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Abstract. In earlier paper of V. Capasso et al it is considered a simply model
of controlling an epidemic, which is described by three functionals and systems

of two PDE equations having the feedback operator on the boundary. Neces-

sary optimality conditions and two gradient-type algorithms are derived. This
paper constructs dual dynamic programming method to derive sufficient opti-

mality conditions for optimal solution as well ε-optimality conditions in terms

of dual dynamic inequalities. Approximate optimality and numerical calcula-
tions are presented too.

1. Introduction. The epidemic problem man-environment in [3] is stated as op-
timal control problem. The functional consists of three members and the state
equations are governed by two PDE: parabolic linear equation and nonlinear first
order equation with feedback operator on the boundary.

Thus optimal control problem (P) is to minimize

J(u1, u2, w) =

∫ T

0

∫
Ω

F (u2(t, x)dxdt+

∫ T

0

∫
∂Ω

h(w(t, x))dxdt+

∫
Ω

l(u2(T, x))dx

(1)
over all (u1, u2, w) subject to state system

∂u1

∂t
−∆u1 + a11u1 = 0, in Q = (0, T )× Ω, (2)

∂u2

∂t
+ a22u2 − g(u1) = 0, in Q, (3)

u1(0, x) = u0
1(x), u2 (0, x) = u0

2(x) for x ∈ Ω, (4)

∂u1

∂ν
+ αu1 = K ∗ u2 =

∫
Ω

K(t, x, σ)u2(t, x)dx, (t, σ) ∈
∑

1

= (0, T )× Γ1, (5)

∂u1

∂ν
= 0 in

∑
2

= (0, T )× Γ2. (6)

where Ω is a bounded and open subset of R2 with a sufficiently smooth boundary
Γ = Γ1 ∪ Γ2, a11, a22 and α are positive constants, and

K(t, x, σ, w) =

N∑
i=1

wi(t, σ)Ki(x, σ) for t ∈ [0, T ], x ∈ Ω, σ ∈ Γ1, (7)
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Ki ∈ L∞(Ω × Γ1), wi ∈ L∞((0, T ) × Γ1) for i = 1, ..., N. We set w(t, σ) =
(w1(t, σ), ..., wN (t, σ)), it is a control function, control on the boundary. We as-
sume F, g, l to be continuous in R, F, g ≥ 0 and h : RN → R̄ = [−∞,+∞] is
convex, lower semicontinuous. Moreover we assume that there exists a bounded
closed subset M ⊂ RN such that h(w) = +∞ for w /∈M , i.e. we assume that con-
trol w ∈ M . The following particular case is considered as important in the model
problem:

h(w) =

N∑
i=1

hi(wi), (8)

where

hi(r) =

{
λ/r2 if 0 < r ≤ a,
+∞ otherwise.

(9)

The following K

K(t, x, σ, w) = w(t)K(σ), t ∈ [0, T ], σ ∈ Γ1, (10)

with wi = w, i = 1, 2, ..., N and

K(σ) =

m∑
i=1

aiχi(σ), (11)

where χi is the characteristic function of the interval [xi − ηi, xi + η], xi ∈ Γ1, i =
1, 2, ...,m, η > 0 is also investigated in [3]. The points xi are related to the treatment
of the sewage output. In [1] for that problem existence and necessary optimality
conditions, as well two gradient type algorithms are derived. In [4] analytical results
are given in support of the well posedness of the problem.The essential point in
the convergence of gradient algorithm (using the necessary optimality conditions
- Pontryagin maximum principle) is that it starts from arbitrary control function
and stop when the difference between two computed controls in next two steps is
smaller than given ε. However, we do not know whether the calculated sequence of
controls converges to optimal control or the values of the cost functional for those
controls converge to optimal value. Moreover, we do not know when to stop the
proces in order to get near optimal value i.e. whether for calculated controls the
cost of the functional is near optimal value (we do not know it a priori). We need
sufficient optimal conditions to grasp such an information. In the literature there
is not any optimal control theory of sufficient optimality conditions which can be
applied to the above control problem. The main reason is that we deal with the state
equations having controls on the boundary. In the next section we develop new dual
dynamic programming theory to derive verification theorem - sufficient optimality
conditions for problem (1)-(5). However the main advantage of this paper is that
we also develop sufficient conditions for ε-optimality i.e. we formulate conditions
which allow us to assert that for calculated control (e.g. numerically) we know
how far we are from optimal value. Just this approximate theory is fundamental
for our numerical algorithm. The control w = (w1, ..., wN ) on the boundary we
call admissible boundary control and a solution (u1, u2) corresponding to it we call
admissible state. The set of admissible controls and states we denote by Ad.

2. Dual dynamic programming approach for (1)-(6). The dual approach to
dynamic programming was first introduced in [8] and then developed in several pa-
pers to different optimal control problems governed by: elliptic, parabolic and wave
equations (see e.g. [5], [11], [10], [9]). The essential point in this dual approach is
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that we do not deal directly with a value function but with some auxiliary function,
defined in a dual set, satisfying dual dynamic equation. The auxiliary function
allow us to derive sufficient optimality condition for primal value function. The
dual approach has some advantages: we do not need any properties of the value
function such as smoothness or convexity. However it has also some disadvantages:
the auxiliary function must satisfy a kind of generalised transversality conditions
which is a little restrictive. The approach we present here was inspired by PhD
thesis [7] of the first author where the model of distortion compensation (elliptic
system of equations) was investigated. A new challenge in the control problem
(1)-(6) is that the problem under consideration has the control on the boundary
and with fixed initial conditions. Therefore we need really to construct a new dual
dynamic programming type approach for problem (1)-(6). Thus let us start first
with the definition of a dual set. Let P ⊂ R3+3 be an open set of the variables
(t, x, p) = (t, x, y0, y), y ∈ R2, y0 ≤ 0, (t, x) ∈ Q = {(s, z); z ∈ Ω, 0 < s < T}.
Denote by

Y = {(y0, y) = p; (t, x, p) ∈ P}. (12)

Denote by clP the closure of P and by P1, P2, clY its subsets:

P1 = {(t, x, p); (t, x) ∈
∑

1

},

P2 = {(t, x, p); (t, x) ∈ (0, T )× Γ2},
clY =

{
(y0, y) = p; (t, x, p) ∈ clP

}
.

Let u be a vector of pairs coordinates (u1, u2), ∆xu = (∆xu1, 0), f(t, x, u) =
(f1(t, x, u), f2(t, x, u)) where

f1 = −a11u1, (13)

f2 = g(u1)− a22u2, (14)

g(t, x, u, w) = (g1(t, x, u, w), g2(t, x, u, w)) where

g1 = −αu1 +

∫
Ω

K(t, x, σ, w)u2(t, x)dx, (15)

g2 = 0. (16)

Let us introduce an auxiliary function V : clP → R belonging to H2(P ) (Sobolev
space of functions having second weak derivatives) and satisfying “transversality
condition”:

V (t, x, p) = y0Vy0(t, x, p) + yVy(t, x, p) for (t, x, p) ∈ clP , (17)

where Vy0 , Vy are partial derivative of V . Denote by u : clP → R2 a function of six
variables (t, x, y0, y). In the sequel we shall assume that

u(t, x, p) = −Vy(t, x, p) , (t, x, p) ∈ clP. (18)

We shall consider not all admissible controls and corresponding to them admissible
states but only those which relate to u. To this effect we introduce for given fixed
ξ(·) ∈ (H2(Ω))2 the following set

Adu =
{

(u(·), w(·)) ∈ Ad; exist p(t, x) = (y0, y(t, x)) , (t, x) ∈ Q , (19)

y(·) ∈ (H2(Q))2 , y0 ≤ 0 , (t, x, p(t, x)) ∈ clP,
y(0, x) = ξ(x), u(t, x) = u(t, x, p(t, x)), (t, x) ∈ clQ}.

In fact our optimal control problem we shall study just on the set Adu. We consider
condition (17) and function (18) just on the set clP . The function p : Q → R3 we
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call dual trajectory while u : Q → R2 we call primal trajectory. The function u
from (18) builds a relation between dual and primal trajectory. Next define a dual
optimal value SD

SD = inf
(u,w)∈Adu

−y0J(u,w). (20)

Notice that in spite of that our problem depends on time we cannot perturb it with
respect to initial data and time (they are fixed) as it is usually done in classical
optimal control theory. This is why a dual dynamic approach to the above problem
seems to be the only one possible. Thus let us introduce a dual Hamilton-Jacobi
equation in P for our problem:

Vt(t, x, p)−∆xV (t, x, p) + yf(t, x,−Vy(t, x, p)) + y0F (−Vy2
(t, x, p)) = 0 (21)

and dual Hamilton-Jacobi type equation on P1

inf
w∈M
{∂V (t, x, p)

∂ν
+ yg(t, x,−Vy(t, r, p), w)− y0h(w)} = 0, (22)

∂V (t, x, p)

∂ν
= 0, for (t, x, p) ∈ P2, (23)

− y0 Vy0(T, x, p) = −y0l(−Vy2
(T, x, p)). (24)

We should stress that the notion of dual Hamilton-Jacobi equation appears also in
convex optimization (see [2]). However the above dual Hamilton-Jacobi equation is
completely different than that in [2]. Our problem is nonconvex and we do not use
any tools from convex analysis.

3. Sufficient optimality conditions. The dual approach to dynamic program-
ming described in the former section allow us to formulate and to prove a kind of
verification theorem ensuring sufficient optimality conditions for our problem (20).
We would like to stress that we are working now in dual space clP and with auxiliary
function V defining, by (18) the set Adu. Define the set

P = {p(t, x) = (y0, y(t, x)), (t, x) ∈ Q; (t, x, p(t, x)) ∈ clP,
y(·) ∈ (H2(Q))2, y(0, x) = ξ(x), exist (u(·), w(·)) ∈ Adu,

u(t, x) = −Vy(t, x, p(t, x)) , (t, x) ∈ Q ∪ Γ}.

Theorem 3.1. Assume that there exists V ∈ H2(P ) satisfying (21)-(24), (17).
Let ū(t, x, p) = −Vy(t, x, p), (ū(·), w̄(·)) ∈ Adū, (ȳ0, ȳ(t, x)) = p̄(t, x) ∈ P, ū(t, x)
= −Vy(t, x, p̄(t, x)), (t, x) ∈ Q ∪ Γ, Γ = Γ1 ∪ Γ2 and

Vt(t, x, p̄(t, x))−∆xV (t, x, p̄(t, x))

+ ȳ(t, x)f(t, x,−Vy(t, x, p̄(t, x))) + ȳ0F (−Vy2
(t, x, p̄(t, x))), (25)

∂V (t, x, p̄(t, x))

∂ν
+ ȳ(t, x)g(t, x,−Vy(t, x, p̄(t, x)), w̄(t, x))− ȳ0h(w̄(t, x)) = 0, (26)

− y0Vy0(T, x, p̄(T, x)) = −y0l(−Vy2
(T, x, p̄(T, x))), (27)

∂V (t, x, p̄(t, x))

∂n
= 0, for (t, x, p̄(t, x)) ∈ P2. (28)

Then
(ū(·), w̄(·))

is an optimal pair with respect to all (u(·), w(·)) ∈ Adū i.e.

−ȳ0J(ū, w̄) ≤ −y0J(u,w).
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Proof. We follow the standard way in proofs of verification theorems. Thus take
any (u(·), w(·)) ∈ Adū and corresponding to it p(·) ∈ P such that u(t, x) =
−Vy(t, x, p(t, x)), (t, x) ∈ Q ∪ Γ, t ∈ [0, T ]. From transversality condition (17)
we infer that, for (t, x, p) ∈ P , (remember ∆xVy = (∆xVy1

, 0)

Vt(t, x, p(t, x))−∆xV (t, x, p(t, x)) = ȳ0(
d

dt
Vy0(t, x, p(t, x))−∆xVy0(t, x, p(t, x)))

(29)

+y(t, x)(
d

dt
Vy(t, x, p(t, x))−∆xVy(t, x, p(t, x))).

From (2)-(5) (see also (13)-(14)) we have

d

dt
Vy(t, x, p(t, x))−∆xVy(t, x, p(t, x)) = −f(t, x,−Vy(t, x, p(t, x))). (30)

Putting (30) into (29) and applying (21) we get equality

y0(
d

dt
Vy0(t, x, p(t, x))−∆xVy0(t, x, p(t, x))) + y0F (−Vy(t, x, p(t, x))). (31)

Following the same way as above but now using equality (25) we come to the equality

ȳ0(
d

dt
Vy0(t, x, p̄(t, x))−∆xVy0(t, x, p̄(t, x))) + ȳ0F (−Vy(t, x, p̄(t, x))) = 0. (32)

Now we consider dual Hamilton-Jacobi type equation on Γ1 i.e. relations (22)-(24).
Considering transversality condition at the points belonging to P1 we have

∂V (t, x, p(t, x))

∂ν
= y0 ∂Vy0(t, x, p(t, x))

∂ν
+ y(t, x)

∂Vy(t, x, p(t, x))

∂ν
. (33)

From (2)-(5) (see also (15)-(16)) we have, for the same (u(·), w(·)) and p(·) at P1

∂Vy(t, x, p(t, x))

∂ν
= −g(t, x,−Vy(t, x, p(t, x)), w(t, x)). (34)

Putting (34) into (33) and applying (22) we get inequality at P1

ȳ0 ∂Vy0(t, x, p(t, x))

∂ν
≥ y0h(w(t, x)) (35)

Similarly we get equality at P1

ȳ0 ∂Vy0(t, x, p̄(t, x))

∂ν
= −ȳ0h(w̄(t, x)). (36)

Let us integrate over Q equality (31) and equality (32). Next we apply boundary
conditions (28), (36) and (35), (36), then we get

y0

∫
Ω

Vy0(T, x, p(T, x))dx− y0

∫
Ω

Vy0(0, x, p(0, x))dx

+y0

∫ T

0

∫
Ω

F (−Vy2(t, x, p(t, x)))dxdt+ y0

∫ T

0

∫
∂Ω

h(w(t, x))dxdt ≤ 0,

ȳ0

∫
Ω

Vy0(T, x, p̄(T, x))dx− ȳ0

∫
Ω

Vy0(0, x, p̄(0, x))dx

+ ȳ0

∫ T

0

∫
Ω

F (−Vy2(t, x, p̄(t, x)))dxdt+ ȳ0

∫ T

0

∫
∂Ω

h(w̄(t, x))dxdt ≤ 0. (37)
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From the above relations, (24), (27) and taking into account that ȳ(0, x) = y(0, x) =
ξ(x) we infer that

−ȳ0
∫ T

0

∫
Ω
F (−Vy2

(t, x, p̄(t, x)))dxdt− ȳ0
∫ T

0

∫ 0

∂Ω
h(w̄(t, x))dxdt

− ȳ0
∫

Ω
l(−Vy2

(T, x, p(T, x)))dx ≤ y0
∫ T

0

∫
Ω
F (−Vy2

(t, x, p(t, x)))dxdt

−y0

∫ T

0

∫
∂Ω

h(w(t, x))dxdt− y0

∫
Ω

l(−Vy2
(T, x, p(T, x)))dx.

Directly from (37) and (27) we infer

Corollary 1. The dual optimal value can also be defined with the help of Vy0 i.e.
we have

ȳ0

∫
Ω

Vy0(0, x, p̄(0, x))dx = − ȳ0

∫ T

0

∫
Ω

F (−Vy2
(t, x, p̄(t, x)))dxdt

−ȳ0

∫ T

0

∫ 0

∂Ω

h(w̄(t, x))dxdt− ȳ0

∫
Ω

l(−Vy2
(T, x, p̄(T, x)))dx.

4. Dual feedback control. In optimal control theory all what we want to find
is to calculate optimal control and optimal value. However, in practice, a feedback
control is more important than a value function. It turns out that the dual dynamic
programming approach allows to define a kind of a feedback control. In fact with
the help of the dual feedback control we can formulate and prove the verification
theorem. Surprisingly, the dual feedback control have better properties than the
classical one in spite of that it appears on the boundary. First we define general
feedback control on the boundary and then optimal feedback control.

Definition 4.1. A function w = w(t, x, p) = (w1(t, x, p), ...,wN (t, x, p)) defined
in P1 with values in M , we call dual feedback controls, if, for each p ∈ clY , there
exists any solution u(t, x, p) = (u1(t, x, p),u2(t, x, p)) of the equation

∂u

∂t
−∆u = f(t, x, u), (t, x) ∈ Q

with the boundary condition

∂u1

∂ν
+ αu1 =

∫
Ω

N∑
i=1

wi(t, σ,p)Ki(x, σ)u2(t, x)dx,(t, σ) ∈
∑

1

.

Next step is to define optimal dual feedback control.

Definition 4.2. Dual feedback controls w̄(t, x, p) defined in P1 we call optimal
dual feedback controls if there exist functions ū(t, x, p) corresponding to w̄(t, x, p)
as in the former definition and there exists a function p̄(·) ∈ P defined in Q̄ such
that there exists a pair (ū(·), w̄(·)) ∈ Adū defined by

ū(t, x) = ū(t, x, p̄(t, x)), (t, x) ∈ Q̄,

w̄(t, x) = w̄(t, x, p̄(t, x)), (t, x) ∈
∑

1

with optimal value Sū,ȳ0

D
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Following the same way as in the proof of Theorem 3.1 one can prove the theorem
on sufficient optimality conditions for our problem (1)-(5) in terms of optimal dual
feedback controls.

Theorem 4.3. Let w̄(t, x, p), defined in P1, be dual feedback control and let ū(t, x, p)
be the function corresponding to w̄ as in the Definition 4.1. Assume that there exists
in P a H2(P ) solution V (t, x, p) to (21)-(24) such that

Vy(t, r, p) = −ū(t, x, p)

and that condition (17) in P is satisfied. Let p̄(·) ∈ P, defined in Q̄, be such that
there exists a pair (ū(·), w̄(·)) ∈ Adū

Sū,ȳ0

D = −ȳ0

∫
Ω

Vy0(0, x, p̄(0, x))dx

and that ū(t, x) = ū(t, x, p̄(t, x)), (t, x) ∈ Q̄, w̄(t, x) = w̄(t, x, p̄(t, x)), (t, x) ∈
∑

1 .
Then w̄(t, x, p) defined in P1 is optimal dual feedback control.

5. Sufficient conditions for ε-optimality. The theory presented in the last two
subsections being in terms of dual dynamic programming gives us a possibility to
find at least formally the optimal value. However in practice it is difficult (or even
impossible) to solve equations stated there in exact form. In fact we solve such a
system using different approximate (numerical) methods. Therefore what we can
get then is eventually approximate optimality. This is why in this section we present
dual dynamic approach to sufficient conditions for approximate (ε-optimality) op-
timality. Just dual ε-optimality conditions are base to construct computational
method for approximate optimality. Let us recall that for fixed ȳ0 and ū the dual
optimal value is defined as

Sū,ȳ0

D = inf
(w,u)∈Adū

−y0

∫ T

0

F (−Vy2(t, x, p(t, x)))dx

−y0

∫ T

0

∫
∂Ω

h(w(t, x)dxdt− y0

∫
Ω

l(−Vy2
(T, x, p(T, x)))dx.

Dual ε-optimal value for problem (1)-(5) we call each value S
u,ȳ0

ε

εD satisfying inequal-
ity

Sū,ȳ0

D ≤ Su,ȳ0
ε

εD ≤ Sū,ȳ0

D − 4εȳ0
ε . (38)

Let us fix m > 0. As for ε-optimal value we use in general inequality instead of
equality, it suggests that expressions allowing to derive Theorem 3.1 should satisfy
also suitable inequalities. Thus we shall use the following system of inequalities for
auxiliary function Ṽ : dual Hamilton-Jacobi inequality

εȳ0
ε ≤ Ṽt(t, x, p)−∆xṼ (t, x, p)+yf(t, x,−Ṽy(t, x, p))+y0F (−Ṽy2

(t, x, p)) ≤ 0 (39)

and dual Hamilton-Jacobi type inequality on P1 :

εȳ0
ε ≤ inf

w∈M
{∂Ṽ (t, x, p)

∂ν
+ yg(t, x,−Ṽy(t, x, p), w)− y0h(w)} ≤ 0, (40)

∂Ṽ (t, x, p)

∂ν
= 0, for (t, r, p) ∈ P2, (41)

− y0 Ṽy0(T, x, p) = −y0l(−Ṽy2(T, x, p)). (42)
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Ṽy satisfies instead of boundary conditions of type (5)-(6) the following inequality
in P1(each coordinate):

0 ≥ ∂Ṽy(t, x, p)

∂ν
+ g(t, x,−Ṽy(t, x, p), w) ≥ ε

m
ȳ0
ε . (43)

We want to apply our theory to numerical solutions of (2)-(6), therefore instead of
system of equations we shall deal with systems of inequalities:

0 ≤ ∂u

∂t
− (∆u1, 0)− f(t, x, u) ≤ − ε

m
ȳ0
ε (44)

satisfying the boundary condition

0 ≥ −∂u
∂ν

+ g(t, x, u, w(t, x)) ≥ ε

m
ȳ0
ε , (45)

Thus in this section by the set of admissible controls and states i.e. satisfying
(44)-(45) we denote Adε.

6. ε-optimality. Now we are ready to describe the concept of ε-optimal pair, to
formulate and to prove sufficient ε-optimality for problem (1)-(6) i.e. ε-version of

verification theorem. Assume that there exists Ṽ satisfying (17) and (39)-(43).
Then we define similarly as in section 2

uε(t, x, p) = −Ṽy(t, x, p) , (t, x, p) ∈ clP. (46)

For ȳ0
ε and uε we define similarly as in section 2 Adu

Aduε =
{

(u(·), w(·)) ∈ Adε; exist p(t, x) = (y0, y(t, x)) , (t, x) ∈ Q ,

y(·) ∈ (H2(Q))2 , y0 ≤ 0 , (t, x, p(t, x)) ∈ clP,
y(0, x) = ξ(x), u(t, x) = uε(t, x, p(t, x)), (t, x) ∈ clQ}

and Pε
Pε =

{
p(t, x) = (ȳ0

ε , y(t, x)), (t, x) ∈ Q; (t, x, p(t, x)) ∈ clP, y(·) ∈ (H2(Q))2,
sup(t,x)∈Q |y(t, x)|R2 ≤ m , y > 0, exist (u(·), w(·)) ∈ Aduε

,

u(t, x) = −Ṽy(t, x, p(t, x)) , (t, x) ∈ Q ∪ Γ}.
Now we are ready to define notions of ε-optimal dual feedback control w̄ε(t, x, p)
and of ε-optimal pair (ūε(·), w̄ε(·)).

Definition 6.1. Dual feedback control w̄ε(t, x, p) we call ε-optimal dual feedback
control if there exist a function ūε(t, x, p) in P , accordingly to Definition 4.1 and a
function p̄ε(·) ∈ Pε defined in Q̄, such that the pair defined by

ūε(t, x) = ūε(t, x, p̄ε(t, x)), (t, x) ∈ Q̄, (47)

w̄ε(t, x) = w̄ε(t, x, p̄ε(t, x)), (t, x) ∈ Q̄
belongs to Adūε and that this pair defines ε-optimal value

S
ūεȳ

0
ε

εD = −ȳ0
ε

∫
Ω

Ṽy0(0, x, p̄ε(0, x))dx. (48)

Definition 6.2. For given Ṽ ∈ H2(P ) satisfying (17) and (39)-(43) let ūε(t, x, p) in
P be defined by (46). Let p̄ε(·) ∈ Pε be defined in Q̄ and let ūε be defined by (47).
Let w̄ε(·) be any admissible control such that (ūε(·), w̄ε(·)) ∈ Adūε . The pair
(ūε(·), w̄ε(·)) we call ε-optimal pair with respect to all pairs (u(·), w(·)) ∈ Adūε if

−ȳ0
ε

∫ T
0

∫
ΩF (−Vy2

(t, x, p̄ε(t, x)))dx− ȳ0
ε

∫ T
0

∫
∂Ω
h(w̄ε(t, x))dxdt
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−ȳ0
ε

∫
Ω

l(−Vy2
(T, x, p̄ε(T, x)))dx

≤ −ȳ0
ε

∫ T

0

∫
Ω

F (−Vy2(t, x, p(t, x)))dx− ȳ0
ε

∫ T

0

∫
∂Ω

h(w(t, x))dtdx

− ȳ0
ε

∫
Ω

l(−Vy2
(T, x, p(t, x)))dx− 4εȳ0

ε .

Having all the above notions we can formulate the verification theorem for ε-
optimality.

Theorem 6.3. Assume that there exists Ṽ ∈ H2(P ) satisfying (17) and (39)-(43).

Take p̄ε(·) ∈ Pεand (ūε(·), w̄ε(·)) ∈ Adūε such that ūε(t, x) = −Ṽy(t, x, p̄ε(t, x)),
(t, x) ∈ Q̄ . Moreover, assume that the trio (ūε(·), w̄ε(·), p̄ε(·)) satisfies

d

dt
Ṽy(t, x, p̄ε(t, x))−∆xṼy(t, x, p̄ε(t, x))

+ f(t, x,−Ṽy(t, x, p̄ε(t, x))) ≥ ȳ0
ε

ε

m
, (t, x) ∈ Q, (49)

− ε
m ȳ

0
ε ≥ Ṽt(t, x, p̄ε(t, x))−∆xṼ (t, x, p̄ε(t, x))

+ȳε(t, x)(f(t, x,−Ṽy(t, x, p̄ε(t, x)) + ȳ0
εF (−Ṽy2

(t, x, p̄ε(t, x, ))),

∂Ṽ (t, x, p̄ε(t, x))

∂ν
+ ȳε(t, x)g(t, x,−Ṽy(t, x, p̄ε(t, x)), w̄ε(t, x))

− ȳ0
εh (w̄ε(t, x)) ≤ − ε

m
ȳ0
ε , (50)

− ȳ0
ε Ṽy0(T, x, p̄ε(t, x)) = −ȳ0

ε l(−Ṽy2
(T, x, p̄ε(T, x))),

∂Ṽ (t, x, p̄ε(t, x))

∂ν
= 0, for (t, x, p̄ε(t, x)) ∈ P2. (51)

Then the pair (ūε(·), w̄ε(·)) is an ε-optimal with respect to all pairs (u(·), w(·)) ∈
Adūε

Proof. Take any (u(·), w(·)) ∈ Adūε
and p(·) ∈ Pε such that u(t, x) = −Ṽy(t, x, p(t,

x)), (t, x) ∈ Q. We follow the same way as in the proof of Theorem 3.1, i.e. from
(17) we have, for (t, x, p) ∈ P ,

Ṽt(t, x, p(t, x))−∆xṼ (t, x, p(t, x)) = ȳ0
ε(
d

dt
Ṽy0(t, x, p(t, x))−∆xṼy0(t, x, p(t, x)))

+y(t, x)(
d

dt
Ṽy(t, x, p(t, x))−∆xṼy(t, x, p(t, x))).

Similarly, we have by (44)

− d

dt
Ṽy(t, x, p(t, x)) + ∆xṼy(t, x, p(t, x))− f(t, x,−Ṽy(t, x, p(t, x))) ≥ 0

and then applying (39) (having in mind that y > 0) we get inequality

ȳ0
ε(
d

dt
Ṽy0(t, x, p(t, x))−∆xṼy0(t, x, p(t, x))) (52)

+ȳ0
εF (−Ṽ (t, x, p(t, x))) ≥ εȳ0

ε
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and using inequality (25) we come to the inequality

− εȳ0
ε ≥ ȳε0(

d

dt
Ṽy0(t, x, p̄ε(t, x))−∆xṼy0(t, x, p̄ε(t, x))) + ȳ0

εF (−Ṽ (t, x, p̄ε(t, x))).

(53)
Considering transversality condition at the points belonging to Γ we have

∂Ṽ (t, x, p(t, x))

∂ν
= ȳ0 ∂Ṽy0(t, x, p(t, x))

∂ν
+ y(t, r)

∂Ṽy(t, x, p(t, x))

∂ν
. (54)

From (43) we have, for the same (u(·), w(·)) and p(·), at P1

∂̃V y0(t, x, p(t, x))

∂ν
+ g(t, x,−Ṽy(t, x, p(t, x), w(t, x))) ≤ 0.

Hence we get inequality at P1

εȳ0
ε ≤ ȳ0

ε

∂Ṽ y0(t, x, p(t, x))

∂ν
+ ȳ0

εh(w(t, x)). (55)

Similarly, using (50) we get inequality at P1

ȳ0
ε

∂Ṽ y0(t, x, p̄ε(t, x))

∂ν
+ ȳ0

εh(w̄ε(t, x)) ≤ −εȳ0
ε . (56)

Let us integrate over Q, inequality (52) and (53). Next we apply boundary condi-
tions (55), (56), respectively, and then we get

ȳ0
ε

∫
Ω
Ṽy0(T, x, p(T, x))dx− ȳ0

ε

∫
Ω
Ṽy0(0, x, p(0, x))dx

ȳ0
ε

∫ T
0

∫
Ω
F (−Ṽy2

(t, x, p(t, x)))dx+ ȳ0
ε

∫ T
0

∫
∂Ω
h(w(t, x))dtdx ≥ 2εȳ0

ε ,

ȳε
0

∫
Ω

Ṽy0(T, x, p̄ε(T, x))dx− ȳ0
ε

∫
Ω

Ṽy0(0, x, p̄ε(0, x))dx

+ȳ0
ε

∫ T
0

∫
Ω
F (−Ṽy2

(t, x, p̄ε(t, x)))dx+ ȳ0
ε

∫ T
0

∫
∂Ω
h(w̄ε(t, x))dtdx ≤ −2εȳ0

ε .

From the above relations we infer that

−ȳ0
ε

∫ T
0

∫
Ω
F (ū2ε(t, x))dx− ȳ0

ε

∫ T
0

∫
∂Ω
h(w̄ε(t, x))dtdx− ȳ0

ε

∫
Ω
l(ū2ε(T, x))

≤ −ȳ0
ε

∫ T
0

∫
Ω
F (−Ṽy2

(t, x, p(t, x)))dx− ȳ0
ε

∫ T
0

∫
∂Ω
h(w(t, x))dtdx

−ȳ0
ε

∫
Ω
l(u2(T, x)dx− 4εȳ0

ε .

This is just the assertion of the theorem.

6.1. Computational algorithm. The sufficient conditions formulated for ε-value
function allows us to build numerical approach to calculate suboptimal pair (ūε(·),
w̄ε(·)). The algorithm, we present below, ensures that we find in finite number of
steps suboptimal pair.

Algorithm:
1. Fix m > 0, ε > 0 and calculate auxiliary function Ṽ from (39)-(43).
2. Form Aduε

as a finite family of N pairs (u(·), w(·)) :
a) Define controls wn in Γ1, n = 1, . . . , N .
b) To calculate un,n = 1, . . . , N, solve inequalities (44)-(45).
3. Find minimal value of J(un, wn), n = 1, . . . , N and corresponding to it pair

denote by (û(·), ŵ(·)).
4. Assume ȳ0

ε = −1 and determine ŷ(·) from the relation

û(t, x) = −Ṽy(t, x,−1, ŷ(t, x)). (57)

5. For Ṽ and (û(·), ŵ(·), ŷ(·)) check the inequalities (53)-(56)
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a) If Ṽ and (û(·), ŵ(·), ŷ(·)) satisfy (53)-(56)
then (û(·), ŵ(·)) is an ε-optimal pair and J(û, ŵ) is an ε-optimal value.

b) If Ṽ and (û(·), ŵ(·), ŷ(·)) do not satisfy (53)-(56)
then go to 2.

6.2. Numerical calculations. Numerical experiments we do for the same data
as in [1] i.e. Ω = (0, 1) × (0, 1), T = 1, β = 50, γ = 2, Γ1 is one of the side of
Ω corresponding to the seashore. It is assumed that control w is only time de-
pendent, one dimensional and then K(x, σ) = w(t)K0(x, σ), where K0(x, σ) =∑m
i=1 aiχi(σ)χ̃i(x), with χi the characteristic function of the interval [xi, xi+1].

We denote by χ̃i the characteristic function of the rectangular subdomain Ωi =
[xi, xi+1] × [0, 1] ⊂ Ω where the knots xi belong to Γ1. The constants ai are
weights assigned to the subdomains Ωi. For g it is chosen expression β u1

1+γu1
.

The number m = 4, the knots are equidistant and ai = 0.1. The initial condi-
tions u1 6= 0 on Ωs = [0.3, 0.7], u1 = 0 on Ω \ Ωs, u2 = 0 on Ω. For the cost
functional it is considered F = 0, l(u) = u and h(w) = w−2. Control w has val-
ues in [1, 2]. In order to make calculations we apply FreeFem++-cs 14.3 package
from the site http://freefem-cs.software.informer.com/14.3/ and we imple-
ment in this application the steps from the above algorithm. We divided time
interval [0, 1] on 10 equal intervals and consider differences instead of derivative
in time. We choose N = 500. Next we choose randomly in each step of time
controls w from [1, 2]. We included to the set of admissible controls as one of the
control that which is considered in [1] as optimal control. Next we calculated corre-
sponding u1, u2 and the values of J(u,w). Then we found the minimal value among
those of J . We repeated these procedure 5 times and chosen minimal value from
those five former minimal values and wrote down corresponding û, ŵ. These are
at t = 0.0, 0.1, 0.2, ..., 0.9, 1,
ŵ = 1.11941, 1.04171, 1.06656, 1.04117, 1.05112, 1.00715, 1.33937, 1.07568,

1.06864, 1.32913, 1.30369 and the graph of it is:

û1(t) =
∫

Ω
û1(t, x)dx = 0, 0. 422815, 0. 372519, 0. 354227, 0. 374098, 0. 439481,

0. 57045, 0. 770489, 1. 04842, 1. 42482, 1. 90287
the graph of it is:

http://freefem-cs.software.informer.com/14.3/
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û2(t) =
∫

Ω2
(t, x)dx = 0,1. 02899, 1. 90447, 2. 6737, 3. 40012, 4. 1412, 4. 94705,

5. 83374, 6. 79449, 7. 81148, 8. 8582
the graph of it is:

The ε-value of the functional J(û, ŵ) = 8.92283. Next we follow the steps 4.
and 5. from the former subsection. It turn out that for ε = 0.003 the pair (û, ŵ)
is ε-optimal. It differs from [1], the value of our functional is smaller (in [1] it
equals 12.38386) and we found different control ŵ.

Acknowledgments. The paper was inspired by the lecture given by V. Capasso
during the conference Micro and Macro Systems in Life Sciences in Bedlewo 2015.
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