
= ag(I)− aM.

The feasible region of system (29) is given by

Σ =
{

(I,M) ∈ R2
+ : 0 ≤ I ≤ 1, 0 ≤M ≤ g(1)

}
,

and the corresponding basic reproductive number is given by

R
SIS

0 =
β(0)

µ+ δ
. (30)

For SIS model, we prove the global stability of EEP, in the following theorem.

Theorem 5.2. Suppose that conditions (H1)–(H4) are satisfied. If R
SIS

0 > 1 then
a unique endemic equilibrium P ∗ = (I∗,M∗) of system (29) is globally asymptoti-
cally stable in the interior of Σ.

Proof. Consider the Lyapunov function

L(I,M) = k

∫ I

I∗

g(η)− g(I∗)

η
dη + k

(µ+ δ)

a
Lm, (31)

where k is a positive constant. The function Lm is previously defined in subsection
4.2.

By using 1 = I∗ + (µ+δ)
β(M∗) , we have

d

dt

[∫ I

I∗

g(η)− g(I∗)

η
dη

]
= I

(
g(I)− g(I∗)

I

)[
(µ+ δ)

(
β(M)

β(M∗)
− 1

)
+β(M)I∗

(
1− I

I∗

)]
,

= (µ+ δ) (g(I)− g(I∗))

(
β(M)

β(M∗)
− 1

)
+ β(M)I∗ (g(I)− g(I∗))

(
1− I

I∗

)
. (32)
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Let Lm = U (M). We have

d

dt
[U (M)] =

(
1− β(M)

β(M∗)

)
[ag(I)− aM ] ,

=

(
1− β(M)

β(M∗)

)
[a (g(I)− g(I∗))− a(M −M∗)] . (33)

The time derivative of (31) along the solutions of system (29),

dL

dt
= k

d

dt

[∫ I

I∗

g(η)− g(I∗)

η
dη

]
+ k

(µ+ δ)

a

dLm
dt

.

By using (32) and (33), we obtain

dL

dt
= k(µ+ δ) (g(I)− g(I∗))

(
β(M)

β(M∗)
− 1

)
+ kβ(M)I∗ (g(I)− g(I∗))

(
1− I

I∗

)
+ k(µ+ δ)

(
1− β(M)

β(M∗)

)
(g(I)− g(I∗))

− k(µ+ δ)

(
1− β(M)

β(M∗)

)
(M −M∗),

= kβ(M)I∗g(I)

(
1− I

I∗

)(
1− g(I∗)

g(I)

)
+ k(µ+ δ)M∗

(
1− β(M)

β(M∗)

)(
1− M

M∗

)
.

Furthermore, (
1− I

I∗

)(
1− g(I∗)

g(I)

)
≤ 0,

since for an increasing function g(I), g(I) ≥ g(I∗) when I ≥ I∗ and g(I) ≤ g(I∗)
when I ≤ I∗. Also, for a decreasing function β(M) ensures that(

1− β(M)

β(M∗)

)(
1− M

M∗

)
≤ 0,

with equality iff M = M∗.
Hence dL/dt is negative definite. By the [38], then implies that E∗ is globally

asymptotically stable in the interior of Σ.

Remark 2. When g(I) = wI the Lyapunov function
∫ I
I∗

g(η)−g(I∗)
η dη is Volterra-

type function.

6. Concluding remarks. We extended in this work the research of the dynamic
implications of information-related changes in contact patterns for SEIR diseases.

First, we study a SEIR model (3) with an information variable M , a negative
feedback on the behavior of susceptible subjects β(M), and a function that describes
the role played by the infectious size in the information dynamics g(I). This system
is the case of the exponentially fading memory kernel with Tdelay = a−1, which is
the average delay of the collected information on the disease. We have identified the
basic reproductive number, and we analyzed the global stability of both endemic
equilibrium point P ∗ and the disease-free equilibrium point P0. For the special
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function g(I) = wI, we have shown the global asymptotic stability of the EEP. The
results in this paper show the case of the exponentially fading memory kernel that
does not affect the global asymptotic properties of the SEIR model (3).

Second, an epidemiologically important consequence of the existence and unique-
ness of an endemic equilibrium of system (3) is the analysis of the inhibitory effects
of the information-related behavior on the force of infection. The effects of the in-
formation are to (i) increase the equilibrium number of susceptible, and (ii) reduce
the equilibrium numbers of infected and exposed. We showed that the coordinates
of EEP can be controlled.

Third, we extended our technique of Lyapunov functions to SIR and SIS models
with contact rate as a function of prevalence index developed in [9, 18]. Our global
stability conditions improve other recent results for these previous models [9]. For
SIR model (24) with special function g(I) = wI, we obtained the global stability
conditions of EEP under the technical requirement (H5). For SIS model (29), we
obtained the global stability of EEP without the technical condition (H5). Clearly,
the non-monotone function β(M) = β0(1 + pM2)−1 and the negative exponential
function β(M) = β0e

−pM satisfy the stability conditions of Theorem 5.2. The low
dimension of the SIS model facilitates global stability studies.

Finally, the results of this work indicate that our method of Lyapunov functions
construction and suitable estimates of the derivatives of the Lyapunov functions,
can be especially useful for higher-dimension systems with negative feedback.

Acknowledgments. We would like to thank the anonymous referees for their valu-
able comments and suggestions.
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