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Abstract. Virotherapy, using herpes simplex virus, represents a promising

therapy of glioma. But the innate immune response, which includes TNF-α
produced by macrophages, reduces the effectiveness of the treatment. Hence

treatment with TNF-α inhibitor may increase the effectiveness of the virother-

apy. In the present paper we develop a mathematical model that includes
continuous infusion of the virus in combination with TNF-α inhibitor. We

study the efficacy of the treatment under different combinations of the two

drugs for different scenarios of the burst size of newly formed virus emerging
from dying infected cancer cells. The model may serve as a first step toward

developing an optimal strategy for the treatment of glioma by the combination
of TNF-α inhibitor and oncolytic virus injection.

1. Introduction. Oncolytic viruses are genetically altered replication-competent
viruses which infect and reproduce in cancer cells but do not harm normal cells.
When an infected cell dies many newly formed viruses are released and spread out,
infecting neighbouring tumor cells. Treatment by oncolytic viruses (OV) has been
and continues to be actively tested in clinical trials for various types of cancer with
the use of variety of viruses, [4], [10], [12], [13], [14], including ONYX-15 [7], [11],
herpes simplex virus (HSV) [16] and prostate-specific adenovirus CN706 and CN708
[18].
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This therapy, although based on quite promising assumptions, encounters one
major obstacle: the innate immune system recognizes the infected cells and destroys
them before the viruses within them get a chance to multiply [3].

It was reported in [6] that CD 163+ macrophages, in rat experiments for glioma,
inhibited OV therapy making it unsuccessful. The solution suggested in [6] was to
use cyclophosphamide (CPA) as a suppressant of the immune response through the
inhibition of CD 163+ and thus enhance the effectiveness of the OV therapy. This
approach has been studied from the mathematical point of view by Friedman et al.
in [5]. The authors formulated a mathematical model of virotherapy following the
earlier work by Wu et al. [21, 22], but focusing on the data from glioma rather than
from head and neck cancer. The model in [5] was described by a system of PDEs
and the effects of the therapy with and without CPA was analysed.

In the present paper we intend to pick up on this work, but pursue a different
avenue based on a very recent paper by Auffinger et al. [2]. In that paper it was
suggested that in order to enable the effective action of the virotherapy one should
try to block the main “weapon” used by macrophages, namely the TNF-α. It
was demonstrated there that inhibition of TNF-α could significantly enhance virus
replication and the efficacy of the overall treatment.

Thus our goal here is to construct a model which captures the interactions be-
tween healthy tumor cells, infected tumor cells, viruses, and macrophages and the
TNF-α they produce. The model is based on the work of Friedman et al. [5] and
the PDE model presented there. However, here we will formulate a reduction of this
model from the spatial PDE model to a population type ODE model. This reduc-
tion will enable us to pursue a detailed dynamical system analysis of the model as
well as analysis of it as an optimal control problem. Although the spatial element
has to be compromised for that, it is not entirely removed from the analysis. In-
deed, we will be able to estimate the tumor radius in terms of the cells population.
The efficacy of both treatments by injection of virus and TNF-α inhibitor will be
analysed in the context of the radius of the tumor bringing the spatial aspect back
into the picture.

The approach pursued in our paper will be to target the tumor by combining
the two therapies: the viral injection and the TNF-α inhibitor. We will analyze
the response of the system to various doses, particularly the efficacy of the therapy,
having as a goal the minimization of the tumor radius. The administration of
the virus will be pursued through a continuous injection of a fixed dose. This is
motivated by the fact that the therapeutic efficacy of systemic chemotherapeutic
agents is significantly limited due to the presence of highly selective brain-blood-
barriers (BBB). In order to overcome this limitation, researchers have developed
a new delivery method, Convention Enhanced Delivery (CED), which relies on
intracranial delivery of viral vectors through continuous infusion via catheters. CED
has recently reached phase I/II in clinical trials [2], although so far this procedure
has been shown to be only moderately effective in recurrent glioma patients [2].

Both therapeutic agents, the virus and the TNF-α inhibitor, have negative side-
effects. Side-effects of virus such as HSV used in tumor virotherapy are significant
in rodent tumor models and it is not known if these will occur also in humans [20].
In the case of TNF-α inhibitors the side effects include opportunistic infections like
tuberculosis, listerosis and pneumocystis. There are also adverse events including
systemic lupus, congestive heart failure and general infections [1]. Because of these
side effects, the amount of dosing should be optimized to maximize the effect and
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Figure 1. Flow chart of the model for virotherapy

minimize the negative side effects. In this paper we will pursue study of the efficacy
which is a natural first step towards analysis of this model as an optimal control
problem.

2. A mathematical model for the treatment of glioma with virotherapy
and TNF-α inhibitors. Let x(t) denote the density of cancer cells (uninfected),
y(t) the density of infected cancer cells, v(t) the density of the virus, M(t) the
density of the macrophages, and T (t) the concentration of TNF-α. The model
includes two controls, u1 and u2. The control u1(t) represents the amount of the
virus that is injected into the tumor, and the control u2(t) stands for the dosage of
the TNF-α inhibitor. The “in” and “out” flows between the compartments and the
actions of the two drugs are schematically illustrated in Figure 1.

The burst number is the number of virus that emerge from a dying cancer cell.
We shall take it in the range of 50 ≤ b ≤ 150. Using unit of g

cm3 , the parameter b

is the burst size defined as b× mass of virus
mass of cells = b× 10−6.

The dynamics of the model is expressed mathematically by the following system
of ODEs:

dx

dt
= αx− βxv − δxx, (1)

dy

dt
= βxv − ky T

K + T
− δyy, (2)

dM

dt
= A+ syM − δMM, (3)

dT

dt
=

λ

1 + u2
M − κy T

K + T
− δTT, (4)

dv

dt
= b1ky

T

K + T
+ bδyy − ρxv − δvv + u1, (5)

All the densities and concentrations are in unit of g
cm3 . In Eq. (1) α represents

the proliferation rate of uninfected cancer cells and δx is the death rate; β is the
infection rate of x by viruses v. In Eq. (2) the term ky T

K+T represents the necrotic
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death of infected cells caused by TNF-α, while δy is the death by apoptosis. When
a cell y dies by apoptosis, b virus particles are released, while if it dies by necrosis
a very small number, b1, of viruses emerge. These are accounted by the first two
terms on the right hand side of Eq. (5). In Eq. (3) the terms A and δMM repre-
sent the source and death of macrophages under healthy normal conditions, while
syM accounts for the tumorigenic response of the immune system invoked by the
infected cells y. In Eq. (4), the first term on the right-hand side is the production
of TNF-α by macrophages, while the remaining two terms are loss by absorption
within y cells and loss by natural degradation. The virus equation (5) includes virus
particles from dead y cells and loss from absorption by x (i.e. ρxv) and natural
degradation/clearance (δvv). We also included in the model a continuous injec-
tion u1 of virus, as virotherapeutic drug, and a continuous injection u2 as TNF-α
inhibitor (in Eq. (4 ).

In the present paper, we take u1 ≡ const = C and u2 ≡ const = D, but in
future work we shall use u1 and u2 as time-dependent adaptive control variables in
order to determine optimal strategies for glioma treatment. Since all the density
and concentration in (1)-(5) are in the same unit of g

cm3 , ρ
β = virus mass

cell mass is a small

number, and similarly κ
k is a small number. We expect b1 to be very small (viruses

are damaged during necrosis) so for simplicity we shall take b1 = 0. As in [5] the
viruses burst (or replication) number b will play a major role in the progression of
the disease and its treatment.

We denote by n(t) the density of all the dead cells. Then, in addition to the
dynamics given by Eqs. (1)-(5), we have the equation

dn

dt
= ky

T

K + T
+ δyy + δxx+ δMM − µn, (6)

where µ is the rate by which dead cells are cleared out of the tumor.
Although we do not intend to directly focus on this equation, it will be taken

into account in the calculation of the tumor radius.

2.1. Calculation of the tumor radius. We assume that the tumor is spherical
with variable radius R(t), volume V (t) and mass m(t) = x(t) + y(t) +M(t) + n(t).
At each point of the sphere, the density of the cells increases at the rate dm

dt . Adding
up the equations (1)-(3) and (6) we get that

dm

dt
= αx− δxx+A+ syM − µn.

The total mass of the tumor then increases at rate

V (t)(αx̃− δxx̃+A+ sỹM − µñ)

where z̃ denotes the average of z. Let θ0 is be the sum of averages, θ0 = x̃+ỹ+M̃+ñ.
We assume that an increase in total mass causes the tumor volume to increase
proportionally, that is by θ0

dV
dt and that ỹM = ỹM̃ , so that

θ0
dV

dt
= V (t)(αx̃− δxx̃+A+ sỹM̃ − µñ).

Since
1

V

dV

dt
=

3

R

dR

dt
,

we get

θ0
3

R

dR

dt
= (αx̃− δxx̃+A+ sỹM̃)− µñ.
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Parameter Description Num. values Dimension
α Proliferation rate of uninfected tumor cells 0.2 1/day

β Infection rate of tumor cells by viruses 2 · 104 cm3

g·day

ρ Rate of loss of viruses during infection 4 · 10−2 cm3

g·day

k Effectiveness of the inhibitory action of TNF-α 0.4 1/day
δy Infected tumor cell death rate 0.2 1/day

λ TNF-α production rate 2.86 · 10−3 1/day
δT TNF -α cell degradation rate 55.45 1/day
δM Macrophages death rate 0.015 1/day

b Burst size of infected cells during apoptosis (50 − 150) · 10−6

b1 Burst size of infected cells during necrosis 0, << b

K Carrying capacity of the TNF-α 5 · 10−7 g

cm3

κ Degradation of TNF-α 4 · 10−10 1/day
due to its action on infected cells

δv Virus lysis rate 0.5 1/day

A Constant source of macrophages 9 · 10−7 g

cm3·day

s Stimulation rate of macrophages by infected cells 0.15 cm3

g·day

without stimulus
δx death rate of uninfected cancer cells 0.1 1/day
µ removal rate of dead cells 0.25 1/day
θ0 average of total densitiy of cells 0.9 g/cm3

C constant infusion of the virus (0 − 5) · 10−7 g

cm3·day

D constant infusion of the TNF-α inhibitor 0 − 30

Table 1. Parameters of the model

Hence

θ0
3

R

dR

dt
= (αx̃− δxx̃+A+ sỹM̃)− µ(θ0 − x̃− ỹ − M̃).

Finally, in order to simplify the calculations, we assume that the averages x̃, ỹ,

M̃ and ṽ satisfy the same equations that x, y, M , v. Hence we get the following
formula for the tumor radius:

θ0
3

R

dR

dt
= (αx− δxx+A+ syM)− µ(θ0 − x− y −M). (7)

2.2. Determination of the parameters. Table 1 gives the values of the param-
eters which will be used in our analysis. Explanations concerning the calculations
of the parameter values are given in the Appendix.

3. Results. In this section we simulate the model (1)-(7) in order to determine how
the state of the system responds to a combined therapy. Values of the parameters for
the simulations will be taken from Table 1, unless specified otherwise. We assume
that the process starts with the following initial conditions:

x(0) = 0.7, y(0) = 0.1, n(0) = 0, M(0) = 0.1, T (0) = 10−7,
4π

3
R(0)3 = 0.9,

so that approximately R(0) = 0.6.

3.1. Behavior of the model without therapy (uncontrolled system). We
assume that initially a dose of viruses given by v(0) = 10−6 injected and we start
by studying the behavior of the system when no additional therapy is given.

Figure 2 shows the profile of all the variables of the model for the first 50 days for
different values of the burst number b. If b is small, namely b = 70, the tumor radius
increases from its initial value R(0) = 0.6 to 43 at T = 50, that is, R(50) = 43cm.
For b = 90, R(50) is still large, namely R(50) = 6cm. It is only when b = 150 that
R(50) does no longer increase relative to R(0). These results are in agreement with
the mouse experiments in [5] in the sense that if b = 50 the tumor radius quickly
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Figure 2. Graphs of model variables for C = 0, D = 0.

increases while if b = 150 the tumor radius begins to decrease. As in [5], we see
also here the oscillations that occur in each of the variables. These oscillations are
natural. For example, as y oscillates, so will the viruses which are released from
dying infected cells, and so will the rate of macrophages whose activation depends
on y.

The simulation of T (t) with b = 70 suggests that the initial load v(0) results in a
massive increase of TNF-α, which later seems to normalize. We also see that after
the initial injection of the virus, the virus is multiplying to achieve its maximum
by day 28; after that time the virus density keeps decreasing - the drug is ‘too
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weak’. As a result, the growth of R after day 30 is limited. However, the increasing
amount of virus in the first 30 days causes M to grow - which leads to growth of
T mentioned above. And, as earlier, large amounts of T restrain the replication of
virus residing in infected cells y - which is bad for the therapy.

Moving on to the case with b = 90, shown in Figure 2, we observe that the
behaviour of T is almost the same as in the previous case. The radius R is still
increasing in time, but not as sharply as before. Finally, the case of b = 150
presented in Figure 2 shows that the growth of v is faster, but similarly it decays
later to finally restart growing again. We can also see that R(t) is first slightly
growing, then it decreases, and finally it slightly increases again, mimicking the
oscillation of v.

The observed behavior shows that if we would want to achieve the tumor size
reduction without continuous therapy, but just with initial viral injection at time
t = 0, we would need to inject a very high (probably unrealistic) amount of the
virus. This suggests that continuous therapy of virus injection is needed.

3.2. Behavior of the model with continuous constant viral infusion. We
will now study the behavior of the system assuming that we apply constant viral
injection u1(t) ≡ C = 5 · 10−7 and the initial load v(0) = C, again for three viral
replication numbers, b = 70, b = 90, b = 150. Figure 3 shows the evolution of the
system under these assumptions. We see the same oscillating behaviour as before.
But, more importantly, we can see the effect of the drug on the tumor radius: for
b = 70 and b = 90 the radius R = R(t) is still increasing, although much less than
in the case of C = 0 (no continuous infusion). But for the burst number b = 150
the tumor radius, after a small initial increase, is strictly decreasing, with R(50)
approximately half the initial tumor radius.

In case b = 70 the radius R(t) is increasing, but the size after 50 days is almost
5 times smaller then in Figure 2, though we gave smaller initial dose than in the
case without therapy. Again v(t) reaches its maximum value (now at day 25), but
it does not die out later on. Furthermore, the growth of M , and consequently of T ,
is smaller, and it has less impact on killing y(t). Heading to the case of b = 90, we
are still not in the most desirable situation - the radius is still growing, although 3
times less than in Fig. 2 at day 50. As might have been expected, for b = 150 the
tumor radius is decreasing, but only after a brief increase. This initial increase is
probably caused by the fact that the initial virus load is small. The graphs of v(t)
suggest that the bigger b is, the earlier the maximum of v is reached, and the larger
is its value.

Figures 4 and 5 show the profile of R(50) as a function of b (for 70 ≤ b ≤ 110
in Fig. 4 and 110 ≤ b ≤ 150 in Fig. 5) for different values of C (above and
below C = 5 · 10−7). We see that R(50) is a monotone decreasing function of b;
furthermore, for smaller b’s the decline in R(50), as b increases, is more steep. For
each value of b, we can determine the exact value of C for which the drug will
decrease R(50) below its initial size. For example, if C = 5 · 10−7, then R(50) will
be smaller than R(0) only if b > 125.

Figure 5 suggests that, for b < 120, the doses around 10−7 do not decrease R
by day 50 - but for b > 120, the smaller doses will make R(50) smaller than R(0)
(without using the TNF-α inhibitor D).

Additionally, in that case we do not have to use D to cure the patient. Similar
behavior is shown in Figure 4, for b ∈ [70, 110]. We can also conclude that the greater
C is, the less the effect of additional units of viruses, especially in the second case.
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Figure 3. Graphs of model variables for C = 5 · 10−7, D = 0.

Hence, administrating more C and counting that it will solve the problem is not a
good idea. R(50) as a function of b, for every fixed C, is of course decreasing, and
also it is a convex function, in both cases. However, our goal, which is the tumor
size reduction, cannot be fulfilled by applying only constant viral injection, unless
we assume very high, probably unrealistic rate of production of the virus.

3.3. Behavior of the model with combined therapy. Next we will assume that
the combined therapy is given at the constant rates, i.e., u1(t) ≡ C and u2(t) ≡ D.
For our simulations we will take C = 5 · 10−7 and D = 15. Again we will study the
response of the system for various levels of viral production by the infected cells.
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Figure 4. Graph of R(50) for b ∈ [70, 110] and different values od C

Figure 5. Graph of R(50) for b ∈ [110, 150] and different values od C

The responses for b = 70, b = 90, b = 150, are shown in Figure 6, which is analogous
to Fig. 3.

Firstly, for b = 70, the tumor size increases, but not as much as in the case
D = 0. The graph of T (t) looks similar to the case without D therapy, the values
of T (t) are of an order of magnitude lower than earlier - now the maximum is close
to 3.5 · 10−7 in comparison to 7 · 10−6 where D = 0. Applying u2 also supports
growth of v - now it is about 5 times higher. What is interesting, is that although
T is decreased, M is larger than before.

For b = 90 the tumor radius, after initial increase, goes down to reach its original
size. Finally for b = 150, we obtain our desired goal for tumor reduction; the radius
decreases significantly to about R(50) = 0.1cm.

Now it becomes natural to look closer at the therapy itself and see how the two
main agents, viral infusion and TNF-α inhibitor, contribute to the success of the
therapy. In other words, what is the contribution of each of them into the goal
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Figure 6. Graphs of model variables for C = 5 · 10−7, D = 15.

of reducing the tumor radius. Figure 7 shows how the system evolves in terms of
R(50), for variable replication number b, while applying different amounts D. We
take C = 5 · 10−7 and study the range of b of [70, 90]. We see that even with b = 80
we can decrease R(50) from R(0) if we take D = 30, that is, if we restrict the
production of TNF-α by 97%.

In Figure 8, we take the range of b to be in the interval [110, 130] and use a
lower C, namely C = 3 · 10−7. Even with such high burst number, with D = 1,
R(50) > R(0). This case shows the significant effect of small doses of D may have,
namely, for b ≥ 123, with the low dose of D, D = 3 (i.e., the production of TNF-α
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Figure 7. Graph of R(50) for b ∈ [70, 90] with different D and
fixed C = 5 · 10−7.

Figure 8. Graph of R(50) for b ∈ [110, 130] with different D and
fixed C = 3 · 10−7.

was restricted by only 75%) we get the desired shrinkage of the tumor radius i.e.
R(50) < R(0).

Summarizing, our goal of shrinking the tumor size can be achieved under different
scenarios, so in choosing the best combination, one should take into consideration
potential serious side-effects of the treatment. This brings us to the main topic of
this work, which is the evaluation of the efficacy of both treatments.

3.4. Efficacy of the combined therapy. In order to capture more clearly the
benefits of the dual therapy by C and D, we introduce the concept of efficacy. Let
T denote the duration of the therapy. For our analysis we will choose the window
of T = 50. We denote by R(C,D) the radius of the tumor at the day 50 under the
combined treatment with u1(t) ≡ C and u2(t) ≡ D. The efficacy of the combined
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Figure 9. Efficacy map for b = 90.

Figure 10. Efficacy map for b = 150.

therapy is defined by

E(C,D) =
R(0, 0)−R(C,D)

R(0, 0)

Figure 9 is an efficacy map for the case b = 90, showing the efficacy of the
combined treatment with C varying along the horizontal axis and D along the
vertical one. We can see that the efficacy of the combined treatment increases with
either C or D. For small C, the efficacy goes up sharply with D. For D > 4 (TNF-α
production is inhibited by more that 80%) the efficacy increases slowly with C. An
efficacy map for b = 70 has the same features as in Fig. 9 (not shown here). Thus,
for small doses of D the efficacy goes sharply up with C, but for larger doses of D
the efficacy increases slowly with C. This confirms the observation made in section
3.3.

Figure 10 is the efficacy map for the case b = 150. Here we take a smaller range
of C, C ∈ [10−7, 5 · 10−7]. The reason is, that for higher values of C so the effect of
D is not that visible; R(50) will become very small even if D = 0.
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4. Discussion and conclusion. Virotherapy represents a promising treatment
of glioma. However the innate immune response, in particular by macrophages,
reduces significantly the effectiveness of the treatment, by killing virus infected
cancer cells prematurely. Recent experiments [15] show that blocking macrophages-
produced TNF-α can enhance virotherapy treatment in glioma. In the present paper
we developed a mathematical model which includes both drugs, oncolytic viruses
and TNF-α inhibitor. We observed that the burst number b, that is, the number
of new viruses released from the dead cancer cell plays a critical role in the model.
Without any treatment, if b is too ‘small’ the tumor radius will continue to grow,
but for larger b, say b > 150 the tumor radius will decrease. More generally, given
any combined therapy (C,D) and the terminal treatment time T , the tumor radius
R(t) at time t = T will be smaller then the initial radius R(0) if and only if b exceeds
certain threshold number, b(C,D). Furthermore, we developed an efficacy map of
treatment that depends on b. We illustrated it for small b = 90 and large b = 150.
For b = 90 the efficacy increases more sharply with the increase in C, whereas for
b = 150 the efficacy is almost independent on C. This means that for smaller burst
number the increase in C has a much larger effect on reducing the tumor radius
than if the burst number is larger. Generally the maps show the importance of
the TNF-α inhibitor application in the combined treatment. Even a small dose
applied we can obtain better efficacy than raising the level of viral infusion very
significantly. However, side effects of both drugs in combined treatment will require
to limit the amount of doses. Under such limitations the efficacy map could be
used as a prognosis tool. In this paper, we use constant amounts of each of the
drugs but this does not have to be the case, because the patient situation may
require to modify these levels as the treatment goes on. Future work should include
developing schemes for evolving treatment of glioma with u1 = u1(t) = C(t) and
u2 = u2(t) = D(t) as functions of time keeping as a goal minimizing the tumor
and the side effects. This will require formulating the model as an optimal control
problem. We plan to pursue analysis using methodologies as in [19] of this model
with the goal to compute optimal time varying regimens for this problem.

5. Appendix: Parameter estimation. The model in [5] was based on mice
experiments. Prorating some of the parameters to humans, we take

α = 0.2/day, δx = 0.1/day, µ = 0.2/day.

We assume that the infected cells die faster than x cells and take δy = 0.2/day. The
diameter of the virus is 0.13µm. The diameter of the cell is 10µm. Hence the mass
of 5 · 105 viruses is approximately equal to the mass of one cell. The mass of the
cell is 10−9g. Hence the mass of one virus is 2 · 10−15g.

From [5, 8] we get that

7 · 10−10 < β < 1.7 · 10−8 in
mm3

virus · day
.

We take

β = 10−9 mm3

virus · day
which in units of cm3

g·day gives

β = 10−8 10−3

2 · 10−15

cm3

g · day
= 2 · 104 cm3

g · day
.
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The parameter ρ is in units of cm3

cell·day . Hence

ρ =
β

5 · 105
=

2 · 104

5 · 105
= 4 · 10−2 cm3

g · day
.

The value of K = 5 · 10−7 g
cm3 is taken from [17] and the value of δT = 55.45/day

is taken from [9]. We assume that if T = K then the death rate of y by T is twice
the death rate δy, which gives k = 0.4/day. The ratio κ

k is the same as the ratio of
mass of T
mass of cell , which we take to be 10−9. Hence

κ = 10−9k = 0.4 · 10−9/day = 4 · 10−10/day

In [9] the death rate of macrophages depends of their phenotype: for M1 phenotype
the death rate is 0.02/day and for M2 phenotype, it is 0.008/day. Accordingly we
take δM = 0.015/day. The source of activated macrophages in the healthy brain is
constitutively small; we take A = 9 · 10−7 g

cm3·day . The parameter s is difficult to

measure; we take s = 0.15 cm3

g·day .

According to [9] macrophages infected by M. tuberculosis produce TNF-α at
the rate λ = 1.07 · 10−3/day. We assume that the macrophages activated by the
infected tumor cells are capable of producing TNF-α at a larger rate, taking λ =
2.86 · 10−3/day.
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