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Abstract. Accumulating evidence indicates that the interaction between ep-

ithelial and mesenchymal cells plays a pivotal role in cancer development and
metastasis formation. Here we propose an integro-differential model for the

co-culture dynamics of epithelial-like and mesenchymal-like cells. Our model

takes into account the effects of chemotaxis, adhesive interactions between
epithelial-like cells, proliferation and competition for nutrients. We present a

sample of numerical results which display the emergence of spots, stripes and

honeycomb patterns, depending on parameters and initial data. These simula-
tions also suggest that epithelial-like and mesenchymal-like cells can segregate

when there is little competition for nutrients. Furthermore, our computational
results provide a possible explanation for how the concerted action between

epithelial-cell adhesion and mesenchymal-cell spreading can precipitate the for-

mation of ring-like structures, which resemble the fibrous capsules frequently
observed in hepatic tumours.

1. Introduction. The mathematical formalisation of cell motion is a fascinating
topic which has attracted the attention of physicists and mathematicians over the
past fifty years. In more recent times, the development of sophisticated technologies
capable of capturing high-resolution videos of moving cells has renewed the interest
of the physical and mathematical communities. This has promoted the formulation
of several models, which rely on different mathematical approaches, to reproduce
qualitative behaviours emerging from cell motion. We refer the interested reader
to [1, 2, 5, 7, 8, 9, 10, 11, 14, 17, 18, 22, 31, 36, 37] and references therein.

Accumulating evidence indicates that the interaction between epithelial and mes-
enchymal cells plays a pivotal role in cancer development and metastasis forma-
tion [20, 39, 40]. Here we propose a model for the co-culture dynamics of epithelial-
like and mesenchymal-like cells. In our model, mesenchymal-like and epithelial-like
cells in motion are grouped into two distinct populations. Following a kinetics ap-
proach, the microscopic state of each cell is identified by its position and velocity
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(i.e., a point in the phase space), and the two populations are characterised through
the related phase space densities. Macroscopic quantities (e.g., local cell densities)
are then expressed in terms of microscopic averages [3, 4]. We make use of the
mesoscopic formalism developed in [8, 22] to include microscopic aspects of cell
motion which cannot be captured by macroscopic models. Moreover, we adapt the
strategies presented in [15] to model proliferation, competition for nutrients and
adhesive interactions between epithelial-like cells.

A calibration of the model based on experimental datasets is beyond our present
scope. In this work, our aim, rather, is to present a sample of numerical results
which display the emergence of different spatial patterns, depending on parameters
and initial data. The remainder of the paper is organised as follows. The main
features of the biological system and the mathematical model are introduced in
Section 2. In Section 3, we discuss the main numerical results. Finally, some
research perspectives are summarised in Section 4.

2. The model. In this section, we introduce the key features of the biological
system and the mathematical model. In Subsection 2.1, we state the biological
problem and the assumptions we need in view of the mathematical formalisation.
In Subsection 2.2, we describe the modelling strategies we designed to translate the
biological phenomena into mathematical terms, and we present the model.

2.1. Brief phenomenological overview and main assumptions. The term
Epithelial-Mesenchymal Transition (EMT) refers to the temporary and reversible
switching between epithelial and mesenchymal phenotypes. During EMT, non-
motile epithelial cells, collectively embedded via cell-cell junctions (i.e., homotypic
adhesion), convert into motile mesenchymal cells [20, 39]. This strongly reduces cell
adhesion and enhances cell motility.

EMT is commonly observed in various non-pathological conditions, namely dur-
ing embryonic development and tissue repair in the adult organism. However, this
phenotypic reprogramming has been linked to cancer progression [39, 40]. For in-
stance, EMT may favour the seeding of secondary tumours at distant sites and the
creation of metastases [20]. In particular, EMT has been implicated in the forma-
tion of the fibrous capsules observed in hepatic tumours, which seem to be mainly
composed of cells that express a mesenchymal-like phenotype [25].

We consider a monolayer of epithelial-like and mesenchymal-like cells in co-
culture on a regular plastic surface (i.e., a petri dish). Cellular movement is seen
as the superposition of persistent spontaneous motion and chemotactic response.
The former is due to the tendency of cells to randomly orient themselves, whilst
the latter is guided by chemotactic cytokines. In this framework, we focus on the
following biological phenomena:
(i) secretion from cells of chemotactic cytokines;
(ii) diffusion and consumption of chemotactic cytokines;
(iii) random motion of cells and chemotaxis;
(iv) adhesive interactions between epithelial cells;
(v) cell proliferation and competition for nutrients.

To reduce biological complexity to its essence, we make the prima facie assump-
tion that the diffusion of chemotactic cytokines is isotropic. Moreover, we model
cell motion in two dimensions only, since we focus on a monolayer co-culture (i.e.,
we let cells grow side by side and not one on top of the other), and we assume that
the status of motion of a cell is left unaltered by interactions which do not lead to
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homotypic adhesion. Finally, we stress that this paper does not deal with several
evolutionary aspects. For instance, we consider a sample where both epithelial-
like and mesenchymal-like cells are present from the beginning, and we do not let
EMT occur. Moreover, we do not include the effects of cellular heterogeneity and
therapeutic actions, which we explored previously in [12, 15, 16, 28, 29].

2.2. Mathematical formalisation. We divide epithelial-like and mesenchymal-
like cells in motion into two populations labeled, respectively, by the index i = 1 and
i = 2. We identify the microscopic state of each moving cell by its instantaneous
position and velocity, which are described by the continuous variables x = (x, y) ∈
X ⊂ R2 and v = (vx, vy) ∈ V ⊂ R2. We let the set V be compact and spherically
symmetric [8]. Furthermore, we group epithelial-like cells at rest due to homotypic
adhesion and chemotactic cytokines into two additional populations, labeled by the
index i = 3 and i = 4, and we model their microscopic states by means of the x
variable only.

At any instant of time t, these populations are characterised, respectively, by the
phase space densities

f1 = f1(t,x,v) : R+ ×X × V → R+, f2 = f2(t,x,v) : R+ ×X × V → R+

and the local densities

n3 = n3(t,x) : R+ ×X → R+, n4 = n4(t,x) : R+ ×X → R+.

The local densities of cells in motion and the local cell density can be computed as

n1,2(t,x) =

∫
V

f1,2(t,x,v)dv, %(t,x) =

3∑
i=1

ni(t,x), (1)

while the total cell density and the average local cell density are

N(t) =

∫
X

%(t,x)dx, %̄(t) =
N(t)

|X|
, (2)

where |X| denotes the measure of the set X.
The following notations and assumptions are used to model the biological phe-

nomena of interest (vid. Table 1 for a summary of the model parameters):
• Secretion from cells of chemotactic cytokines. Cells in population i = 1, 2, 3 se-
crete cytokines responsible for chemotaxis at an average rate ν ∈ R+.
• Diffusion and consumption of chemotactic cytokines. Chemotactic cytokines dif-
fuse across the culture system with unitary diffusion constant. Moreover, the con-
centration of cytokines decreases over time due to the consumption by cells, which
occurs at a rate described by the functional A(%(t,x);α) ≥ 0. The parameter
α ∈ R+ stands for the average consumption rate and, as a first attempt to take
into account the nonlinear nature of cell-cytokine interactions [6], we define the
functional A as

A(%;α) := α %(t,x)2. (3)

• Random motion of cells and chemotaxis. Using a velocity jump formalism [8, 22],
we assume that a cell in the state (x,v∗) of the population i = 1, 2 can jump into
the state (x,v) of the same population at a rate described by the functional

B(v,∇xn4;β, |V |) :=
1

|V |
+ b(|v|, |∇xn4|;β, |V |) (v · ∇xn4(t,x)) (4)
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with

b(|v|, |∇xn4|;β, |V |) :=
|V |−1

β + |v||∇xn4(t,x)|
. (5)

The functional B satisfies∫
V

B(v, ·;β, |V |)dv = 1, ∀β, |V | ∈ R+. (6)

In definition (4), |V | denotes the measure of the set V , and the parameter β ∈
R+ provides an average measure of the relative contribution of random motion
versus chemotactic reorientation on cell movement. The first term of definition (4)
translates into mathematical terms the idea that random motion does not favour
any precise velocity (i.e., when a moving cell reorients itself and jump from the state
(x,v∗) to the state (x,v), all values of v are equiprobable). In the second term,
the scalar product models the tendency of cells to follow the cytokine gradient
independently from their current velocity (i.e., the chemotactic response leads a
moving cell in the state (x,v∗) to jump to the state (x,v), with v pointing in the
direction of ∇xn4 independently from the direction of the vector v∗). Definition (5)
preserves the non-negativity of the functional B, and ensures that smaller values of
the parameter β will correspond to a stronger influence of chemotactic reorientation
on cell motion.
• Adhesive interactions between epithelial cells. Encounters between a cell in the
state (x,v∗) of population j = 1 (or the state x of population j = 3) and a cell in
the state (x,v∗) of population i = 1 can lead the latter to reach either the state
(x,v) of the same population (i.e., the adhesive interaction fails) or the state x of
population h = 3 (i.e., the adhesive interaction leads to homotypic adhesion). For
the sake of simplicity, we assume that encounters between epithelial-like cells occur
at unitary rate, and we define the rate of adhesive interactions as

Ghij(v; γ, |V |) :=



γ

|V |
, if i = 1, j = 1, 3 and h = 3

1− γ
|V |

, if i = 1, j = 1, 3 and h = 1

0, otherwise,

∀ v ∈ V, (7)

3∑
h=1

∫
V

Ghij(v; γ, |V |)dv = 1, for γ ∈ [0, 1], |V | ∈ R+, i = 1 and j = 1, 3. (8)

In definition (7), the parameter γ ∈ [0, 1] stands for the average rate of homotypic
adhesion, while the factor 1/|V | accounts for the fact that the interactions under
consideration are independent from the velocities of the interacting cells.
• Cell proliferation and competition for nutrients. The parameter κ ∈ R+ stands
for the average cell proliferation rate. Furthermore, since the proliferation of cells
is limited by the competition for nutrients, we introduce a death term M(N ;µ).
The parameter µ ∈ R+ stands for the average rate of death. Among all possible
definitions of the functional M, we make use of the following one

M(N ;µ) := µ N(t), (9)
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which relies on the natural assumption that a higher total density of cells corre-
sponds to a lower concentration of available nutrients, and thus to a higher chance
of cell death.

Biological Phenomena Parameters
Secretion from cells of chemotactic cytokines ν
Consumption of chemotactic cytokines α
Random motion vs chemotactic reorientation β
Homotypic adhesion γ
Cell proliferation κ
Competition for nutrients µ

Table 1. Summary of the model parameters.

The evolution of the functions f1(t,x,v), f2(t,x,v), n3(t,x) and n4(t,x) is gov-
erned by the equations given hereafter, which describe the net inlet of moving
epithelial-like and mesenchymal-like cells through the volume element dx dv cen-
tered at (x,v), as well as the net flux of epithelial-like cells at rest and chemotactic
cytokines through the volume element dx centered at x:

∂tf1(t,x,v) + v · ∇xf1(t,x,v)

=

∫
V

B(v,∇xn4;β, |V |)f1(t,x,v∗)dv∗ − f1(t,x,v)︸ ︷︷ ︸
inflow & outflow due to random motion and chemotactic reorientation

+

∫
V

∫
V

G111(v; γ, |V |)f1(t,x,v∗)f1(t,x,v∗)dv∗dv
∗︸ ︷︷ ︸

inflow due to changes of velocity caused by adhesive interactions

+ n3(t,x)

∫
V

G113(v; γ, |V |)f1(t,x,v∗)dv∗︸ ︷︷ ︸
inflow due to changes of velocity caused by adhesive interactions

− f1(t,x,v)

∫
V

∫
V

(
G111(v∗; γ, |V |) + G311(v∗; γ, |V |)

)
f1(t,x,v∗)dv∗dv

∗︸ ︷︷ ︸
outflow due to homotypic adhesion

− f1(t,x,v) n3(t,x)

∫
V

(
G113(v∗; γ, |V |) + G313(v∗; γ, |V |)

)
dv∗︸ ︷︷ ︸

outflow due to homotypic adhesion

+ κ f1(t,x,v)−M(N ;µ) f1(t,x,v)︸ ︷︷ ︸
proliferation and competition

, (10)

∂tf2(t,x,v) + v · ∇xf2(t,x,v) =

∫
V

B(v,∇xn4;β, |V |)f2(t,x,v∗)dv∗ − f2(t,x,v)︸ ︷︷ ︸
inflow & outflow due to random motion and chemotactic reorientation

+ κ f2(t,x,v)−M(N ;µ) f2(t,x,v)︸ ︷︷ ︸
proliferation and competition

, (11)

∂tn3(t,x) =

∫
V

∫
V

∫
V

G311(v; γ, |V |)f1(t,x,v∗)f1(t,x,v∗)dv∗dv
∗dv︸ ︷︷ ︸

inflow due to homotypic adhesion
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+ n3(t,x)

∫
V

∫
V

G313(v; γ, |V |)f1(t,x,v∗)dv∗dv︸ ︷︷ ︸
inflow due to homotypic adhesion

+ κ n3(t,x)−M(N ;µ) n3(t,x)︸ ︷︷ ︸
proliferation and competition

, (12)

∂tn4(t,x) = ν %(t,x) + ∆xn4(t,x)︸ ︷︷ ︸
secretion and diffusion

−A(%;α) n4(t,x).︸ ︷︷ ︸
consumption

(13)

Plugging definitions (3),(4),(5), (7) and (9) into equations (10)-(13), we obtain

∂tf1 + v · ∇xf1 =
1

|V |

(
1 +

v · ∇xn4
β + |v||∇xn4|

)
n1 − f1︸ ︷︷ ︸

random motion and chemotactic reorientation

+
(1− γ)

|V |
n1 (n1 + n3)− (n1 + n3)f1︸ ︷︷ ︸
homotypic adhesion

+ (κ− µ N) f1,︸ ︷︷ ︸
proliferation and competition

(14)

∂tf2 + v · ∇xf2 =
1

|V |

(
1 +

v · ∇xn4
β + |v||∇xn4|

)
n2 − f2︸ ︷︷ ︸

random motion and chemotactic reorientation

+ (κ− µ N) f2,︸ ︷︷ ︸
proliferation and competition

(15)

∂tn3 = γ (n1 + n3)n1︸ ︷︷ ︸
homotypic adhesion

+ (κ− µ N)n3,︸ ︷︷ ︸
proliferation and competition

(16)

∂tn4 = ν %+ ∆xn4︸ ︷︷ ︸
secretion and diffusion

− α n4%
2.︸ ︷︷ ︸

consumption

(17)

3. Main results. In this section, we discuss a sample of numerical results which
display the emergence of different spatial patterns, depending on parameters and
initial data. In Subsection 3.1, we describe the simulation setup and the method
we use for calculating numerical solutions. In Subsection 3.2, we focus on a sam-
ple composed of mesenchymal-like cells only, where proliferation and competition
phenomena do not take place. The results we present highlight how different initial
cell densities can cause the emergence of different spatial patterns, such as spots,
stripes and hole structures. In Subsection 3.3, we show that, when there is little
competition for nutrients, epithelial-like and mesenchymal-like cells can segregate
and create honeycomb structures. Finally, the simulations discussed in Subsection
3.4 provide a possible explanation for how the interplay between epithelial-cell ad-
hesion and mesenchymal-cell spreading paves the way for the formation of ring-like
structures.
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3.1. Numerical method and simulation setup. For simplicity, we follow [33]
and approximate cellular velocities in polar coordinates. We also assume that all
moving cells are characterised by the same modulus of the velocity, which is nor-
malised to unity. This can be justified by noting that the main differences between
the adhesive behaviours of epithelial-like and mesenchymal-like cells are already
captured by the modelling strategies described in the previous section. As a result,
we set

vx = cos θ, vy = sin θ, θ ∈ [0, 2π), (18)

so that the phase space distributions can be computed by tracking velocity angles
and space only.

To perform numerical simulations, we set X = [−L,L]×[−L,L] and we discretise
the computational domain with a uniform mesh as

∆x =
L

2M
, xi = i∆x, i = −M, . . . , 0, . . . ,M,

∆y =
L

2M
, yj = j∆y, j = −M, . . . , 0, . . . ,M,

∆θ =
2π

m+ 1
, θk = k∆θ, k = 0, . . . ,m.

The phase space densities and the local densities are approximated as

f1,2(t,x,v) ≈ f1,2(h∆t, xi, yj , θk) = fh1,2(xi, yj , θk)

and

n3,4(t,x) ≈ n3,4(h∆t, xi, yj) = nh3,4(xi, yj),

where ∆t is the time step.
We numerically solve the problem defined by the discretised versions of equations

(14)-(17), periodic boundary conditions and suitable initial data. Simulations are
performed in Matlab with L = 15, M = 56, m = 36 and ∆t = 0.014.

The method for calculating numerical solutions is based on a time-splitting
scheme. We begin by updating fh1 and fh2 by discretising and solving the ho-
mogeneous equations associated to the advection-reaction equations (14) and (15).

A flux-limiting scheme (see for instance [27]) is used to treat the advective terms.
First, we advect fh1 and fh2 in the y-direction, and we denote the results obtained

by f
h+1/4
1 and f

h+1/4
2 . Secondly, we advect f

h+1/4
1 and f

h+1/4
2 in the x-direction,

and we denote the results obtained by f
h+1/2
1 and f

h+1/2
2 . In more detail, making

use of the notations fh1,2(xi, yj , θk) = fh1,2,i,j,k and dropping the indexes 1, 2 for the
sake of readability, we compute

f
h+1/4
i,j,k = fhi,j,k − λ[Fh

i,j,k − Fh
i,j−1,k],

with λ = ∆t/∆x and the flux Fh
i,j,k being defined as the combination of a lower

order flux (L) and a higher order flux (H), that is,

Fh
i,j,k = Hh

i,j,k − (1− φhi,j,k)[Hh
i,j,k − Lh

i,j,k].

In the above equation,

Lh
i,j,k = sin(θk) fhi,j,k,

and, according to the Richmyer two-step Lax-Wendroff method,

Hh
i,j,k = sin(θk) f

h+1/4
i,j+1/2,k,



86 MARCELLO DELITALA AND TOMMASO LORENZI

with

f
h+1/4
i,j+1/2,k =

1

2
(fhi,j,k − fhi,j+1,k)− λ

2
[Lh

i,j+1,k − Lh
i,j,k].

The quantity φhi,j,k is the Ultrabee flux limiter, that is,

φhi,j,k = max(0,min(1, 2 rhi,j,k),min(rhi,j,k, 2)),

with

rhi,j,k =
fhi,j,k − fhi,j−1,k
fhi,j+1,k − fhi,j,k

.

An analogous procedure is used to compute f
h+1/2
1 and f

h+1/2
2 .

Then, we update f
h+1/2
1 and f

h+1/2
2 by discretising and solving equations (14)

and (15) without advective terms on the left-hand sides. The system of equations
obtained after the discretisation is solved by means of a fourth-order Runge-Kutta
method. In this way, we obtain fh+1

1 and fh+1
2 .

On the other hand, nh3 and nh4 are updated, respectively, through the systems
of equations resulting from the discretisation of equations (16) and (17), which are

solved by using a fourth-order Runge-Kutta method. Thus, we obtain nh+1
3 and

nh+1
4 . A classical second-order centred finite difference scheme is used to calculate

the numerical solutions of the reaction-diffusion equation (17).
We consider different initial conditions to mimic different biological scenarios.

Moreover, we vary the values of the parameters κ and µ, while we keep the other
parameters equal to suitable non-zero values. In particular, we set ν = 1, α = 0.1,
β = 0.1 and γ = 0.1. Additional simulations show that variations of these pa-
rameters, within reasonable ranges, leave the qualitative properties of the emerging
patterns unaltered.

3.2. Emergence of spots, stripes and hole patterns. We focus on a sample
composed of mesenchymal-like cells and chemotactic cytokines only. Cells are ini-
tially characterised by a uniform space distribution parametrised by n02 ∈ R+, and
their velocities are homogeneously distributed. The initial distribution of cytokines
is a small positive random perturbation of the zero level. We test the possibil-
ity of obtaining different emerging patterns by tuning the value of the initial cell
density (i.e., the value of the parameter n02). We are interested in the case where
the total cell density does not vary over time. Therefore, we neglect the effects of
non-conservative phenomena (i.e., we set κ = µ = 0).

The results of Fig. 1 highlight how increasing values of the parameter n02 ∈
(0.005, 0.1) lead to the emergence of different spatial patterns for large values of t.
These patterns are similar to those observed in macroscopic models of chemotaxis
[34], and in other transport models [21, 35]. They also exhibit a dependance on the
total cell density and on the size of the spatial domain which is analogous to that
of classical models for chemotactic movement (see also Remark 1). In more detail:
(i) if n02 ∈ (0.005, 0.02), the emergent patterns are highly concentrated spots of
aggregation [vid. Fig. 1(A)];
(ii) if n02 ∈ (0.02, 0.07), the emergent patterns are wider aggregation spots [vid.
Fig. 1(B)] or stripes [vid. Fig. 1(C)];
(iii) if n02 ∈ (0.07, 0.15), the emergent patterns have a hole structure [vid. Fig. 1(D)].

In analogy with classical macroscopic models of chemotaxis, cells tend to aggre-
gate in the local maxima of the chemoattractant (data not shown). However, the
quadratic dependence of the consumption rate of cytokines on the local cell density
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Figure 1. Emergence of spots, stripes and hole patterns.
Plots of n2(t,x) at four time instants t ∈ [0, 400]. We consider
a sample composed of mesenchymal-like cells and chemotactic cy-
tokines only. The cells are initially characterised by a uniform space
distribution parametrised by n02 ∈ R+, and their velocities are ho-
mogeneously distributed. The initial distribution of cytokines is a
small positive random perturbation of the zero level. The effects
of non-conservative phenomena are neglected (i.e., κ = µ = 0).
Increasing values of the parameter n02 pave the way for the emer-
gence of different spatial patterns, such as spots [vid. Panels A and
B (n02 = 0.02 and n02 = 0.04)], stripes [vid. Panel C (n02 = 0.05)],
and hole structures [vid. Panel D (n02 = 0.08)].

[see definition (3)] seems to prevent finite time blow-up, which is observed in stan-
dard macroscopic models. This allows for the formation of bounded aggregation
patterns. Additional simulations (data not shown) suggest that relevant patterns
cannot emerge when n02 < 0.005 (the density is too low for any spatial organisation
of cells) and n02 > 0.15 (overcrowding occurs).

Remark 1. The total cell density N(t) and the average local cell density %̄(t) [see
equations (2)] are preserved, since we are neglecting the effects of non-conservative
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phenomena (i.e., we set κ = µ = 0). In particular, %̄(t) = n02 for all t ≥ 0. As
a consequence, higher values of the parameter n02 correspond to higher values of
the average local cell density. This observation supports the idea that the long-
time behaviour of the spatial patterns is governed by the asymptotic values of the
average local density of cells. Therefore, as a complementary interpretation of the
results presented in this subsection, we note that increasing asymptotic values of
the average local cell density may induce the formation of different spatial patterns.

3.3. Emergence of spots, stripes and honeycomb patterns. We assume that
the sample is initially composed of chemotactic cytokines, mesenchymal-like cells
and epithelial-like cells in motion. The distribution of cytokines is a small positive
random perturbation of the zero level. Cells are uniformly distributed in space and
their distributions are parametrised by n01 ∈ R+ and n02 ∈ R+. Moreover, cellular
velocities are homogeneously distributed. We test the possibility of obtaining dif-
ferent emerging patterns by varying the value of the quotient of the average rate of
proliferation and the average rate of death due to competition for nutrients (i.e.,
the value of the ratio κ/µ). For simplicity, we set κ = 1 and we tune the value of
the parameter µ.

The results in Fig. 2 highlight how decreasing values of the parameter µ ∈
(0.007, 0.2) lead, in the limit of large times, to the emergence of different spatial
patterns. In fact:
(i) if µ ∈ (0.05, 0.2), the emergent patterns are highly concentrated spots of epithe-
lial-like and mesenchymal-like cells [vid. Fig. 2(A) and Fig. 2(B)];
(ii) if µ ∈ (0.015, 0.05), the emergent patterns are stripes of epithelial-like and
mesenchymal-like cells [vid. Fig. 2(C) and Fig. 2(D)];
(iii) if µ ∈ (0.007, 0.015), the emergent patterns display a honeycomb structure,
which results from the segregation between epithelial-like and mesenchymal-like
cells [vid. Fig. 2(E) and Fig. 2(F)], an emergent behaviour documented in the
biological literature [26, 30].

These results have been obtained with n01,2 = 0.04. Additional simulations (data

not shown) support the idea that the values of the parameters n01 and n02 do not
affect the qualitative properties of the patterns shown in Fig. 2. In fact, in agree-
ment with the considerations drawn in Remark 1, the numerical results presented
here suggest that the long-time behaviour of the spatial patterns depend on the as-
ymptotic values attained by the average local cell density %̄(t), which can be easily
proven to be equal to κ (µ|X|)−1. In more detail,
(i) when µ = 0.1, lim

t→+∞
%̄(t) ≈ 0.01 and we observe the emergence of highly concen-

trated spots [to be compared with case (i) of Subsection 3.2];
(ii) when µ = 0.02, lim

t→+∞
%̄(t) ≈ 0.05 and we observe the emergence of stripes [to

be compared with case (ii) of Subsection 3.2];
(iii) when µ = 0.01, lim

t→+∞
%̄(t) ≈ 0.1 and we observe the emergence of segregation

patterns with a honeycomb structure [to be compared with case (iii) of Subsection
3.2].

Additional simulations (data not shown) support the conclusion that relevant
patterns cannot emerge for µ > 0.2 (the asymptotic value of %̄(t) is too low for any
spatial organisation of cells) and µ < 0.007 (the asymptotic value of %̄(t) is too high
and overcrowding occurs).
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(A) Spots. Plots of n1(t,x) + n3(t,x).
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(C) Stripes. Plots of n1(t,x) + n3(t,x)
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(D) Stripes. Plots of n2(t,x).
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(E) Honeycomb patterns.
Plots of n1(t,x) + n3(t,x).
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(F) Honeycomb patterns.
Plots of n2(t,x).

Figure 2. Emergence of spots, stripes and honeycomb pat-
terns. We consider a sample initially composed of chemotactic cy-
tokines, mesenchymal-like cells and epithelial-like cells in motion.
The distribution of cytokines is a small positive random perturba-
tion of the zero level. Cells are uniformly distributed in space and
their distributions are parametrised by n01,2 = 0.04. Cellular veloc-
ities are homogeneously distributed. We set κ = 1 and tune the
value of µ. Decreasing values of parameter µ pave the way for the
emergence of different spatial patterns, such as spots [vid. Panels
A and B (µ = 0.1)], stripes [vid. Panels C and D (µ = 0.02)], and
segregation patterns with a honeycomb structure [vid. Panels E
and F (µ = 0.01)].
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3.4. Formation of ring-like patterns. We consider a sample where epithelial-
like cells at rest and chemotactic cytokines are not present at time t = 0. The
initial cell distributions are radially symmetric in space, and the cell velocities are
homogeneously distributed, that is,

f1,2(t = 0, x, y, θ) = C1,2 e
− x2+y2

20 , ∀ (x, y, θ) ∈ X × [0, 2π), C1,2 ∈ R+. (19)

We are interested in the case where the total cell density does not vary over time.
Therefore, we neglect the effects of non-conservative phenomena (i.e., we set κ =
µ = 0).

The results presented in Fig. 3 show that, while epithelial-like cells rapidly stop
moving because of adhesive interactions [vid. Fig. 3(A)], mesenchymal-like cells
diffuse throughout the sample [vid. Fig. 3(B)] and follow the chemotactic path
created by the diffusing cytokines [vid. Fig. 3(C)]. The resulting pattern is an
expanding ring-like structure made of mesenchymal-like cells, which surrounds a
cluster of epithelial-like cells kept at rest by homotypic adhesion.

The results presented here have been obtained with C1,2 = 10. Additional sim-
ulations (data not shown) suggest that the values of the parameters C1,2 do not
influence the qualitative properties of the patterns in Fig. 3. In fact, these patterns
result from the interplay between the radial symmetry of the initial cell distribu-
tions, the absence of chemotactic cytokines inside the system at time t = 0, the
tendency of epithelial-like cells to stop moving because of homotypic adhesion, and
the fact that mesenchymal-like cells spread throughout the sample following the
gradient of chemotactic cytokines.

Such ring-like structures of mesenchymal-like cells resemble the fibrous capsules
observed in hepatic tumours, which seem to be mainly composed of cells expressing
a mesenchymal-like phenotype [25]. They also share some striking similarities with
patterns arising from different biological contexts, such as tumour growth [13] and
evolution of bacterial populations [38], and with the outcomes of chemotaxis models
that incorporate some specific effects related to the finite size of individual cells [35].

4. Conclusions and perspectives. We have developed an integro-differential
model for the co-culture dynamics of epithelial-like and mesenchymal-like cells. The
strategy that we have used to model the consumption of the chemoattractant seems
to prevent blow-up in finite time, which is usually observed in classical macroscopic
models of chemotaxis. This allows for the formation of bounded aggregation pat-
terns, whose long-time behaviour depends on the asymptotic value of the average
local density of cells. In fact, higher asymptotic values of the average local cell den-
sity lead to the emergence of different spatial patterns, such as spots, stripes and
honeycomb structures. Furthermore, our results support the idea that epithelial-
like and mesenchymal-like cells can segregate when there is little competition for
nutrients. Finally, we have shown how the interplay between epithelial-cell adhe-
sion and mesenchymal-cell spreading can pave the way for the formation of ring-like
structures, which resemble the fibrous capsules frequently observed in hepatic tu-
mours.

Future research will be addressed to refine the current modelling strategies. For
instance, a natural improvement of the model would be to define the rate of death
due to competition for nutrients as a function of the local cell density. Furthermore,
since cell motion implies resource reallocation (i.e., redistribution of energetic re-
sources from proliferation-oriented tasks toward development and maintenance of
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(A) Epithelial-like cells.
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(B) Mesenchymal-like cells.
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(C) Chemotactic cytokines.

Figure 3. Formation of ring-like patterns. Plots at four time
instants t ∈ [0, 40] of of n1(t,x)+n3(t,x) (Panel A), n2(t,x) (Panel
B) and n4(t,x) (Panel C). We consider a sample initially com-
posed of mesenchymal-like cells and epithelial-like cells in motion
only, whose distributions are modelled by (19). The effects of non-
conservative phenomena are neglected (i.e., κ = µ = 0). While
epithelial-like cells rapidly stop moving because of adhesive inter-
actions (vid. Panel A), mesenchymal-like cells diffuse throughout
the sample (vid. Panel B), and follow the chemotactic path defined
by the diffusing cytokines (vid. Panel C). The resulting pattern is
an expanding ring-like structure made of mesenchymal-like cells,
which surrounds a cluster of epithelial-like cells kept at rest by
homotypic adhesion.

motility), it might be worth considering different proliferation/death rates for mov-
ing cells and cells at rest. From the analytical point of view, it would be interesting
to study the ring-like patterns discussed in Subsection 3.4. In this respect, the
techniques employed in [38] may prove to be useful. Finally, spatial dynamics play
a pivotal role in the evolution of many living complex systems, including biological
and social systems (see for instance [32]). Therefore, another possible research di-
rection would be to investigate if the modelling approach presented here could be
used profitably to model the dynamics of other living systems.
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