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Abstract. The effect of various toxicants on growth/death and morphology

of human cells is investigated using the xCELLigence Real-Time Cell Analysis

High Troughput in vitro assay. The cell index is measured as a proxy for the
number of cells, and for each test substance in each cell line, time-dependent
concentration response curves (TCRCs) are generated. In this paper we pro-

pose a mathematical model to study the effect of toxicants with various initial
concentrations on the cell index. This model is based on the logistic equa-

tion and linear kinetics. We consider a three dimensional system of differential

equations with variables corresponding to the cell index, the intracellular con-
centration of toxicant, and the extracellular concentration of toxicant. To
efficiently estimate the model’s parameters, we design an Expectation Max-
imization algorithm. The model is validated by showing that it accurately
represents the information provided by the TCRCs recorded after the exper-

iments. Using stability analysis and numerical simulations, we determine the
lowest concentration of toxin that can kill the cells. This information can be

used to better design experimental studies for cytotoxicity profiling assessment.
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1. Introduction. Industrial chemicals might be environmental or health hazards,
thus there is an increasing need for developing efficient methodologies for toxicity
assessment. The traditional method of conducting in vivo assays is very efficient
for understanding the mode of action of various toxicants, but it is expensive, time
consuming, and there are moral issues regarding the use of animals. Cell-based
in vitro assays [28] are attractive alternatives for the assessment of toxicity. We
propose a mathematical model to study the effect of toxicants on human cells.

Our work is part of the cytotoxicity profiling project carried by Alberta Cen-
tre for Toxicology in which initially 63 chemicals [27] were investigated using the
xCELLigence Real-Time Cell Analysis High Troughput (RTCA HT) Assay [19].
The xCELLigence RTCA HT system is developed by the ACEA Biosciences Inc.
(San Diego, USA), utilizing 384 well electronic microtiter plates (E-Plates 384).
Impedance is generated by cells attached to electrodes, impeding the electric current
between electrodes. Therefore, the impedance signal is label free and non-invasive,
enabling direct measurement of cellular status in real time. The impedance value is
converted by a software to Cell Index, which closely reflects not only cell number,
but also cell morphology and adhesion.

The cells were seeded into the wells of E-Plates 384 [19], and the test substances
were added about 24 hours later to allow cells to attach to the bottom of the wells
and adapt to growth. The 11 concentrations of the test substances were selected
based on a literature study, and each of them was tested in at least quadrupli-
cates [27]. Time-dependent concentration response curves (TCRCs) for each test
substance in each cell line were generated [27].

Series of physiological events, such as changes in cell population, cell morphology,
and cellular functions, that characterize an adverse biological response are referred
to as mode of action (MOA) [27]. According to the MOA, the tested substances
were divided in 10 groups [27]. For example, the TCRCs for two chemicals from
the same group, PF431396 and monastrol, are displayed in Fig. 1.

The main objectives of our work are to develop a mathematical model capable
of reproducing the TCRCs and, based on this model, to investigate the effects
of toxicants on the survival/death of the cells’ population. We consider a three
dimensional model for a cells’ population subjected to an acute dose of toxicant. The
state variables are the cell index, as a proxy for the number of cells, the concentration
of toxicant in the cell, and the concentration of toxicant in the environment, and
they are coupled by a linear dose-response function. This model is a special case
of the class of models proposed in [4], and it is related to the models considered
in [5, 10, 15]. However, since we consider an acute dose of toxicant instead of a
chronic one, the analysis of the survival/death of the cells’ population is different
from the one done in the previously mentioned papers. We analyze the stability of
this system of ordinary differential equations analytically using an approach similar
with the one in [7], and we find sufficient conditions for the survival or death of the
cells’ population.

An important contribution of this paper is the efficient statistical methodology
used to validate the proposed mathematical model. For parameter estimation and
prediction we propose an approach based on the Expectation Maximization (EM)
algorithm [3] and the Unscented Filter [12]. This method can also be used to pre-
dict the concentration of toxicant outside the cells. These predictions are important
in any system for toxicity monitoring. For example, a similar cytotoxicity mathe-
matical dynamic model [8] is applied for early detection and quantification of the
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Figure 1. TCRCs for (a) PF431396 and (b) monastrol

presence of toxicants in the water supply system. The estimation of the model pa-
rameters and prediction of the concentrations of the toxic agent presented in water
supply are done using the moving horizon estimator (MHE) and extended Kalman
filer (EKF). Although the model considered in [8] is less complicated than the model
presented in this paper, for parameter estimation the MHE and the EKF require
extensive tunning, so the EM algorithm is a much more efficient alternative.

Since the parameters of the proposed model are estimated not measured directly,
there is uncertainty regarding their precise values. We use Monte Carlo simulations
and parameter sensitivity analysis for uncertainty quantification. Sensitivity anal-
ysis [13] refers to a broad group of methods that provide valuable insight regarding
the dependence of the model output on its parameters. We apply a global sensitiv-
ity analysis (GSA) method [23] to test the robustness of the results of our model in
the presence of uncertainty, and to increase the understanding of the relationships
between input and output variables in the model.

In addition to proposing an efficient statistical method for parameter estimation
and prediction of the concentration of toxicant outside the cells, an important ap-
plication of the mathematical model is to generate numerically the TCRCs. Based
on these numerical simulations and a mathematical analysis of the model, we can
determine the threshold value for the initial concentration of a chemical after which
the death of the cells’ population happens (i.e. the chemical considered becomes
toxic for the cells).
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From the information included in the TCRCs, various parameters, such as LC50

[14], KC50 [29, 20], and AUC50 [19], were used to describe the time and concentra-
tion dependent cellular activity, and they were used in various statistical methods for
clustering [27]. The success of clustering and classification methods, such as neural
networks and support vectors machines, depends on providing TCRCs correspond-
ing to a range of values of the initial concentration of the toxicant that include both
cases when the concentration is low enough to not affect the cells’ population, and
cases when the concentration is high enough to determine the eventual death of the
cells’ population ([20, 27]). For example, in Fig. 1 (b) none of the concentrations
used for monastrol was high enough to kill cells. Using the proposed mathematical
model we can determine an appropriate range for the initial concentration of the
toxicant. Our methodology based on stability analysis has better mathematical jus-
tification and gives more accurate results than the approach proposed in [20] and
based on LC50 and linear regression.

The paper is organized as follows. We start by presenting the mathematical
model in section 2 followed by the study of stability in section 3. Section 4 includes
the methods used for parameter estimation and prediction. Next, in section 5,
we validate the proposed model by comparing the experimental TCRCs with the
predicted values for the cell index. The GSA and Monte Carlo Simulations are
presented in section 6. The last section of the paper includes a summary and
discussion of the main results and intended future work.

2. The mathematical model. The data set used in this study is from the cyto-
toxicity test on human hepatocellular carcinoma cell line HepG2 [19].

Without exposure to the test substances, a typical cell growth curve exhibits
four phases: the lag, the log, the plateau and the decline phases. The lag phase is
the phase when the cells do not divide and adapt to the culture conditions. In the
log phase the cells actively proliferate and have an exponential increase in the cell
density. In the plateau phase, the cellular proliferation reaches a steady-state level.
Finally, in the decline phase, the cell death predominates and the number of viable
cells declines due to the natural path of the cell cycle and depletion of the nutrient
supplements.

We focus on the modeling of the log phase. After seeding the cells in E-Plates for
24 hours, eleven concentrations of each substance were applied. Negative controls
were presented in each E-Plate 384, as the cells in these wells were treated with
only assay buffer for substance dilution, but no testing substances. The cells were
monitored totally for 89 hours. The TCRCs are truncated such that only the data
from the log phase are kept.

To model the negative control curves, we start with the well-known logistic model
describing cell growth in non-toxic environment [24]:

dn(t)

dt
= βn(t)(1− n(t)

K
), (1)

where n(t) is the cell index at time t, which closely reflects the number of cells, β
denotes the cell growth rate, and K is the capacity volume. The initial stage of
growth is approximately exponential; then, as the population is closed to capacity
K, the growth slows.

We consider the following model for cells growth/death in a toxic environment [4].
Let C0(t) and CE(t) be the the intracellular and the extracellular concentrations
of toxicant at time t, respectively. We suppose the death rate of cell is linearly
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dependent on the intracellular concentration of toxicant with coefficient α > 0, so
we have

dn(t)

dt
= βn(t)(1− n(t)

K
)− αC0(t)n(t). (2)

We suppose that the only source of toxicant is the environment. Linear kinetics
is known to be relevant for certain toxicants, but there is evidence that higher order
formulations are also important [4]. In [6] the mechanisms of in vitro cytotoxicity
are analyzed, and in the proposed models the toxicant’s uptake rate is considered to
be a combination of a linear diffusive component and a saturable, carrier-mediated
component (Michaelis-Menten like kinetics). The rapid on-line estimation of toxi-
cant concentration in water supply proposed in [8] is also based on these models.
However, after estimating the parameters, for some toxicants it appears that the
Michaelis-Menten uptake is not significant [6], so we ignore carrier-mediated trans-
portation and we use linear kinetics [4, 24]:

dC0(t)

dt
= λ21CE(t)− η21C0(t), (3)

where λ21 represents the uptake rate of the toxicant from environment, and η21 is the
toxicant input rate to the environment.

As in [4] we assume that the cells absorb part of the toxicant, and we express the
rate of change of the total amount of toxicant in the environment as the sum of the
rates of input to and losses from the environment. Supposing that the inputs to the
environment are proportional with C0(t)n(t), and the losses from the environment
to the population are proportional with CE(t)n(t), the concentration of toxicant
outside the cells changes over time according the following equation:

dCE(t)

dt
= λ22C0(t)n(t)− η22CE(t)n(t) (4)

where λ22 is the toxicant uptake rate from cells, and η22 represents the losses rate
of toxicants absorbed by cells. Coupling the equations (2) – (4), we obtain the
following toxicity model

dn(t)

dt
= βn(t)(1− n(t)

K
)− αC0(t)n(t)

dC0(t)

dt
= λ21CE(t)− η21C0(t)

dCE(t)

dt
= λ22C0(t)n(t)− η22CE(t)n(t).

(5)

Table 1. List of Variables and Parameters

Symbol Definition

n(t) cell index ≈ cell population

C0(t) toxicant concentration inside the cell
CE(t) toxicant concentration outside the cell

β cell growth rate in the absence of toxicant
K capacity volume
α effect coefficient of toxicant on the cell’s growth

λ21 the uptake rate of the toxicant from environment
λ22 the toxicant uptake rate from cells
η21 the toxicant input rate to the environment
η22 the losses rate of toxicant absorbed by cells
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The variables and parameters in this model are listed in Table 1.
Without loss of generality we suppose that the initial time is t0 = 0, and we

consider the initial cell index 0 < n(0) ≤ K. We assume that the toxicants do not
exist in the cells before experiments, so the initial concentration of internal toxicant
C0(0) = 0, and the initial concentration of toxicants outside of the cells CE(0) > 0
equals to the concentration of toxicant used in the experiments.

As we have mentioned before, the model (5) is a particular case of the class of
models introduce in [4]. More recently, similar models were studied in [5, 10, 15].
However, in these papers sufficient conditions for persistence or extinction of the
population are expressed in terms of the toxicant input rate u(t), so they do not
apply to our model because we consider an acute dose of toxicant (u = 0), instead of
a chronic one. In the next section we study the stability of the model (5) applying
both techniques for studying the persistence as in [4, 5], and methods used to analyze
the existence and stability of equilibria.

3. Stability analysis. We assume that all parameters of model (5) have positive
values.

3.1. Existence and stability of equilibria. Equilibria are very important in the
study of the asymptotic behavior of a dynamical system [7]. To determine the
equilibria, we set the vector field in (5) equal to 0, and we solve the equilibria
equations. To study the stability of the equilibria, we analyze the eigenvalues of the
Jacobian matrix J of (5):

J =

β − 2βn/K − αC0 −αn 0
0 −η21 λ21

λ22C0 − η22CE λ22n −η22n

 .
We have the following equilibria.

• The extinction equilibria:
[
0, CE∗

λ2
1

η21
, CE∗

]
where CE∗ > 0 is the con-

centration of toxicant outside the cells. For
[
0, CE∗

λ2
1

η21
, CE∗

]
the eigenvalues

are

ξ1 = β − αCE∗ η
2
1

λ21
, ξ2 = −η21 , ξ3 = 0

To determine the stability and the qualitative behavior in a neighborhood
of these non-hyperbolic equilibria, we study the behavior on the local center
manifold [21] (see appendix A for details regarding the center manifold). The
analytical center manifold is given by the line {(n,C0, CE) : n = 0, λ21CE −
η21C0 = 0}. The extinction equilibria are unstable [7] if the first eigenvalue is

positive, i.e. 0 < CE∗ <
βη21
αλ2

1
.

• The maximum capacity equilibrium:
[
K, 0, 0

]
. For

[
K, 0, 0

]
the eigen-

values are
ξ1 = −β < 0

ξ2,3 = −1

2

(
η21 + η22K ±

√
(η21 + η22K)2 + 4(λ21λ

2
2 − η21η22)K

)
Notice that if λ21λ

2
2−η21η22 < 0, then all the eigenvalues are negative, so

[
K, 0, 0

]
is locally asymptotically stable. If λ21λ

2
2−η21η22 > 0 then ξ1 < 0, ξ2 > 0, ξ3 < 0,

so
[
K, 0, 0

]
is unstable. Finally, if λ21λ

2
2−η21η22 = 0 then ξ1 < 0, ξ2 = 0, ξ3 < 0,

so
[
K, 0, 0

]
is a non-hyperbolic fixed point.
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• The interior equilibrium: If λ21λ
2
2 − η21η22 = 0, then we have the interior

equilibria
[
K(1− αλ2

1CE

βη21
),
λ2
1CE

η21
, CE

]
, where CE >

βη21
αλ2

1
. For these equilibria

the eigenvalues are

ξ1 = 0, ξ2 = −β
(

1− αλ21CE

βη21

)
< 0, ξ3 = −η21 − η22K

(
1− αλ21CE

βη21

)
< 0,

so these equilibria are non-hyperbolic fixed points.

3.2. Persistence and extinction. Following [5, 4] we define persistence and ex-
tinction as follows.

• The cell population is said to be uniformly persistent if there exist the con-
stantsM1 > 0, M2 > 0 such that 0 < M1 ≤ lim inft→∞ n(t) ≤ lim supt→∞ n(t)
≤M2 < +∞.

• The cell population is said to go to local extinction if limt→∞ n(t) = 0.

Intuitively, uniform persistence corresponds to the long term cells survival, and the
cells death corresponds in the previous definition to local extinction.

Similarly with [5] we can prove the following lemma (see appendix B for a detailed
proof).

Lemma 3.1. If η21η
2
2 − λ21λ22 > 0, then 0 < CE(t) ≤ CE(0), 0 ≤ C0(t) ≤ λ2

1CE(0)

η21
,

and n(t) > 0, for all t ≥ 0.

We have noticed that for the chemicals considered in this paper, the estimated
values of the parameters η1, η2, λ1, and λ2 verify η21η

2
2 − λ21λ22 > 0, so we focus

on this case. Using lemma 3.1, we get the following result (see appendix B for the
proof).

Theorem 3.2. If η21η
2
2 − λ21λ22 > 0, then limt→∞ CE(t) exists and its value deter-

mines the asymptotic behavior of system (5) according to the following two cases:

1. If limt→∞ CE(t) <
βη21
αλ2

1
then the population is uniformly persistent and we

have
lim
t→∞

n(t) = K, lim
t→∞

C0(t) = lim
t→∞

CE(t) = 0.

2. If limt→∞ CE(t) >
βη21
αλ2

1
then the population goes to local extinction and we

have

lim
t→∞

n(t) = 0, lim
t→∞

C0(t) = CE∗
λ21
η21
, lim

t→∞
CE(t) = CE∗ >

βη21
αλ21

,

Moreover, the population component is in L1[0,∞), i.e. |n|1 =
∫∞
0
n(t)dt <

∞.

Notice that if η21η
2
2 − λ21λ

2
2 > 0 and 0 < CE(0) <

βη21
αλ2

1
then, by Lemma 3.1,

limt→∞ CE(t) <
βη21
αλ2

1
, so we are in the first case and we have limt→∞ n(t) = K > 0.

From the analysis of the stability of the equilibria we know that [K, 0, 0] is a locally
asymptotically stable fixed point, so there exists populations modeled by equations
(5) that are uniformly persistent. These results are summarized in the following
corollary.

Corollary 1. If η21η
2
2 − λ21λ22 > 0 and 0 < CE(0) <

βη21
αλ2

1
then the population is

uniformly persistent, and we have limt→∞ n(t) = K.
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This is illustrated numerically by the trajectories displayed in Fig. 2(a) for
monastrol. These trajectories correspond to several sets of initial values n(0) > 0,

C0(0) = 0, 0 < CE(0) <
βη21
αλ2

1
= 6.51. We noticed that for this set of initial values

the trajectories approach the equilibrium [K, 0, 0] = [18.17, 0, 0].
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Figure 2. Trajectories corresponding to monastrol and initial val-

ues 0 < n(0) < K, C0(0) = 0, and (a) CE(0) <
βη21
αλ2

1
= 6.51.(b)

CE(0) >
βη21
αλ2

1
= 6.51

This means that if the initial concentration is sufficiently low, the presence of the
chemical does not affect the convergence of the cell index towards the maximum

capacity K. Moreover, we have a threshold,
βη21
αλ2

1
, such that if the experiment is done

using a chemical with initial concentration CE(0) <
βη21
αλ2

1
, then the cell population

is uniformly persistent.

If η21η
2
2 − λ21λ22 > 0 and CE(0) >

βη21
αλ2

1
, then we know that the population goes

to local extinction if |n|1 < ∞ (see Theorem 3.2). In Fig. 2 (b) this is illustrated
numerically for monastrol by the trajectories that asymptotically approach the ex-

tinction equilibria
[
0, CE∗

λ2
1

η21
, CE∗

]
, with CE∗ >

βη21
αλ2

1
. We notice from Fig. 2 (b)

that these extinction equilibria are on a line representing also the center manifold.

However, if η21η
2
2 − λ21λ

2
2 > 0, CE(0) >

βη21
αλ2

1
and |n|1 = ∞, the population

is uniformly persistent (see Theorem 3.2). Thus, the initial concentration of the
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Figure 3. The separation between persistence and extinction ac-
cording to the initial values n(0) and CE(0), red ∗: persistence;
blue ◦: extinction.

chemical and the entire past history of the population are important to determine
the persistence or extinction of the population. A similar conclusion was obtained
in [4] for a reduced model (with λ2 = 0), also corresponding to an acute dose of
toxicant.

For monastrol, the separation between persistence and extinction according to

the initial values n(0) > 0, C0(0) = 0, CE(0) >
βη21
αλ2

1
= 6.51 are presented in Fig.

3. Results of numerical simulations similar with the ones presented in Fig. 3 are
important, because they can be applied to choose an appropriate range for the
values of CE(0) used in the experiments such that the TCRCs will illustrate the
evolution from cells’ population survival (corresponding to small values of CE(0))
to cells’ population extinction (corresponding to large values of CE(0)).

In the next section we design an efficient method to estimate the parameters
based on the TCRCs. With the proposed method, for a given chemical and a cell
line, the parameters can be determined after only two experiments, namely the
negative control and an experiment with a relatively high initial concentration of
the testing substance. Thus, after two experiments we can determine the threshold
βη21
αλ2

1
and we can obtain numerically separation regions similar with one displayed in

Fig. 3. This information can be used to save both experimental time and resources.

4. Parameter estimation. The non-linear system of ordinary differential equa-
tions (5) cannot be solved analytically, so to estimate the parameters we rewrite
it in a state-space form. Notice that from the experimental data recorded in the
TCRCs we get observations, possibly affected by measurement errors, only for the
cell index n(t). Thus, using the Euler integration scheme with time step h, the
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associated discrete state-space system can be expressed as:

xk+1 = xk + h

βxk[1](1− xk[1]
K )− αxk[2]xk[1]

λ21xk[3]− η21xk[2]
λ22xk[2]xk[1]− η22xk[3]xk[1]

+ vk+1 (6)

yk+1 = Cxk+1 + wk+1 (7)

Here xk+1 = [n,C0, CE]t is the state of the system, yk+1 is the observation at time
step k + 1, and C =

[
1 0 0

]
. We assume that the white noise vectors, vk and

wk, are Gaussian and from uncorrelated white sequences such that vk ∼ N(0, Q)
and wk ∼ N(0, R). The 3× 3 diagonal covariance matrix Q, the variance R > 0, α,
λ1, λ2, η1, η2, β and K represent the unknown parameters, h is the time step and
the initial values x1[1] = n(0) comes from the measured data at the initial time t0,
x1[2] = C0(0) = 0 and x1[3] = CE(0) equals the concentration of toxicant used in
the experiments.

The parameters β and K are also the parameters of the logistic model (1) for
which we can easily get an analytic solution. Thus, using the experimental data
corresponding to the negative control (no toxicant) we can estimate β and K using
the nonlinear least square method based on the analytic solution of equation (1).

The system (5) cannot be solved analytically, so to estimate the remaining pa-
rameters Θ = {Q,R, α, λ1, λ2, η1, η2} we use the state-space model (6)-(7) and the
Expectation Maximization (EM) algorithm based on the the unscented filter (UF).
The EM algorithm is a classical method for estimating the parameters of linear
systems [22], and for a general nonlinear dynamics, the EM algorithm has been
applied using the UF or the EKF smoothing [3, 25].

The EM algorithm is especially useful when it is easier to calculate the likelihood
of the model using not only the observed data Yobs = {yk, k = 1, . . . , N}, but also
the hidden data Yhid = {xk, k = 1, . . . , N}. Hence the EM is based upon a data
augmentation scheme, such that the observed data are a mapping of the augmented
data Yobs = m(Yaug), where Yaug = {Yobs, Yhid}.

The state equation (6) is non-linear, so an approximation is needed during the
E-step. The likelihood and the conditional likelihood are approximated based on a
linearization, and the UF is used for filtering and smoothing. The next two sub-
sections briefly present the implementation of the UF and the EM algorithm for the
state-space model (6)-(7).

4.1. The unscented filter. The UF was introduced by Julier and Uhlmann [12]
as an alternative to the extended Kalman filter (EKF) for non-linear state-space
models. This filter does not require the calculation of the Jacobians, and it is
computationally at most as expensive as the EKF.

Both the EKF and the UF approximate the state distribution with a Gaussian
one. However, instead of using the EKF linearization approach, the UF employs a
deterministic sampling. The sample points completely capture the true mean and
the true covariance. In contrast to the first-order accuracy of the EKF, the UF is
capable to accurately capture the true posterior mean and the covariance up to the
third order for a nonlinear system.

For the state-space model (6)-(7), let us denote x̄i = E[xi|y1, . . . , yi] and x̂i+1 =
E[xi+1|y1, y2, . . . , yi] for the filtered and the predicted values, respectively, where



MODELING AND SIMULATION FOR TOXICITY ASSESSMENT 591

E[·|·] represent the conditional expectation. The corresponding conditional covari-

ances are P̄i = E [(xi − x̄i)(xi − x̄i)t|y1, . . . , yi] and P̂i+1 = E

[
(xi+1 − x̂i+1)(xi+1−

x̂i+1)t|y1, . . . , yi
]
. Based on the available observations y1 . . . yN , smoothed values

xi|N = E[xi|y1 . . . yN ] and Pi|N = E[
(
xi − xNi

) (
xi − xNi

)t |y1 . . . yN ] can be calcu-
lated.

Let denote

f(x) = x+ h

βx[1](1− x[1]
K )− αx[2]x[1]

λ21x[3]− η21x[2]
λ22x[2]x[1]− η22x[3]x[1]

 , x ∈ R3 (8)

and consider the linearised system

xk+1 = f(x̄k) +
∂f

∂x
(x̄k)(xk − x̄k) + vk+1, (9)

yk = Cxk + wk, . (10)

Notice that for the linearized system we have

P̄xkxk+1
= E[(xk − x̄k)(xk+1 − x̂k+1)t|x1, . . . , xk] = P̄k

∂f

∂x

t

(x̄k), (11)

and with

Jk = P̄xkxk+1
P̂−1k+1, (12)

we have the following backward recursions

xk−1|N = x̄k−1 + Jk−1(xk|N − x̂k), (13)

Pk−1|N = P̄k−1 + Jk−1(Pk|N − P̂k)J tk−1. (14)

The UF filtering algorithm [11] can be used to compute x̄k+1, P̄k+1, x̂k+1, P̂k+1

and P̄xkxk+1
. The smoothed values xk|N and Pk|N , k = 1, . . . , N can be computed

using (12) and the backwards recursions given in (13)-(14), starting with k = N .

4.2. The EM algorithm. The algorithm starts with an initial guess θ0 for the
unknown parameters and iteratively compute the estimation θ∗. Each iteration
consists of two steps: the expectation (E) and the maximization (M) step. Using
the current estimation θn of the parameters, the E-step computes the conditional ex-
pectation of the augmented data log-likelihood Q(θ|θn) = E[log p(θ|Yaug)| Yobs, θn].
The M-step performs a maximization with respect to the parameters θ:

θn+1 = arg max
θ
Q(θ|θn).

We briefly explain the implementation of the proposed EM-algorithm for esti-
mating the parameters Θ of he the state-space model (6)-(7). First, we augment
the data with the hidden variables xi, i = 1, . . . , N and we calculate the complete
log-likelihood:

log(L) = logP (x1, . . . , xN , y1, . . . , yN ) = logP (yN |yN−1, . . . , y1, xN , . . . , x1)

+ . . .+ logP (y1|xN , . . . , x1) + logP (xN |xN−1, . . . , x1) + . . .+ logP (x1).
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Using the linearized equations (9) and (10), we obtain:

log(L) = −5N ln(2π)− 1

2

N∑
i=1

ln(|R|)− 1

2

N∑
i=1

(yi − Cxi)tR−1(yi − Cxi)

− 1

2

N∑
i=2

ln(|Q|)− 1

2

N∑
i=2

(xi − Fi−1xi−1 − bi−1)tQ−1(xi − Fi−1xi−1 − bi−1)

− 1

2
ln(|Σ|)− 1

2
(x1 − µ)tΣ−1(x1 − µ),

where

Fi =

1 + h (β − 2βx̄i[1]/K − αx̄i[2]) −hαx̄i[1] 0
0 1− η21h λ21h

hλ22x̄i[2]− hη22 x̄i[3] hλ22x̄i[1] 1− hη22 x̄i[1]


and

bi =

 h
(
βx̄i[1]2/K + αx̄i[2]x̄i[1]

)
0

h
(
−λ22x̄i[2]x̄i[1] + η22 x̄i[3]x̄i[1]

)
 .

The EM algorithm iteratively maximizes Ê = E[log(L)|y1, . . . , yN ]. Using the pre-
vious formulas and tr(AB) = tr(BA), where tr is the notation for the trace of a
matrix, we get

Ê = −5N ln(2π)− N

2
log(|R|)− 1

2

N∑
n=1

tr[R−1(yny
t
n − ynxtn|NC

t − Cxn|Nytn

+ CPn|NC
t)]− 1

2

N∑
n=2

log(|Q|)− 1

2

N∑
n=2

tr[Q−1(Pn|N − Pn,n−1|NF tn−1 − xn|Nbtn−1

− Fn−1P tn,n−1|N + Fn−1Pn−1|NF
t
n−1 + Fn−1xn|Nb

t
n−1 − bxtn|N + bn−1x

t
n|NF

t
n−1

+ bn−1b
t
n−1)]− 1

2
log(|Σ|)− 1

2
tr[Σ−1(P1 − µxt1|N − x1|Nµ

t + µµt)]

The smoothed values Pn|N = E[xnx
t
n|y1, . . . , yN ], Pn,n−1|N = E[xnx

t
n−1|y1, . . . , yN ],

and xn|N = E[xn| y1, . . . , yN ] can be calculated using the UF smoothing presented
in the previous section. For the M-step, analytical update equations for the param-
eters Θ can be found taking derivatives with respect to the parameters Θ in the
previous formula for Ê. The implementation of the EM algorithm is summarized
in Table 2

Table 2. The EM algorithm

Initialize the model parameters Θ = {Q,R, α, λ1, λ2, η1, η2}
Repeat until the log likelihood has converged

The E step
For k=1 to N

Run the UF filter to compute x̄k+1, P̄k+1, x̂k+1, P̂k+1 and P̄xkxk+1

For k=N to 1
Calculate the smoothed values xk|N , and Pk|N using (13), (14)

The M step

Update the values of the parameters Θ to maximize Ê
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The main advantage of using the EM-algorithm is the guaranteed convergence
[26, 18]. However, depending on the initial guess, the algorithm can only converge
to a local maximum. Various strategies for choosing the initial guess are proposed
in [1], and methods for accelerating the convergence are presented in [17].

5. Model validation. We divide the experimental data into a training set (con-
taining N observations, where N equals around 70% of the data), and a test set. We
use the observations in the training set to estimate the parameters. Once the pa-
rameters are estimated, we can predict the future values of xi, i = N +1, N +2, . . .,
and we validate the model by comparing these predictions with the experimental
data in the test set.
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Figure 4. Negative control data fitted by logistic model, dot: ex-
perimental data, line: logistic model.

We start with the validation of the logistic model on the negative control cell
growth data, and we estimate the cell growth rate β and capacity K (which we
suppose are unchanged for the whole experiment). Since the logistic equation (1)
can be solved analytically, the nonlinear least square method is an efficient and
reliable method for parameter estimation and prediction.

Figure 4 shows the fitting of the negative control data of four replicates. The
data predicted by the logistic model is in agreement with all the experimental data.
Moreover the estimated parameters of all replicated experiments are consistent.
Thus we conclude that the logistic equation (1) is a suitable model to represent the
cell growth in non-responsive environment.

To test the responsive model (5), we present here the results obtained for
PF431396, monastrol, ABT888, and HA1100 hydrochloride. These chemicals are
selected from Cluster I: DNA/RNA-nucleic acid targets, and Cluster X: protein -
motor targets. These two clusters are the top 2 most common clusters in the 63
compounds experiments, covering more than half of the cases.



594 ANTON, DENG, WONG, ZHANG, ZHANG, GABOS, HUANG AND JIN

20 30 40 50 60 70 80
2

4

6

8

10

12

time

n
(t

)

25 30 35 40 45
0

1

2

3

4

time

n
(t

)

20 30 40 50 60 70 80
0

5

10

15

20

time

n
(t

)

20 30 40 50 60 70 80
0

5

10

15

20

time

n
(t

)
Figure 5. Smooth spline approximation, dot: experimental data,
line: smooth spline

We perform preprocessing of the experiment data before testing the toxicity
model. Since the cell index is not measured uniformly on time, we apply a smoothing
spline to approximate the experimental data. Figure 5 presents a good agreement
between the experimental data and the fitting spline.

After interpolation with a smoothing spline, we sample uniformly from the ap-
proximating spline, and we use the first 70% experimental data (i.e. the training
set) to estimate the parameters, α, η1, η2, λ1 and λ2 with the EM algorithm. The
estimated values of the parameters for the four chemicals mentioned before are
given in Table 1. Using the estimated values of the parameters, we apply the UF to
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Figure 6. Estimation results for PF431396, dot: experimental
data, line: filtered or predicted observations; (a) CE(0)=5.00uM,
(b) CE(0)= 1.67uM, (c) CE(0)=0.56uM, (d) CE(0)=0.19uM, (e)
CE(0)=61.73nM, (f) CE(0)= 20.58nM, (g) CE(0)= 6.86nM, (h)
CE(0)=2.29nM
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Figure 7. Estimation results for monastrol, dot: experimental
data, line: filtered or predicted observations; (a) CE(0)=100.00uM,
(b) CE(0)=33.33uM, (c) CE(0)=11.11uM, (d) CE(0)= 3.70uM, (e)
CE(0)=1.23uM, (f) CE(0)= 0.41uM, (g) CE(0)=0.14uM, (h)
CE(0)=45.72nM
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Figure 8. Estimation results for ABT888, dot: experimental
data, line: filtered or predicted observations; (a) CE(0)=308.00uM,
(b) CE(0)=102.67uM, (c) CE(0)=34.22uM, (d) CE(0)=11.41uM,
(e) CE(0)=3.80uM, (f) CE(0)=1.27uM, (g) CE(0)=0.42uM, (h)
CE(0)=0.14uM

predict the cell growth/death, and we compare the predicted values with the data
in the test set (i.e. with the last 30% of the experimental data).

From Figs. 6-8, the predictions are in agreement with the experimental data.
We have plotted only the TCRCs corresponding to the largest 8 out of 11 values of
the initial concentration of the chemicals because the curves corresponding to the
first 3 values are similar to the negative control. The observations from the initial
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Figure 9. Estimation results for HA1100 hydrochloride, dot:
experimental data, line: filtered or predicted observations; (a)
CE(0)=1.00mM, (b) CE(0)=0.33mM, (c) CE(0)=0.11mM, (d)
CE(0)= 37.04uM, (e) CE(0)=12.35uM, (f) CE(0)=4.12uM, (g)
CE(0)=1.37uM, (h) CE(0)= 0.46uM

Table 3. Estimated Values of Parameters

Toxicant Cluster β K η1 λ1 λ2 η2 α

PF431396 X 0.077 21.912 0.273 0.058 0 0.008 0.238
monastrol X 0.074 18.17 0.209 0.177 0.204 0.5 0.016

ABT888 I 0.083 17.543 0.079 0.177 0.205 0.5 0.005

HA1100 hydrochloride I 0.077 21.913 0.143 0.0098 0.0786 0.147 0.351

time t0 to the red vertical line represent the training set, and are used for parameter
estimation. The test set is formed with the data after the vertical red line. In all
the figures the experimental data is plotted using dotted lines, and the filtered or
predicted observations are presented using plain lines. The concentration reduces
by a third from top to bottom, and from left to right.

6. Parameter uncertainty and sensitivity analysis. In addition to the point
estimates obtained with the EM algorithm, we analyze the effect of parameter
uncertainty on predicting the cell index using Monte Carlo simulations and global
sensitivity analysis (GSA). Sensitivity Analysis (SA) refers to a broad group of
methods that ranks parameters by their effect on output variables. GSA is the most
suitable group of sensitivity analysis methods for application in highly nonlinear
dynamic models [13]. In GSA, variations of all input parameters simultaneously
are considered. As a result, interactions among different inputs can be detected.
There is a variety of GSA methods, and here we apply the Sobol’s method [23].

6.1. Simulations with random parameters. To account for parameter uncer-
tainty, we run simulations assuming that all parameters are random variables with
triangle distributions on intervals centered around the estimated values of the pa-
rameters given in Table 1. Based on these simulations we determine the expected
cell index and the extinction probability. We consider intervals corresponding to
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perturbations of 10% , we run the model for 1000 realizations and we simulate
for t=60 hours (similarly with the experimental settings). In Figs. 10(a), 11(a)

20 30 40 50 60 70 80 90
2

4

6

8

10

12

14

16

18

20

time

C
el

l I
nd

ex

 

 

5uM
1.67uM
0.56uM

(a)

10
0

10
1

5

10

15

20

Concentration (uM)

E
xp

ec
te

d 
C

el
l I

nd
ex

10
0

10
1

0

0.2

0.4

0.6

0.8

1

Concentration (uM)

P
ro

ba
bi

lit
y 

of
 E

xt
en

ct
io

n

(b)

Figure 10. (a) Experimental TCRCs for PF431396 for
CE(0)=5uM, 1.67uM, 0.56uM (b) Expected cell index and
probability of extinction for different concentrations for PF431396
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Figure 11. (a) Experimental TCRCs for ABT888 for
CE(0)=308uM, 103uM, 34uM (b) Expected cell index and
probability of extinction for different concentrations for ABT888

we display some TCRCs recorded after experiments for PF431396 and ABT888.
We compare these curves with the simulations results obtained using the proposed
mathematical model.

In Figs. 10(b), 11(b) we plot the expected cell index and the probability of
extinction against the concentration of PF431396 and ABT888. Notice that the
values of the expected cell index are in good agreement with the experimental data
represented in the TCRCs. The probability of extinction increases very steeply
from 0 to 1 when the concentrations increase and pass a certain threshold. This
illustrates the conclusions of the stability analysis presented in section 3.

From figures 6, 8, 9 we can notice that the TCRCs for PF431396, ABT888
and HA1100 hydrochloride cover both cases corresponding to persistence and to
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extinction. However, from figures 7 we can notice that the experiments for monastrol
are done with too small initial concentrations because all TCRCs show persistence.
The results of this type of simulations can be used to determine an appropriate
range for the initial concentration of chemicals CE(0) used in the experiments
such that both values smaller and larger than the threshold between extinction and
persistence are included. They extend the stability analysis done in section 3 by
considering also the effects of parameter uncertainty.

6.2. Global sensitivity analysis. Sobol’s sensitivity measures [23] that utilize
the analysis of variance (ANOVA) of the model output are among the most widely
used GSA methods [13] [9]. In Sobols method, the variance of the model output
is decomposed into components that result from individual parameters as well as
from parameter interactions.

Consider a mathematical model represented by the square integrable function
f(x), where x = (x1, · · · , xd) are the parameters of the model. Without loss of
generality, we suppose x1, · · · , xd are independent, uniformly distributed random
variables on [0, 1]d, and f(x) has the ANOVA type of decomposition

f(x) = f∅ +
∑
k

f[k](xk) +
∑
k1<k2

f[k1,k2](xk1 , xk2) + · · ·+ f[1,··· ,d](x1, . . . , xd) (15)

where f∅ is a constant and f[k1,...,kr](xk1 , · · · , xkr ) is a function only depending on
the variables xk1 , · · ·xkr such that for 1 ≤ i ≤ r,∫ 1

0

f[k1,...,kr](xk1 , · · · , xkr )dxki = 0.

Thus the summands in (15) are orthogonal to each other and we have∫
[0,1]d

f(x)dx = f∅.

Let us define

D :=

∫
[0,1]d

f2(x)dx− f2∅

Dk1,...,kr :=

∫
[0,1]r

f2[k1,...,kr](xk1 , · · · , xkr )dxk1 · · · dxkr .

We have Var[f(x)] = D, Var[E[f(x)|xi]] = Di, Var[E[f(x)|xi, xj ]] = Di+Dj+Di,j ,
· · · , so D can be seen as the total variance and Dk1,...,kr as partial variances. The
Sobols indices are defined as

Sk1,...,kr =
Dk1,...,kr

D
.

Squaring (15), integrating over [0, 1]d and using the orthogonality of the summands
[23], we get

d∑
r=1

∑
k1<k2<···<kr

Dk1,...,kr = D.

The GSA indices of a model can be evaluated using Monte Carlo numerical
integration. To demonstrate the process, we present the estimation of first order
indices Di for 1 ≤ i ≤ d, and the second order indices Di,j for 1 ≤ i < j ≤ d.



MODELING AND SIMULATION FOR TOXICITY ASSESSMENT 599

Let ξi = (ξi1, . . . , ξ
i
d) for i = 1, . . . , N be random samples of x. Then

f∅ ≈
1

N

N∑
i=1

f(ξi), D ≈ 1

N

N∑
i=1

f2(ξi)− f2∅.

Then we generate another group of samples ξ̂i = (ξ̂i1, . . . , ξ̂
i
d) for i = 1, . . . , N , which

are independent with ξi. The GSA indices are estimated as

Dj ≈ 1

N

N∑
i=1

f(ξi1, . . . , ξ
i
d)f(ξ̂

i
1, . . . , ξ̂

i
j−1, ξ

i
j , ξ̂

i
j+1, . . . , ξ̂

i
d)− f2

∅

Dj1,j2 ≈ 1

N

N∑
i=1

f(ξi1, . . . , ξ
i
d)f(ξ̂

i
1, . . . , ξ̂

i
j1−1, ξ

i
j1 ξ̂

i
j1+1, . . . , ξ̂

i
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i
j2 , ξ̂
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i
d)− f2

∅

We present the GSA studies for our proposed model. The estimated values of
the parameters for different chemicals are given in Table 3. We consider that all
parameters are random variables with uniform distribution on intervals correspond-
ing to perturbations of 10%. To calculate the Sobol’s indices we use the Matlab
toolbox named GSAT developed by Cannavó [2].

In Figs. (12), (13), we present the ranking for the GSA indices for PF431396
and ABT888 with various concentration, respectively. We can notice that when the
chemicals’ concentration is small the capacity K is the most sensitive parameter of
the model. This can be explained by the fact that for low concentrations of toxicant
the cell population is persistent, and asymptotically the cell index n approaches the
capacity K (see section 3). As the concentration increase to the transition stage
from persistence to extinction, the cell population become more sensitive to the
intake and outtake rates λ1, η1, λ2, η2.
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Figure 12. The first order GSA indices ranking for PF431396
(higher rank means more sensitive).

Figure (14) present the second order GSA indices for the same chemicals at the
transition stage from persistence to extinction. The thickness of lines of any pair
of parameters represents the rank of their co-sensitivity (the thicker the line, the
greater the co-sensitivity). These pictures also show that the intakes and outtakes
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Figure 13. The first order GSA indices ranking for ABT888
(higher rank means more sensitive).

rates are the most sensitive parameters for the cells’ population model. Similar
results are obtained for monastrol and HA1100 hydrochloride.

7. Discussion and summary. The novelty of this paper is the application of a
dual methodology, including an efficient statistical method for parameter estima-
tion and prediction of the cell index and chemicals’ concentration, followed by a
numerical and analytical stability study for the dynamical system modeling the
cells’ growth/death.

We propose a mathematical model expressed by a three dimensional system of
differential equations that can be expressed in a state-space form, and we design an
EM algorithm based on the unscented filter for parameter estimation and prediction.
Since it requires less tunning, the EM algorithm is a more efficient alternative for
parameter estimation than the MHE or the EKF [8]. The results presented here
for four chemicals with different MOAs illustrate the efficiency of the proposed
algorithm and validate the mathematical model. Our approach is very efficient
because the model parameters can be estimated based on TCRCs provided by only
two experiments, namely the negative control and an experiment with a relatively
large initial concentration of the chemical. Using the mathematical model, accurate
TCRCs for other concentrations can be obtained numerically.

Based on the TCRCs, clustering methods or machine learning algorithms can be
applied to classify the chemicals. However, some chemicals were tested with either
too low concentrations (so no significant effect on the cells growth/death is noticed)
or too high concentrations (so the only effect that can be noticed is the rapid
cells’ death). Consequently, the TCRCs generated after this kind of experiments
do not have the features necessary for statistical classification. The main practical
motivation of this study was to find a way to determine the lowest concentration of
toxin that can kill the cells (i.e. the value of chemical’s initial concentration that
separate the persistent cells’ populations from those that go to extinction).

Once the parameters are estimated, the stability analysis and numerical simu-
lations can provide a range of values for the chemical’s initial concentration that
give TCRCs with useful features. The asymptotic analysis of the proposed model
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Figure 14. Network graph visualizing the second order GSA in-
dices for (a) PF431396 with CE(0)=10uM (b) ABT888 with
CE(0)=400uM

shows that persistence occurs if the initial concentration of chemical is smaller than
a certain threshold. For the persistent trajectories, the cell index tends toward the
nominal carrying capacity of the population, and the internal and external chemical
concentrations tend toward zero. Extinction depends on the initial concentration of
toxicant and the entire past history of the population. The extinction behavior is
more complex because when the cell index tends to zero, the internal and external
toxicant concentrations can approach an infinite number of limiting values.

We illustrate this analytical and numerical analysis for monastrol, but the pro-
posed model based on first order kinetics gives accurate predictions for the TCRCs
corresponding to the 63 chemicals considered in this study. However, there might
be limitations for different experimental settings or chemicals with different MOA.

We plan to further extend this study using uncertainty quantification meth-
ods. Although the proposed model was validated by experimental data, parameter
uncertainty is inherent. To account for parameter uncertainty and calculate the
probability of extinction, we have considered random perturbation of parameters’
values, we have done Monte Carlo simulations, and we have calculated the Sobol’s
GSA indices to find out which parameters are important and sensitive to change.
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Based on the results of the GSA we plan to introduce a model with random param-
eters, for example to consider a system of stochastic differential equations similar
with the ones in [15, 16].

Acknowledgments. This work was supported by a Mathematics of Information
Technology and Complex Systems (MITACS) Accelerate Clusters grant and by a
grant from the Natural Sciences and Engineering Research Council of Canada.

Appendix A. Center manifold. Let
[
0, CE∗

λ2
1

η21
, CE∗

]
be any extinction equi-

librium with CE∗ 6= βη21
αλ2

1
. To translate this fixed point to the origin, we consider

two new variables y1 = C0−CE∗ λ
2
1

η21
and z1 = CE−CE∗. The corresponding model

in terms of [n, y1, z1] is given by the following system of equations

dn(t)

dt
=

(
β − αλ21CE

∗

η21

)
n(t)− βn(t)2

K
− αy1(t)n(t)

dy1(t)

dt
= λ21z1(t)− η21y1(t)

dz1(t)

dt
=
CE∗(−η21η22 + λ21λ

2
2)n(t)

η21
+ λ22y1(t)n(t)− η22z1(t)n(t).

(16)

The diagonal form of this system is

dx

dt
= − (αCE∗λ21 − βη21)

η21
x+ F1(x, y, z)

dy

dt
= −η21y + F2(x, y, z)

dz

dt
= F3(x, y, z)

(17)

where the new variables are

x =
CE∗(η21η

2
2 − λ21λ22)

(αCE∗λ21 − βη21)
n

y =
(η21η

2
2 − λ21λ22)CE∗λ21

(αCE∗λ21 − η41 − βη21)η21
n+ y1 −

λ21
η21
z1

z =
CE∗(η21η

2
2 − λ21λ22)

(αCE∗λ21 − βη21)
n+ z1,

and the non-linear terms are of the form Fi(x, y, z) = c1x
2 + c2xy + c3xz, for some

coefficients ci, i = 1, . . . , 3 that can be easily determined using MAPLE. The local
center manifold at [0, 0, 0] (see chapter 2.12 in [21]) is of the form

x = h(z) = a1z
2 + a2z

3 + . . .

y = g(z) = b1z
2 + b2z

3 + . . . .
(18)

To determine the coefficients ai, bi, i = 1, . . ., we substitute the previous expansions
into the following equation (see Theorem 1, chapter 2.12 in [21])

F3(h(z), g(z), z)D

[
h(z)
g(z)

]
−

[
− (αCE∗λ2

1−βη
2
1)

η21
h(z) + F1(h(z), g(z), z)

−η21g(z) + F2(h(z), g(z), z)

]
= 0 (19)
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Simple, but long calculations give ai = bi = 0, i = 1, . . ., so the initial system is
topologically conjugate (see Theorem 2, chapter 2.12 in [21]) to the system

dx

dt
= − (αCE∗λ21 − βη21)

η21
x

dy

dt
= −η21y

dz

dt
= 0.

(20)

and, in terms of the initial variables, the local center manifold is the line {(n,C0,
CE) : n = 0, λ21CE − η21C0 = 0}.

Appendix B. The proofs. Before we give the proofs for the lemma and theorem
included in section 3, we notice that the we have the following formulas for the
solutions of system (5) (see also [4]). Since equations (3) and (4) are linear we have

C0(t) = λ21e
−η21t

∫ t

0

CE(s)eη
2
1sds (21)

CE(t) = CE(0) exp

(
−η22

∫ t

0

n(s)ds

)
+ λ22 exp

(
−η22

∫ t

0

n(s)ds

)
∫ t

0

C0(s)n(s) exp

(
η22

∫ s

0

n(l)dl

)
ds, t ≥ 0. (22)

Equation (2) is a Bernoulli equation, so we get

n(t) =
n(0) exp

(
βt− α

∫ t
0
C0(s)ds

)
1 + n(0)β

K

∫ t
0

exp
(
βs− α

∫ s
0
C0(l)dl

)
ds
, t ≥ 0. (23)

B.1. Proof of lemma 3.1. Assume that there exists T1 > 0 such that CE(T1) >
CE(0) or CE(T1) ≤ 0, and suppose that [0, T ] is the maximum interval for which
0 < CE(t) ≤ CE(0). Then we should either have CE(T ) = CE(0) or CE(T ) = 0.

From (21) we get for any 0 < t ≤ T

0 ≤ C0(t) = λ21e
−η22t

∫ t

0

CE(s)eη
2
1sds ≤ λ21e−η

2
2tCE(0)

∫ t

0

eη
2
1sds

=
λ21CE(0)

η21

(
1− e−η

2
1t
)
≤ λ21CE(0)

η21

Thus, for any 0 < t ≤ T

0 ≤
∫ t

0

C0(s)ds ≤ λ21CE(0)t

η21
<∞ (24)

and from equation (23) we have 0 < n(t) ≤ n(0)eβt. Using this and equation (22)
we get for any 0 < t ≤ T

CE(t) ≥ CE(0) exp

(
−η22

∫ t

0

n(s)ds

)
> 0, (25)

so CE(T ) > 0.
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Moreover, if CE(T ) = CE(0), then from equation (4) we obtain

dCE

dt

∣∣∣∣
t=T

= λ22C0(T )n(T )− η22CE(T )n(T )

≤ CE(0)n(T )

(
λ21λ

2
2

η21
− η22

)
< 0 (26)

So there exists δ > 0 such that CE(t) ≤ CE(0) for all t ∈ [T, T + δ], and we have
a contradiction with the definition of the interval [0, T ].

Thus, we have proved that 0 < CE(t) ≤ CE(0) for any t ≥ 0. Using this and

(21) we also get 0 ≤ C0(t) ≤ λ2
1CE(0)

η21
, for any t ≥ 0. Consequently inequalities (24)

are true for any t ≥ 0, and from (23) we get n(t) > 0, for all t ≥ 0.

B.2. Proof of Theorem 3.2. Since from Lemma 3.1 we know that n(t) > 0, for
any t ≥ 0, we have

∫∞
0
n(t)dt =∞ or 0 ≤

∫∞
0
n(t)dt <∞.

If |n|1 =
∫∞
0
n(t)dt <∞ then for any t ≥ 0 we also have∫ t

0

C0(s)n(s) exp

(
η22

∫ s

0

n(l)dl

)
ds ≤ λ21CE(0)

η21
exp

(
η22 |n|1

)
|n|1, (27)

so 0 ≤
∫∞
0
C0(s)n(s) exp

(
η22
∫ s
0
n(l)dl

)
ds = M <∞. Thus from (22) we get

lim
t→∞

CE(t) = CE(0) exp(−η22 |n|1) + λ22M exp(−η22 |n|1) <∞. (28)

Consequently, there exists T1 > 0 such that tor any t > T1 we have CE(t) >

CE(0) exp(−η22 |n|1)/2. This implies that
∫∞
0
CE(s)eη

2
1sds = ∞ because for any

t > T1 we have∫ t

0

CE(s)eη
2
1sds ≥

∫ t

T1

CE(s)eη
2
1sds ≥ CE(0) exp(−η22 |n|1)/2

∫ t

T1

eη
2
1sds.

So we can apply L’Hospital rule in (21), and we get

lim
t→∞

C0(t) =
λ21
η21

lim
t→∞

CE(t). (29)

Thus, if
∫∞
0
n(t)dt < ∞, then limt→∞ CE(t) and limt→∞ C0(t) exist and they are

related by the previous equation.
Next we consider the case when

∫∞
0
n(t)dt = ∞. If 0 ≤

∫∞
0
C0(s)n(s) exp

(
η22∫ s

0
n(l)dl

)
ds < ∞, from (22) we get limt→∞ CE(t) = 0. On the other hand, if∫∞

0
C0(s)n(s) exp

(
η22
∫ s
0
n(l)dl

)
ds =∞, from L’Hospital rule in (22) we have

0 ≤ λ22
η22

lim inf
t→∞

C0(t) ≤ lim inf
t→∞

CE(t) ≤ lim sup
t→∞

CE(t) ≤ λ22
η22

lim sup
t→∞

C0(t) (30)

Similarly, from (21) we either get that limt→∞ C0(t) = 0 (if
∫∞
0
CE(s)eη

2
1sds <∞),

or we have

0 ≤ λ21
η21

lim inf
t→∞

CE(t) ≤ lim inf
t→∞

C0(t) ≤ lim sup
t→∞

C0(t) ≤ λ21
η21

lim sup
t→∞

CE(t), (31)

(if
∫∞
0
CE(s)eη

2
1sds =∞). All these possible cases give

lim
t→∞

C0(t) = lim
t→∞

CE(t) = 0, (32)

because η21η
2
2 − λ21λ

2
2 > 0. Thus, if

∫∞
0
n(t)dt = ∞, then limt→∞ CE(t) and

limt→∞ C0(t) exist and they are equal with zero.
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In conclusion, we have shown that in both cases limt→∞ CE(t) and limt→∞ C0(t)

exist, and we have limt→∞ C0(t) =
λ2
1

η21
limt→∞ CE(t).

To prove the first part of the theorem we first show that if limt→∞ CE(t) <
βη21
αλ2

1

then
∫∞
0
n(t)dt =∞. From the previous discussion we know that limt→∞ CE(t) <

βη21
αλ2

1
implies limt→∞ C0(t) < β

α , and consequently

lim
t→∞

exp

(
βt− α

∫ t

0

C0(s)ds

)
=∞, lim

t→∞

∫ t

0

exp

(
βs− α

∫ s

0

C0(l)dl

)
ds =∞

Hence, from L’Hospital rule in (23) we have

0 ≤ lim
t→∞

n(t) =
K (β − α limt→∞ C0(t))

β
(33)

If
∫∞
0
n(t)dt < ∞ then we should have limt→∞ n(t) = 0, and this implies

limt→∞ C0(t) = β
α . But limt→∞ C0(t) < β

α , so
∫∞
0
n(t)dt =∞. Hence limt→∞ C0(t)

= limt→∞ CE(t) = 0, and replacing in (33) we get limt→∞ n(t) = K. This com-
pletes the proof of the first part of the theorem.

Next, if limt→∞ CE(t) = CE∗ >
βη21
αλ2

1
> 0, then from the previous discussion we

know that |n|1 =
∫∞
0
n(t)dt <∞. Moreover, limt→∞ C0(t) =

λ2
1

η21
CE∗ > β

α > 0, so

lim
t→∞

exp

(
βt− α

∫ t

0

C0(s)ds

)
= 0.

Thus limt→∞ n(t) = 0 because from (23) we have

0 < n(t) ≤ n(0) exp

(
βt− α

∫ t

0

C0(s)ds

)
.
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