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Abstract. We introduce mathematical human papillomavirus (HPV) epi-

demic models (with and without vaccination) for African American females

(AAF) and African American males (AAM) with “fitted” logistic demograph-
ics and use these models to study the HPV disease dynamics. The US Census

Bureau data of AAF and AAM of 16 years and older from 2000 to 2014 is used

to “fit” the logistic demographic models. We compute the basic reproduction
number, R0, and use it to show that R0 is less than 1 in the African American

(AA) population with or without implementation of HPV vaccination program.

Furthermore, we obtain that adopting a HPV vaccination policy in the AAF
and AAM populations lower R0 and the number of HPV infections. Sensitivity

analysis is used to illustrate the impact of each model parameter on the basic
reproduction number.

1. Introduction. In the United States of America, human papillomavirus (HPV)
is the most common sexually transmitted infection (STI) in males and females [8].
Most sexually active males and females will get at least one type of HPV infection
at some point in their lives [5]. In the United States, about 79 million are currently
infected with HPV and about 14 million people become newly infected each year
[8]. There are more than 150 different types of HPV [7]. Health problems related to
HPV include genital warts and cancer. Most people infected with genital HPV do
not know they are infected and never develop symptoms or health problems from
it. Some people find out they have HPV when they get genital warts. Females may
find out they have HPV when they get an abnormal Pap test result during cervical
cancer screening. Others may only find out once they have developed more serious
problems from HPV, such as cancer [5]. Most HPV infections cause no symptoms
and are not clinically significant, but persistent infection can lead to disease or
cancer.

Mathematical epidemic models have been used to study HPV infections in var-
ious populations. For example, Alsaleh and Gummel [1] in a recent paper, used a
deterministic model to assess the impact of vaccination on both high-risk and low-
risk HPV infection types. Ribassin-Majed and Clemencon [14] used a deterministic
mathematical model to assess the impact of vaccination on non-cancer causing HPV
(6/11) in French males and females. Lee and Tameru [13] used a deterministic model
to assess the impact of HPV on cervical cancer in African American females (AAF).
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In all these studies, the HPV models have a constant recruitment function for the
demographic equations.

In this paper, we use a two-sex HPV model with “fitted” logistic demographics
to study the HPV disease dynamics in AAF and African American males (AAM)
of 16 years and older. Using US Census Bureau data for AAF and AAM popu-
lations, we illustrate that the “fitted” logistic demographic equation captures the
African American (AA) population better than the constant recruitment demo-
graphic equation. We compute the basic reproduction number, R0, and perform
sensitivity analysis on R0. We obtain that in the AA population R0 < 1. In addi-
tion, we use an extension of the model with vaccination classes to assess the impact
of vaccination on the AAF and AAM populations.

The paper is organized as follows: In Section 2, we introduce a demographic
equation for AAF (respectively, AAM) and we “fit” it to the US Census Bureau data
of AAF (respectively, AAM) of 16 years and older. We introduce, in Section 3, a
two-sex African American HPV model. In Section 4, we study disease-free equilibria
and compute the basic reproduction number R0. In Section 5, we introduce the
model with vaccination. In Section 6, we study disease-free equilibria and compute
the basic reproduction number Rv0 for HPV model with vaccination. We summarize
our results in Section 7.

2. Demographic equations. In [14], Ribassin-Majed et al. used a HPV model
with constant recruitment rate in the demographic equation to study HPV disease
dynamics in male and female populations of France. In the absence of the HPV dis-
ease, the demographic equation of their model is the following ordinary differential
equation:

dN

dt
= Λ− µN, (1)

where N is total population of males or females and for both males and females µ
is the constant per capita mortality rate and Λ is the constant recruitment rate. In
[13], Lee and Tameru used Model (1) as the demographic equation for their single
sex HPV model in African Americans.

In this paper, we use logistic models that are “fitted” to the 2000 − 2014 US
Census Bureau population data of AAF and AAM of 16 years and older (see Tables
1–2) as the demographic equations for AAF and AAM in a HPV model.

Table 1. 2000 to 2014 US Census Bureau AAF population data.

2000 2001 2002 2003 2004

AAF population 16 years and older [12, 16] 13,825,055 14,041,520 14,259,413 14,473,927 14,707,490
AAF total population [12, 16] 18,787,192 19,013,351 19,229,855 19,434,349 19,653,829

2005 2006 2007 2008 2009

AAF population 16 years and older [12, 16] 14,952,963 15,224,330 15,486,244 15,743,096 15,992,822
AAF total population [12, 16] 19,882,081 20,123,789 20,374,894 20,626,043 20,868,282

2010 2011 2012 2013 2014

AAF population 16 years and older [12, 16] 16,176,048 16,471,449 16,696,303 16,918,225 17,139,986
AAF total population [12, 16] 21,045,595 21,320,013 21,543,051 21,767,521 21,988,307

From Tables 1 and 2, we note that both male and female populations of African
Americans of 16 years and older as well as the total populations exhibit increasing
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Table 2. 2000 to 2014 US Census Bureau AAM population data.

2000 2001 2002 2003 2004

AAM population 16 years and older [12, 16] 11,909,507 12,124,810 12,332,791 12,518,252 12,756,370
AAM total population [12, 16] 17,027,514 17,249,678 17,454,795 17,631,747 17,856,753

2005 2006 2007 2008 2009

AAM population 16 years and older [12, 16] 12,996,123 13,266,163 13,517,841 13,765,707 14,006,594
AAM total population [12, 16] 18,079,607 18,319,259 18,560,639 18,803,371 19,033,988

2010 2011 2012 2013 2014

AAM population 16 years and older [12, 16] 14,181,655 14,490,027 14,724,637 14,950,933 15,176,189
AAM total population [12, 16] 19,260,298 19,487,042 19,719,238 19,945,997 20,169,931

trends from 2000 to 2014. In the next section, we use a logistic differential equation
model to “capture” the AA population data of Tables 1 and 2.

2.1. Demographic equation for AAF and AAM. In [3], Brauer and Castillo-
Chavez used the logistic equation “fitted” to United States Census Bureau data to
model the total United States population. We use the same approach to “fit” the
solution of the following logistic equation to the AAF population of 16 years and
older (see Table 1) and the AAM population of 16 years and older (see Table 2).

dNi
dt

= (ri − µi)Ni(1−
Ni

Ki(ri − µi)/ri
), t ≥ 0, (2)

where index i = f refers to the female and index i = m refers to the male. Ni(t) is
the total population of AAF of 16 years and older at time t if i = f , respectively,
the total population of AAM of 16 years and older at time t if i = m. The constant
µi is the death rate of population, ri is the intrinsic growth rate of population and
Ki is the carrying capacity.
N0
i is the size of the population at time t = 0, where year 2001 in Tables 1 and

2 is t = 0. The solutions of (2) are

Ni(t) = 0 and Ni(t) =
Ki(ri − µi)/ri

1 + (Ki(ri−µi)/ri
N0
i

− 1)e−(ri−µi)t
. (3)

Let

Rdi =
ri
µi
.

Rdi is the demographic threshold of the population. When the constant intrinsic
growth rate, ri, is bigger than the per capita mortality rate of population, µi, then
Rdi > 1. However, Rdi < 1 when ri is less than µi. Consequently, for every N0

i > 0,
when Rdi > 1 then the nontrivial solution Ni(t) approaches the “death” adjusted
carrying capacity,

K∗i =
Ki(ri − µi)

ri
, as t→∞,

and the population persists. However, when Rdi < 1 then Ni(t)→ 0 as t→∞ and
the population goes extinct.

2.2. AAF and AAM “fitted” logistic demographic equations. Equation (2)

gives the per capita growth rate, dNi/dt
Ni

, for the total AAF population of 16 years
and older when i = f and the total AAM population of 16 years and older when
i = m. That is, if Ni(t) 6= 0, then
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dNi/dt

Ni
= (ri − µi)(1−

Ni
Ki(ri − µi)/ri

). (4)

Using the 2002 − 2014 US Census Bureau data of Table 1 (respectively, Table
2), we estimate the values of dNf/dt (respectively, dNm/dt) by symmetric dif-

ferences. We then graph the per capita growth rate, Y =
dNf/dt
Nf

(respectively,

Y = dNm/dt
Nm

) versus the AAF (respectively, AAM) population. Then the line with

equation Y = 0.021298978 − 4.02117 × 10−10Nf (respectively, Y = 0.019877926 −
1.9980893×10−10Nm) “fits” the resulting curve. Therefore, the AAF (respectively,
AAM) population of 16 years and older exhibits a logistic behavior (see Figures 1
and 2, respectively).

Fitting the line to the curve gives rf − µf = 0.021298978 > 0 and rf/Kf =
4.02117×10−10 (respectively, rm−µm = 0.019877926 > 0 and rm/Km = 1.9980893×
10−10). So, we estimate the intrinsic growth rate of AAF (respectively, AAM) to
be rf = 0.028564978 (respectively, rm = 0.028104926) and the carrying capacity of
AAF (respectively, AAM) is Kf = 71, 036, 484 (respectively, Km = 140, 659, 009).
From our estimates of rf and µf we note that Rdf > 1 and K∗f = 52, 967, 117

(rounded). Similarly, from our estimates of rm and µm we note that Rdm > 1 and
K∗m = 99, 484, 673 (rounded).

Using our estimates, we express the nontrivial solution (3) of the logistic growth
model for AAF of 16 years and older as

Nf (t) =
52, 967, 117

1 + 2.772176873e−0.021298978t
, (5)

and for AAM of 16 years and older as

Nm(t) =
99, 484, 673

1 + 7.205050059e−0.019877926t
, (6)

where year 2001 is taken as t = 0.
The plot of the data of AAF of 16 years or older and solution (5) in Figure 1

show that our “fitted” model captures the AAF data of Table 1. Similarly, the plot
of the data of AAM of 16 years or older and solution (6) in Figure 2 show that our
“fitted” model captures the AAM data of Table 2.

2.3. AAF and AAM “fitted” logistic equation versus constant recruit-
ment model. When the population in equation (1) consists only of AAF (i = f)
or of AAM (i = f) of 16 years and older, then the solution is

Ni(t) =
Λi
µi

+ (N0
i −

Λi
µi

)e−µit. (7)

Using the initial condition N0
f = 14, 041, 520 [12] (respectively, N0

m = 12, 124, 810

[12]), the parameters Λf = 16, 821, 072 (52% of AA population are female [2, 13])
and µf = 0.007266 [6] (respectively, Λm = 15, 527, 714 (48% of AA population are
male [2, 13]) and µm = 0.008227 [6]), solution (7) becomes

Nf (t) = 2, 315, 038, 811− 2, 300, 997, 291 e−0.007266t, (8)

and

Nm(t) = 1, 887, 409, 019− 1, 875, 284, 209 e−0.008227t. (9)

In Figure 1, we compare the “fitted” solution (8) of Model (1), and our “fitted”
solution (5) of Model (2), to the US Census Bureau data in Table 1. Figure 1 shows
that Model (2), the “fitted” logistic model, captures better the 2000 − 2014 US
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Census Bureau data of the AAF population of 16 years and older than Model (1),
the constant recruitment demographic equation used in the France study [14] and
in the study of Lee and Tameru [13].
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Figure 1. The logistic demographic model “fits” 2000− 2014 US
Census Bureau data of AAF population of 16 years and older, while
constant recruitment Model (1) over estimates the AAF popula-
tion.

Similarly, Figure 2 shows that, as in the female population, the “fitted” solution
(9) of Model (1) over estimates the AAM US Census Bureau data while our “fitted”
solution (5) of Model (2) captures it.
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Figure 2. The logistic demographic model “fits” 2000− 2014 US
Census Bureau data of AAM population of 16 years and older,
while constant recruitment Model (1) over estimates the AAM pop-
ulation.

3. A two-sex African American HPV model. To study the HPV dynamics
in male and female African American populations of 16 years and older, we as-
sume that the total AAF population (respectively, total AAM population) of 16
years and older is governed by Model (2) with i = f (respectively, Model (2) with
i = m). As in [14], we divide the population into four compartments: Sf = sus-
ceptible AAF population, Sm = susceptible AAM population, If = HPV infected
AAF population, Im = HPV infected AAM population. It is known that females
and males recover from HPV at about the same rate [11]. We now introduce the
following mathematical model that uses our “fitted” logistic demographics for the
total population.
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

dSf
dt

= rfNf (1− Nf
Kf

)− σfSf
Im

Nf +Nm
+ δIf − µfSf ,

dSm
dt

= rmNm(1− Nm
Km

)− σmSm
If

Nf +Nm
+ δIm − µmSm,

dIf
dt

= σfSf
Im

Nf +Nm
− (δ + µf )If ,

dIm
dt

= σmSm
If

Nf +Nm
− (δ + µm)Im,

(10)

where Nf = Sf + If > 0, Nm = Sm + Im > 0 and the model parameters with their
values are listed in Table 3.

Table 3. Table of model parameters

Parameter (per day) Description Reference

µf = 0.007266 Death rate for AAF population [6]
µm = 0.008227 Death rate for AAM population [6]
δ = 0.9 Clearance rate [11]
rf = 0.028564978 Intrinsic growth rate for AAF population Estimated
rm = 0.028104926 Intrinsic growth rate for AAM population Estimated
Kf = 71, 036, 484 Carrying capacity for AAF population Estimated
Km = 140, 659, 009 Carrying capacity for AAF population Estimated
σf = 0.5 Infection rate for AAF population [1]
σm = 0.4 Infection rate for AAM population [1]

Notice that since

Nf (t) = Sf (t) + If (t) and Nm(t) = Sm(t) + Im(t),

adding the Sf−equation to the If−equation (respectively, adding the Sm−equation
to the Im−equation) gives the AAF demographic equation (2) with i = f (respec-
tively, AAM demographic equation (2) with i = m).

Consequently, in Model (10), the total AAF and AAM populations, governed by
our “fitted” logistic equations (5) and (6) are bounded. We will study Model (10)
with the parameter values listed in Table 3 and with the initial conditions listed in
Table 4.

Table 4. Initial conditions for HPV Model (10).

Sf (0) = 8,618,960
Sm(0) = 7,119,370
If (0) = 5,422,560
Im(0) = 5,005,440

Notice that in Table 4, Sf (0) + If (0) = Nf (0) of Table 1 (respectively, Sm(0) +
Im(0) = Nm(0) of Table 2), where t = 0 is year 2001.

3.1. Boundedness of Orbits. In this section, we show that Model (10) is well-
posed. In particular, we obtain that all orbits are nonnegative and there is no
population explosion in Model (10).

Theorem 3.1. All solutions of Model (10) are nonnegative and bounded.
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Proof. Consider the following nonnegative initial conditions Sf (0) = S0
f ≥ 0, Sm(0)

= S0
m ≥ 0, If (0) = I0f ≥ 0 and Im(0) = I0m ≥ 0.

If I0f = 0, then from the If−equation of Model (10), we obtain that
dIf
dt |t=0 =

σfS
0
f

I0m
N0
f+N

0
m
≥ 0. Hence, If (t) ≥ 0 for all t ≥ 0 [15].

Similarly, if I0m = 0, then from the Im−equation of Model (10), we obtain that
dIm
dt |t=0 = σmS

0
m

I0f
N0
f+N

0
m
≥ 0. Hence, Im(t) ≥ 0 for all t ≥ 0 [15].

If S0
f = 0, then from the Sf−equation of Model (10), we obtain that

dSf
dt |t=0 =

rfI
0
f (1− I0f

Kf
) + δI0f . I0f ≤ Kf . Hence, Sf (t) ≥ 0 for all t ≥ 0.

Similarly, if S0
m = 0, then from the Sm−equationn of Model (10), we obtain that

dSm
dt |t=0 = rmI

0
m(1− I0m

Km
) + δI0m. I0m ≤ Km. Hence, Sm(t) ≥ 0 for all t ≥ 0.

Recall that Nf (t) is bounded, Sf (t) + If (t) = Nf (t), Sf (t) ≥ 0 and If (t) ≥ 0.
Hence, Sf and If are bounded. Similarly, Sm and Im are bounded.

LetX =


Sf
Sm
If
Im

 and F (X) =


rfNf (1− Nf

Kf
)− σfSf Im

Nf+Nm
+ δIf − µfSf

rmNm(1− Nm
Km

)− σmSm If
Nf+Nm

+ δIm − µmSm
σfSf

Im
Nf+Nm

− (δ + µf )If

σmSm
If

Nf+Nm
− (δ + µm)Im

 .
Then Model (10) is equivalent to

dX

dt
= F (X).

In AAF population, Rdf > 1 implies that for t > 0, Nf (t) > 0 and limt→∞Nf (t) =
K∗f when Nf (0) > 0. Similarly, in AAM population, Rdm > 1 implies that for t > 0,

Nm(t) > 0 and limt→∞Nm(t) = K∗m when Nm(0) > 0. Hence, Nf (t) + Nm(t) > 0
in Model (10) and F is C1. Consequently, with our parameters from Table 3 and
initial conditions from Table 4, Model (10) has a unique nonnegative solution for
t ≥ 0.

4. Disease-free equilibria, stability and basic reproduction number (R0).
Unlike in [14], it is possible for Model (10) to exhibit up to four disease-free equi-
librium points (DFEs), where Rdf > 1 and Rdm > 1.

Since Rdf > 1 and Rdm > 1, then Model (10) has four DFEs, P00 = (0, 0, 0, 0),
Pf0 = (K∗f , 0, 0, 0), Pm0 = (0,K∗m, 0, 0), and a DFE with both susceptible AAF and

AAM with no HPV infected individuals, Pfm = (K∗f ,K
∗
m, 0, 0).

Since Rdf > 1 and Rdm > 1, P00 is unstable.
To determine the stability of Pf0, we compute the Jacobian matrix at Pf0.

J |Pf0 =


µf − rf 0 2µf − rf + δ −σf

0 rm − µm 0 2µm − rm + δ
0 0 −(δ + µf ) σf
0 0 0 −(δ + µm)

 .
J |Pf0 has the following four eigenvalues: λ1 = µf−rf , λ2 = rm−µm, λ3 = −(σ+µf )
and λ4 = −(σ + µm). All model parameters are positive so λ3 < 0 and λ4 < 0.
Hence, the stability of Pf0 is determined by the sign of µf − rf and rm − µm.
Rdm > 1 implies rm > µm > 0 and λ2 > 0. Hence, Pf0 is unstable.
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Similarly, to determine the stability of Pm0, we compute the Jacobian matrix at
Pm0.

J |Pm0 =


rf − µf 0 rf + δ 0

0 µm − rm −σm 2µm − rm + δ
0 0 −(δ + µf ) 0
0 0 σm −(δ + µm)

 .
J |Pm0

has the following five eigenvalues: λ1 = rf−µf , λ2 = rm−µm, λ3 = −(σ+µf )
and λ4 = −(σ+µm). Hence, the stability of Pm0 is determined by the sign of rf−µf
and rm − µm. Rdf > 1 implies rf > µf > 0 and λ1 > 0. Hence, Pm0 is unstable.

To determine the stability of Pfm, we recall that in this case, for N0
f > 0 and

N0
m > 0, lim

t→∞
Nf (t) = K∗f and lim

t→∞
Nm(t) = K∗m. Consequently, Model (10) reduces

to the following “limiting” system:

dIf
dt

= σf (K∗f − If )
Im

K∗f +K∗m
− (δ + µf )If ,

dIm
dt

= σm(K∗m − Im)
If

K∗f +K∗m
− (δ + µm)Im,

dSf
dt

= rfK
∗
f (1−

K∗f
Kf

)− σfSf
Im

K∗f +K∗m
+ δIf − µfSf ,

dSm
dt

= rmK
∗
m(1− K∗m

Km
)− σmSm

If
K∗f +K∗m

+ δIm − µmSm.

(11)

Using the next generation matrix method [17] we obtain the following two matrices

F =


σf (K∗f − If ) Im

K∗
f+K

∗
m

σm(K∗m − Im)
If

K∗
f+K

∗
m

0
0



and V =


(δ + µf )If
(δ + µm)Im

−rfK∗f (1− K∗
f

Kf
) + σfSf

Im
K∗
f+K

∗
m
− δIf + µfSf

−rmK∗m(1− K∗
m

Km
) + σmSm

If
K∗
f+K

∗
m
− δIm + µmSm

 .
Then, using the Jacobian matrices of F and V evaluated at the DFE of (11),

Qfm = (0, 0,K∗f ,K
∗
m), we obtain the following matrices,

DF(Qfm) =

[
F 0
0 0

]
and DV(Qfm) =

[
V 0
W U

]
,

where F =

 0
σfK

∗
f

K∗
f
+K∗

m

σmK
∗
m

K∗
f
+K∗

m
0

 , V =

[
δ + µf 0

0 δ + µm

]
,W =

 −δ σfK
∗
f

K∗
f
+K∗

m

σmK
∗
m

K∗
f
+K∗

m
−δ


and U =

[
µf 0
0 µm

]
.

Hence,

FV −1 =
1

K∗f +K∗m

[
0

σfK
∗
f

δ+µm
σmK

∗
m

δ+µf
0

]
.
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By the next generation matrix method [17], the reproduction number for Model
(10), R0, is the spectral radius of the next generation matrix, ρ(FV −1), and

R0 = ρ(FV −1) =
√
R0fR0m, where

R0f =
σfK

∗
f

(δ + µf )(K∗f +K∗m)
and R0m =

σmK
∗
m

(δ + µm)(K∗f +K∗m)
.

R0f (respectively, R0m ) is directly proportional to the product of the infection
rate of AAF population and the proportion of AAF population at the death-adjusted
equilibrium point (respectively, the infection rate of AAM population and the pro-
portion of AAM population at the death-adjusted equilibrium point) and inversely
proportional to the sum of clearance rate and death rate for AAF population (re-
spectively, the sum of clearance rate and death rate for AAM population).

When rf > µf and rm > µm, then R0 < 1 implies the DFE, Pfm, is locally
asymptotically stable, whereas R0 > 1 implies Pfm is unstable [17]. Using the
parameter values in Table 3, it is easy to see that R0f = 0.1915 < 1 and R0m =
0.2874 < 1. Hence, R0 = 0.2346 < 1. That is, in our Model (10) the DFE Pfm, is
locally asymptotically stable.

It is interesting to note that in [13], Lee and Tameru, obtainedR0 = 0.519798 < 1
with a one sex HPV model under a constant recruitment. Since their model over
estimates the AA population, their R0 is bigger than 0.2346. However, both models
predict that R0 < 1 and HPV infection cannot get started in a fully susceptible AA
population [13].

To find an effective mitigation strategy that seeks to reduce HPV infection in AA
population within the shortest time possible, in the next section, we use sensitivity
analysis to study the impact of each model parameter on R0.

4.1. Sensitivity analysis of R0. Sensitivity indices are used to measure the rela-
tive change in a state variable when a parameter changes. Typically, the normalized
forward sensitivity index of a variable to a parameter is defined as the ratio of the
relative change in the variable to the relative change in the parameter. When the
variable is a differential function of the parameter, the sensitive index may be al-
ternatively defined using partial derivatives [4, 10, 18, 19].

Definition 4.1 ([4, 10, 18, 19]). The normalized forward sensitivity index of a
variable, u, that depends differentiably on a parameter, q, is defined as:

Υu
q :=

∂u

∂q
× q

u
.

We use Definition 4.1 to derive the sensitivity indices of the basic reproduction
number R0 and we evaluate them using parameter values of Table 3.

Increasing (respectively, decreasing) the clearance rate, δ, by 1% will decrease
(respectively, increase) the value ofR0 by about 0.99%. Increasing (respectively, de-
creasing) the infection rate of the AAF population, σf , by 1% will increase (respec-
tively, decrease) the value ofR0 by about 0.5%. Increasing (respectively, decreasing)
the infection rate of the AAM population, σm, by 1% will increase (respectively,
decrease) the value of R0 by about 0.5%.

4.2. African American male and female HPV model simulations. To il-
lustrate the impact of HPV on AAF and AAM populations of 16 years and older,
we simulate Model (10) with the parameter values listed in Table 3 and the initial
conditions listed in Table 4.
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Table 5. Normalized sensitivity indices and order of importance
of R0 to the nine parameters in Table (3).

Parameter Sensitivity index of R0 Order of Importance

δ -0.9915 1
σf 0.5000 2
σm 0.5000 3
Kf 0.1526 4
Km -0.1526 5
rm -0.0631 6
µm 0.0586 7
µf -0.0561 8
rf 0.0520 9
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Figure 3. Normalized sensitivity indices of R0 are evaluated at
values of the parameters of Table (3). The most sensitive parame-
ters for R0 are the clearance rate, δ, the infection rate of the AAF
population, σf , and the infection rate of the AAM population, σm.
While the least sensitive parameters are the intrinsic growth rate
for AAF population, rf , the intrinsic growth rate for AAM popu-
lation, rm, the death rate of AAF population, µf , and the death
rate for AAM population, µm.

Simulations of our HPV Model (10) are performed using Matlab software, and
are illustrated in Figure 4. Figure 4 (a) shows that susceptible population of AAF
of 16 years and older, Sf , increases over time. Similarly, Figure 4 (b) shows that
susceptible population of AAM of 16 years and older, Sm, increases over time. In
the total AA population, R0 < 1 and as expected, Figure 4 (c) shows that the AAF
HPV infected population of 16 years and older, If , decreases monotonically with
time and Figure 4 (d) shows that the AAM HPV infected population of 16 years
and older, Im, decreases monotonically with time.

To protect against HPV infections, HPV vaccines are available for males and
females. Gardasil and Cervarix are two HPV vaccines that have market approval
in many countries. Next, we introduce an extension of Model (10) with vaccinated
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Figure 4. African American male and female HPV model simulations.

male and female classes. We will use the extended model to study the impact of
vaccination on Figure 4.

5. A two-sex African American HPV model with vaccination. To intro-
duce HPV vaccination in AAF and AAM populations of Model (10), we let pf
(respectively, pm) denote the proportion of HPV vaccinated females (respectively,
males). For both males and females, we let τ denote the success rate of the vaccine.
In AA population, τ = 90% [14].

As in [14], we divide the AA population into eight compartments. Sf = non vac-
cinated susceptible AAF population, Svf = vaccinated susceptible AAF population,
Sm = non vaccinated susceptible AAM population, Svm = vaccinated susceptible
AAM population, If = non vaccinated HPV infected AAF population, Ivf = vac-
cinated HPV infected AAF population, Im = non vaccinated HPV infected AAM
population, Ivm = vaccinated HPV infected AAM population. Then Model (10)
with vaccination in both AAF and AAM of 16 years and older becomes the follow-
ing model. 

dSf
dt

= rf (1− pf )Nf (1− Nf
Kf

)− σfSf
Im + Ivm
Nf +Nm

+ δIf − µfSf ,

dSvf
dt

= pfrfNf (1− Nf
Kf

)− (1− τ)σfS
v
f

Im + Ivm
Nf +Nm

+ δIvf − µfSvf ,

dSm
dt

= rm(1− pm)Nm(1− Nm
Km

)− σmSm
If + Ivf
Nf +Nm

+ δIm − µmSm,

dSvm
dt

= pmrmNm(1− Nm
Km

)− (1− τ)σmS
v
m

If + Ivf
Nf +Nm

+ δIvm − µmSvm,

dIf
dt

= σfSf
Im + Ivm
Nf +Nm

− (δ + µf )If ,

dIvf
dt

= (1− τ)σfS
v
f

Im + Ivm
Nf +Nm

− (δ + µf )Ivf ,

dIm
dt

= σmSm
If + Ivf
Nf +Nm

− (δ + µm)Im,

dIvm
dt

= (1− τ)σmS
v
m

If + Ivf
Nf +Nm

− (δ + µm)Ivm,

(12)
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Table 6. Initial conditions for HPV Model (12).

Sf (0) = 5,257,566
Svf (0) = 3,361,394

Sm(0) = 5,667,019
Svm(0) = 1,452,351
If (0) = 5,086,421
Ivf (0) = 336,139

Im(0) = 4,860,205
Ivm(0) = 145,235

where Nf = Sf +Svf +If +Ivf > 0 and Nm = Sm+Svm+Im+Ivm > 0 and the model

parameters and their values are listed in Table 3. We will study Model (12) with
parameter values listed in Table 3 and with the initial conditions listed in Table 6,
where pf = 39%, pm = 20.4% and τ = 90%.

Note that in Table 6, Sf (0) + Svf (0) + If (0) + Ivf (0) = Nf (0) of Table 1 (respec-

tively, Sm(0) + Svm(0) + Im(0) + Ivm(0) = Nm(0) of Table 2) where t = 0 is year
2001.

Proceeding exactly as in Theorem 3.1, we obtain the following result.

Theorem 5.1. All solutions of Model (12) are nonnegative and bounded.

6. Disease-free equilibrium, stability and basic reproduction number Rv0.
Notice that when all vaccinated classes are missing (Svf = Svm = Ivf = Ivm = 0) and

pf = pm = τ = 0, then Model (12) reduces to Model (10).
From Model (12), the demographic equations for the female and male total pop-

ulations are respectively the following:
dNf
dt

= rfNf (1− Nf
Kf

)− µfNf ,

dNm
dt

= rmNm1− Nm
Km

)− µmNm.
(13)

The equilibrium points of Model (13) are (Nf , Nm) = (0, 0), (0,K∗m), (K∗f , 0) and

(K∗f ,K
∗
m). Since Rdf > 1 and Rdm > 1, (Nf , Nm) = (0, 0), (0,K∗m) and (K∗f , 0) are

unstable and (K∗f ,K
∗
m) is asymptotically stable.

As in Model (10), to state the “limiting” system of Model (12), we replace Nf
by K∗f and Nm by K∗m. Since Nf = Sf + Svf + If + Ivf = K∗f and Nm = Sm +

Svm + Im + Ivm = K∗m, the “limiting” system for Model (12) is the following system
of equations.

dSf
dt

= rf (1− pf )K
∗
f (1−

K∗
f

Kf
)− σfSf

Im + Ivm
K∗
f +K∗

m

+ δIf − µfSf ,

dSm
dt

= rm(1− pm)K∗
m(1− K∗

m

Km
)− σmSm

If + Ivf
K∗
f +K∗

m

+ δIm − µmSm,

dIf
dt

= σfSf
Im + Ivm
K∗
f +K∗

m

− (δ + µf )If ,

dIvf
dt

= (1− τ)σf (K
∗
f − Sf − If − Ivf )

Im + Ivm
K∗
f +K∗

m

− (δ + µf )I
v
f ,

dIm
dt

= σmSm
If + Ivf
K∗
f +K∗

m

− (δ + µm)Im,

dIvm
dt

= (1− τ)σm(K∗
m − Sm − Im − Ivm)

If + Ivf
K∗
f +K∗

m

− (δ + µm)Ivm,

(14)
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DFE of System (14) is (Sf , Sm, If , I
v
f , Im, I

v
m) =

(
(1−pf )K∗f , (1−pm)K∗m, 0, 0, 0, 0

)
.

Using the next generation matrix method [17] we obtain the following two matrices

F =



σfSf
Im+Ivm
K∗
f
+K∗

m

(1−τ)σf (K∗
f−Sf−If−I

v
f )

Im+Ivm
K∗
f
+K∗

m

σmSm
If+Ivf
K∗
f
+K∗

m

(1−τ)σm(K∗
m−Sm−Im−I

v
m)

If+Ivf
K∗
f
+K∗

m

0
0



and V =


(δ+µf )If
(δ+µf )I

v
f

(δ+µm)Im
(δ+µm)Ivm

−rf (1−pf )K∗
f (1−

K∗
f

Kf
)+σfSf

Im+Ivm
K∗
f
+K∗

m
−δIf+µfSf

−rm(1−pm)K∗
m(1−K

∗
m

Km
)+σmSm

If+Ivf
K∗
f
+K∗

m
−δIm+µmSm

 .

Let Q = (If , I
v
f , Im, I

v
m, Sf , Sm) =

(
0, 0, 0, 0, (1−pf )K∗f , (1−pm)K∗m

)
. Evaluating

the Jacobian matrices of F and V at Q, we obtain the following matrices

DF(Q) =

[
F 0
0 0

]
and DV(Q) =

[
V 0
W U

]
,

where

F =


0 0

σf (1−pf )K∗
f

K∗
f
+K∗

m

σf (1−pf )K∗
f

K∗
f
+K∗

m

0 0
(1−τ)σfpfK

∗
f

K∗
f
+K∗

m

(1−τ)σfpfK
∗
f

K∗
f
+K∗

m

σm(1−pm)K∗
m

K∗
f
+K∗

m

σm(1−pm)K∗
m

K∗
f
+K∗

m
0 0

(1−τ)σmpmK∗
m

K∗
f
+K∗

m

(1−τ)σmpmK∗
m

K∗
f
+K∗

m
0 0

 ,

V =

[
δ+µf 0 0 0

0 δ+µf 0 0
0 0 δ+µm 0
0 0 0 δ+µm

]
, U =

[
µf 0
0 µm

]

and W =

[
−δ 0

σf (1−pf )K∗
f

K∗
f
+K∗

m

σf (1−pf )K∗
f

K∗
f
+K∗

m

σm(1−pm)K∗
m

K∗
f
+K∗

m

σm(1−pm)K∗
m

K∗
f
+K∗

m
−δ 0

]
.

Hence,

FV −1 =


0 0

σf (1−pf )K∗
f

(δ+µm)(K∗
f+K

∗
m)

σf (1−pf )K∗
f

(δ+µm)(K∗
f+K

∗
m)

0 0
(1−τ)σfpfK∗

f

(δ+µm)(K∗
f+K

∗
m)

(1−τ)σfpfK∗
f

(δ+µm)(K∗
f+K

∗
m)

σm(1−pm)K∗
m

(δ+µf )(K∗
f+K

∗
m)

σm(1−pm)K∗
m

(δ+µf )(K∗
f+K

∗
m) 0 0

(1−τ)σmpmK∗
m

(δ+µf )(K∗
f+K

∗
m)

(1−τ)σmpmK∗
m

(δ+µf )(K∗
f+K

∗
m) 0 0

 .

By the next generation matrix method [17], the reproduction number for Model
(12), Rv0, is the spectral radius of the next generation matrix, ρ(FV −1), and

Rv0 = ρ(FV −1) =
√
Rv0fRv0m, where

Rv0f =
(1− τpf )σfK

∗
f

(δ + µf )(K∗f +K∗m)
and Rv0m =

(1− τpm)σmK
∗
m

(δ + µm)(K∗f +K∗m)
.
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Rv0 < 1 implies DFE ((1 − pf )K∗f , pfK
∗
f , (1 − pm)K∗m, pmK

∗
m, 0, 0, 0, 0), is locally

asymptotically stable, whereas Rv0 > 1 implies DFE is unstable [17].

Rv0f = (1− τpf )R0f and Rv0m = (1− τpm)R0m.

Since 0 < 1− τpf < 1 and 0 < 1− τpm < 1, Rv0 < R0 < 1.
Thus, adopting a HPV vaccination program decreases the basic reproduction

number, R0, in AA population.
Using the parameter values of Table 3, τ = 90% [14], pf = 39% [9] and pm =

20.4% [9], we obtain that Rv0f = 0.1243 and Rv0m = 0.2346. Hence, Rv0 = 0.1708.
In the next section, we use sensitivity analysis to illustrate the impact of model

parameters on Rv0.

6.1. Sensitivity analysis of Rv0. We use Definition 4.1 to derive the sensitivity
indices of the basic reproduction number Rv0 and we evaluate them using, τ = 90%,
pf = 39%, pm = 20.4% and parameter values of Table (3).

Table 7. Normalized sensitivity indices and order of importance
of Rv0 to model parameters.

Parameter Sensitivity index of Rv0 Order of Importance

δ -0.9915 1
σf 0.5000 2
σm 0.5000 3
τ -0.3829 4
pf -0.2704 5
Kf 0.1526 6
Km -0.1526 7
pm -0.1124 8
rm -0.0631 9
µm 0.0586 10
µf -0.0561 11
rf 0.0520 12

From Table 7 and Figure 5, increasing (respectively, decreasing) the clearance
rate, δ, by 1% will decrease (respectively, increase) the value of Rv0 by about 0.99%.
Increasing (respectively, decreasing) the infection rate of the AAF population, σf ,
by 1% will increase (respectively, decrease) the value of Rv0 by about 0.5%. Increas-
ing (respectively, decreasing) the infection rate of the AAM population, σm, by 1%
will increase (respectively, decrease) the value of Rv0 by about 0.5%. Increasing
(respectively, decreasing) the success rate of vaccination, τ , by 1% will decrease
(respectively, increase) the value of Rv0 by about 0.38%. Increasing (respectively,
decreasing) the proportion of HPV vaccinated females, pf , by 1% will decrease
(respectively, increase) the value of Rv0 by about 0.27%.

6.2. African American male and female HPV model with vaccination
simulations. To illustrate the impact of HPV on AAF and AAM populations of
16 years and older when a vaccination program is applied with τ = 90%, pf = 39%
and pm = 20.4%, we simulate Model (12) with the parameter values listed in Table
3 and the initial conditions given in Table 6.

Simulations of our HPV Model (12) are performed using Matlab software, and
are illustrated in Figure 6. Figures 6 (a-b) show that susceptible population of AAF
of 16 years and older, Sf (respectively, vaccinated AAF of 16 years and older Svf ),

increases over time. Similarly, Figures 6 (c-d) show that susceptible population of
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Figure 5. Normalized sensitivity indices of Rv0 are evaluated at
values of model parameters. The most sensitive parameters for Rv0
are the clearance rate, δ, the infection rate of the AAF population,
σf , and the infection rate of the AAM population, σm, the success
rate of HPV vaccine, τ , and the proportion of HPV vaccinated
females, pf . While the least sensitive parameters are the intrinsic
growth rate for AAF population, rf , the intrinsic growth rate for
AAM population, rm, the death rate of AAF population, µf , and
the death rate for AAM population, µm.

AAM of 16 years and older, Sm (respectively, vaccinated AAM of 16 years and older
Svm), increases over time. In the total population of African American population,
Rv0 < 1 and as expected, Figures 6 (e-f) show that the AAF HPV infected popula-
tion of 16 years and older, If (respectively, vaccinated AAF of 16 years and older
Ivf ), decreases monotonically with time and Figures 6 (g-h) show that the AAM

HPV infected population of 16 years and older, Im (respectively, vaccinated AAM
of 16 years and older Ivm), decreases monotonically with time.

To study the impact of the presence of the vaccinated class on the results of
Figure 4, we simulate Model (12) using initial conditions in Table 8. For these
simulations of Model (12), we keep all the parameter values at their current values
in Figure 4, where τ = 90%, while we vary pf and pm.

Note that in Figure 6 and Table 6, Sf (0) + Svf (0) (respectively, If (0) + Ivf (0)) is

the same as Sf (0) (respectivrly, If (0)) of Table 4 and Figure 4. Similarly, in Figure
6 and Table 6, Sm(0) + Svm(0) (respectively, Im(0) + Ivm(0)) is the same as Sm(0)
(respectivrly, Im(0)) of Table 4 and Figure 4.

6.3. Impact of HPV vaccination. In AA population, Rv0 < R0 < 1. Conse-
quently, with and without vaccination, the susceptible population increases while
the infective population decreases over time. In Figures 7 and 8, we illustrate that
in both AAF and AAM populations, the increase in the susceptible populations is
higher when a vaccination policy is adopted than when the population is not being
vaccinated.
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Figure 6. African American male and female HPV model with
vaccination simulations.

Table 8. Initial conditions for HPV model.

````````````Initial
Vaccination

pf = 39% pf = 50% pf = 70%

Conditions pm = 20.4% pm = 50% pm = 70%

Sf (0) 5,257,566 4,309,480 2,585,688

Svf (0) 3,361,394 4,309,480 6,033,272

Sm(0) 5,667,019 3,559,685 2,135,811

Svm(0) 1,452,351 3,559,685 4,983,559

If (0) 5,086,421 4,991,612 4,819,233

Ivf (0) 336,139 430,948 603,327

Im(0) 4,860,205 4,649,472 4,507,084

Ivm(0) 145,235 355,969 498,356

Furthermore, in both AAF and AAM populations, Figures 9 and 10 show that the
number of infected populations is lower when the population is under a vaccination
policy than when the population is not being vaccinated. Thus, HPV vaccines that
provide partial immunity to both AAF and AAM populations of 16 years and older
not only lower the number of HPV infectives but increase the number of susceptibles
in both female and male populations.

Furthermore, we obtained in Figures 7-10 that the increase (respectively, de-
crease) in the susceptible (respectively, HPV infective) populations is larger when
a bigger proportion of the population is vaccinated.

7. Conclusion. We use a two-sex HPV model with “fitted” logistic demographics
to study HPV disease dynamics in AAF and AAM populations of 16 years and
older. In agreement with Lee and Tameru [13], we obtained that in AA population,
R0 < 1 and HPV cannot get started in a fully susceptible AA population.

Using sensitivity analysis on R0, we obtained the following results:

• Increasing (respectively, decreasing) the clearance rate, δ, by 1% will decrease
(respectively, increase) the value of R0 by about 0.99%.
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Figure 7. Susceptible AAF population.
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Figure 8. Susceptible AAM population.

• Increasing (respectively, decreasing) the infection rate of the AAF population,
σf , by 1% will increase (respectively, decrease) the value of R0 by about 0.5%.

• Increasing (respectively, decreasing) the infection rate of the AAM population,
σm, by 1% will increase (respectively, decrease) the value ofR0 by about 0.5%.

In the second part of the paper, we extended our model to include vaccination
classes in both male and female AA populations of 16 years and older. We obtained
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Figure 9. HPV Infected AAF population.
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Figure 10. HPV Infected AAM population.

that in AA population when the vaccination program is implemented, Rv0 < 1.
Using sensitivity analysis on Rv0, we obtained the following results:

• Increasing (respectively, decreasing) the clearance rate, δ, by 1% will decrease
(respectively, increase) the value of R0 by about 0.99%.

• Increasing (respectively, decreasing) the infection rate of the AAF population,
σf , by 1% will increase (respectively, decrease) the value of R0 by about 0.5%.
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• Increasing (respectively, decreasing) the infection rate of the AAM population,
σm, by 1% will increase (respectively, decrease) the value ofR0 by about 0.5%.

• Increasing (respectively, decreasing) the success rate of vaccination, τ , by 1%
will decrease (respectively, increase) the value of R0 by about 0.38%.

• Increasing (respectively, decreasing) the proportion of HPV vaccinated fe-
males, pf , by 1% will decrease (respectively, increase) the value of R0 by
about 0.27%.

Furthermore, using the extended model with vaccination we obtained the follow-
ing results:

• Adopting a vaccination policy lowers HPV infections in both AAF and AAM
populations.

• Vaccinating a larger proportion of AAF and AAM populations leads to fewer
cases of HPV infections in the vaccinated population.
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