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Abstract. The inflammatory process of atherosclerosis leads to the forma-
tion of an atheromatous plaque in the intima of the blood vessel. The plaque

rupture may result from the interaction between the blood and the plaque. In

each cardiac cycle, blood interacts with the vessel, considered as a compliant
nonlinear hyperelastic. A three dimensional idealized fluid-structure interac-

tion (FSI) model is constructed to perform the blood-plaque and blood-vessel

wall interaction studies. An absorbing boundary condition (BC) is imposed
directly on the outflow in order to cope with the spurious reflexions due to the

truncation of the computational domain. The difference between the Newto-

nian and non-Newtonian effects is highlighted. It is shown that the von Mises
and wall shear stresses are significantly affected according to the rigidity of

the wall. The numerical results have shown that the risk of plaque rupture is
higher in the case of a moving wall, while in the case of a fixed wall the risk of

progression of the atheromatous plaque is higher.

1. Introduction. Atherosclerosis is a chronic inflammatory disease [37]. It in-
volves several different risk factors [11] that contribute to the whole inflamma-
tory process [10, 33]. It starts typically with the penetration of the low density
lipoproteins (LDL) into the intima layer of the blood vessel where they are oxi-
dized (ox-LDL). Being a dangerous agent, the ox-LDL triggers an immune response
that initiates with the recruitment of monocytes, which are later transformed into
macrophages. The macrophages eliminate the ox-LDL and are transformed into
foam cells, that along with several other substances form the so-called lipid core.
Smooth muscle cells migrate and form a fibrous cap which covers and isolates the
lipid core from the blood circulation. The lipid core along with the fibrous cap
constitute what is called the atheromatous plaque [35]. This plaque changes the
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geometry of the blood vessel’s lumen by narrowing it and interacts with the blood
flow. As the plaque continues to grow, the shear stress of the blood flow through
the decreasing cross section of the lumen increases. This force may eventually cause
the rupture of the plaque, resulting in the formation of thrombus, and possibly a
stroke [20]. This paper is devoted to the FSI analysis of the interactions of the
blood flow with the plaque and the vessel wall.

The methods to describe the interaction between fluid and structure are of great
importance to achieve accurate numerical simulations. These methods include
among others, the level set method [4], the immersed boundary method [31, 32],
the fictitious domain method [17, 18], the Fully Eulerian formulation [14, 41] and
the Arbitrary Lagrangian Eulerian (ALE) approach [21, 9, 30]. In this paper we
use the ALE method to simulate our FSI model.

A large number of biomechanical and imaging studies started to emerge since the
early 2000s addressing the role of the hemodynamic shear stress in the destabiliza-
tion of vulnerable plaques, investigating the conditions of plaque rupture and using
a FSI problem between blood flow and atherosclerotic plaque [27, 28, 40, 25]. In the
same framework, the coupling between the structure and the fluid was applied to
FSI problems in which the coupling was evaluated at the blood flow and the vessel
wall interface. In order to capture the pulse wave propagation due to the interaction
between blood and the vessel wall, a 3D shear-thinning viscosity model to account
for blood rheology was proposed in [23], where the blood vessel was represented as
an idealized cylinder. Also, in [8], while dealing with a realistic geometric model of
the aorta, the authors tested different types of defective BCs to accurately simulate
the pressure waves.

In addition to the important choice of a suitable FSI numerical method, as de-
scribed above, a correct selection of appropriate mathematical models to handle the
blood rheology, the mechanical behavior of the vessel wall and the atheromatous
plaque is also an important issue. Indeed, the dynamics of blood flow is mainly
influenced by its rheological properties and scientists still face the controversy to
consider blood as a Newtonian fluid or as a non-Newtonian fluid with inelastic
shear-thinning viscosity, and possibly with viscoelastic or yield-stress properties.
To investigate the flow effects induced by different blood constitutive equations,
four non-Newtonian blood models, namely Power Law, Casson, Carreau-Yasuda,
and Generalized Power Law, as well as the Newtonian model were used in [22] to
compare the corresponding blood flow behavior and quantify the differences be-
tween them to analyze their significance. Another controversy is related to vessel
wall and atheromatous plaque modeling. The vascular wall has a very complex na-
ture and deriving an accurate model for its mechanical behavior is rather difficult
[34]. Furthermore, arterial walls of major arteries are composed of several layers,
each of them with different mechanical characteristics [29]. Moreover, it has been
shown that influential geometrical parameters such as the fibrous cap thickness,
the stenosis ratio, the lipid core width and length, all combined, determine the
plaque vulnerability [6]. Recently, the influence of variability in material properties
of media, fibrous cap, lipid and intraplaque hemorrhage/thrombus, obtained from
direct material tests on stress and stretch conditions within the plaque structure,
was assessed [43]. If the plaque is not calcified, it grows, increasing its volume. A
recent mathematical model and simulation combining the plaque evolution with FSI
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has been presented in [42]. Nevertheless, throughout most of the numerical stud-
ies, plaque components were assumed to be incompressible and nonlinear because
ideally the human tissue is hyperelastic [27].

After this brief description of the difficulties regarding the modeling of each
physical media (blood, arterial wall and atheroma plaque), it is clear that modeling
the FSI of the blood-arterial wall and blood-plaque simultaneously is a challenging
task.

One can find an attempt in [2], where, after a 2D analytical study to prove the
existence of a weak solution for incompressible non-Newtonian fluids with non stan-
dard BCs, the authors tested the model numerically by coupling it with a nonlinear
hyperelastic model for the arterial wall and the atheromatous plaque, with different
values of Young modulus corresponding to each structure. They showed that con-
sidering the classical models of interaction between the blood flow (modeled as a
Newtonian fluid), the vessel wall and the atherosclerotic plaque, the risk of rupture
is less predictive because it underestimates the stress over the plaque comparing
with the case where blood is modeled as a non-Newtonian fluid. These previous
results were extended by considering a 3D geometry of an idealized blood vessel
in order to be more realistic, the aim being to analyze the evolutionary non-linear
3D flow characteristics of blood in a stenosed artery [3]. However, for the numer-
ical simulations based on the theoretical study, the fluid and the structures were
described using a 2D axi-symmetric model in order to reduce the overall computa-
tional complexity. The parameters describing the blood rheology, the vessel wall,
and the plaque were taken from the literature and experimental data. A special
attention was paid to the effects of the wall motion on the local fluid displacement,
on the stresses, and on strains in the diseased arterial wall.

It is known that the circulatory system can be seen as an infinite extremely com-
plex network including the heart and blood vessels. Therefore, mathematical and
computational modeling of blood flow dynamics is a complex problem that requires
simplifying assumptions of the physical properties and BCs. Rather than model-
ing the entire circulatory system, based on full 3D models, which is beyond the
capability of current computers, segments of the circulation are studied to reduce
the computational time, requiring appropriate inflow and outflow BCs. Several ap-
proaches based on data assimilation [19], defective BCs [8] and absorbing conditions
[24] have been used by several authors to address this question.

In this study a 3D FSI model incorporating fluid-structure interaction (blood-
plaque and blood-wall) as well as non-Newtonian effects in a 3D geometry to analyze
the flow and structures stresses is considered. It consists of a generalization of the
study done in [3] with more realistic pressure input profile [1] at the inlet and a
linear absorbing condition (LAC) at the outlet [24, 36].

2. Mathematical modeling and numerical methods.

2.1. Geometry of the atherosclerotic blood vessel. The computational do-
main is shown in Figure 1. It consists of a cylindrical tube representing the blood
vessel with a narrowing of its interior to mimic the stenosis. The flow channel with
radius R = 0.3 cm and height H = 2 cm contains the fibrous cap and lipid pool
described by the trigonometric functions corresponding to a stenosis length of l = 1
cm. The degree of arterial stenosis is ≈ 70% with a fibrous cap thickness of 0.5
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mm. The thickness of the whole wall was chosen to be 1 mm. To avoid the en-
trance and exit effects, the computational domain was extended upstream (2 cm)
and downstream (4 cm) the stenosis.

2.2. Fluid equations. The blood flow is governed by the generalized Newtonian
equations for incompressible fluids:

ρf
∂u

∂t
+ ρf (u · ∇)u−∇ · (2µ(s(u))Du) +∇p = 0

∇.u = 0.
(1)

This evolution problem involves the blood velocity u = (u1, u2, u3) and the pres-
sure p as unknowns. The dynamic viscosity µ is a function of the strain rate tensor
Du = 1

2 (∇u +∇Tu), or more precisely is a function of s(u), the second invariant
of the strain rate tensor, defined by:

(s(u))2 = 2Du : Du = 2
∑
i,j

(Du)ij(Du)ji.

We consider µ defined by the Carreau-Yasuda law,

µ(s(u)) = µ∞ + (µ0 − µ∞)(1 + (λs(u))2)(n−1)/2,

with µ0 = 0.0456 Pa.s, the viscosity at the lowest shear rate, µ∞ = 0.0032 Pa.s,
viscosity at the highest shear rate, λ = 10.03 s, ρf = 1060 Kg.m−3, the fluid density,
and n = 0.344 (corresponding to a shear-thinning viscosity fluid). The values of
the parameters are taken from [15]. In the case where blood flow is modeled as a
Newtonian fluid, its constant viscosity is given by µ = 0.0035 Pa.s. The pressure
waveform at the inlet is shown in Figure 2. At the outlet we consider typical natural
BCs where we fix the stress

2µ(s(u))Du · n− pn = −p̄n. (2)

Although it is known that this BC can affect the velocity profile, these spurious
effects are localized on the outlet surface and, therefore, far from our region of
interest. As it was shown in [24], these BCs, when used for a FSI simulation, fail to

Figure 1. 3D computational domain of the idealized stenosed
artery model composed of fibrous cap, lipid pool and vascular wall.
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represent the wave propagation phenomena that would be obtained if an extended
domain was considered downstream the artificial boundary. In fact, after a single
pulse overpasses the artificial boundary, condition (2) introduces high amplitude
wave reflections upstream that region (see [24]). To minimize such spurious effect,
in [12, 24] the authors coupled the 3D model with a 1D model representing the
downstream domain. A less expensive method, the so called LAC was suggested
in for non-Newtonian FSI blood flow simulations [24], and used successfully in [36]
for realistic geometries. Both methods were shown to reduce significantly, yet not
totally, the spurious oscillations. Here, we adopt the less expensive method, the

use of LAC conditions, given by the expression p̄ =

√
ρfβ

√
2A

5/4
0

Q, where Q is the flow

rate, A0 the cross-section reference area at rest. The coefficient β is related to the

mechanical properties of the vessel wall through the expression β =

√
πh0E

1− ν2
, where

where E is the Young modulus, h0 is the wall thickness and ν is the Poisson ratio.

2.3. Structure equations. In addition to the complexity of the arterial tissue
and the difficulty in obtaining in vivo data, modeling the atheromatous plaque is
a heavy task, due to its composition and morphology. In fact, on the one hand,
carotid atherosclerotic plaques are composed of lipid deposits with variable num-
bers of macrophages and T lymphocytes, and the overlying fibrous cap is rich in
smooth muscle cells and proteoglycans [39]. On the other hand, plaques with a
thick fibrous cap and without necrosis are considered stable, whereas plaques with
a thin fibrous cap and areas of necrosis with an increased number of inflamma-
tory cells are considered vulnerable. Also, plaques in which the thrombi occur as
a result of complications such as fibrous cap disruption or ulceration are consid-
ered unstable [38]. To simplify, the arterial tissue and the fibrous cap are modeled
as compliant isotropic materials, ignoring their different composition and fibrous

Figure 2. Inlet pressure waveform.
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nature. We consider a 3D nonlinear model of hyperelasticity [5] governed by the
following equations:

• the equation of motion

ρs
∂2η

∂t2
−∇ · σ = F, σ = J−1FSFT , F = I3 +∇η, J = det(F), (3)

• the strain-displacement equationsε =
1

2
(∇η + (∇η)T + (∇η)T∇η),η being

the displacement vector, σ the Cauchy stress tensor, F the deformation gra-
dient tensor, S the second Piola-Kirchhoff stress tensor, and I3 is the identity
matrix.

The stress-strain relationship is given by

S− S0 = C : (ε− ε0 − εinel),

where we denote by S0 and ε0 the initial second Piola-Kirchhoff stress and strain
tensors, εinel the inelastic strain tensor, C the fourth-order stiffness tensor and “:”
represents the inner product of two second-order tensors.

In the present study the vessel wall is considered isotropic in such a way that the
stiffness tensor has no preferred direction and the corresponding tensor components
are computed internally according to:

Cijkl = λsg
ijgkl + µs(g

ikgjl + gilgjk),

where λs =
νE

(1− 2ν)(1 + ν)
and µs =

E

2(1 + ν)
are the Lamé coefficients, E is the

Young modulus, ν is the Poisson ratio and g the metric tensor. Here we consider
ν = 0.45, E = 3 · 105 Pa in the upstream and downstream extended sections and
E = 6 ·105 Pa in the vessel wall surrounding the plaque [26], since it has been shown
that the presence of a space-occupying the plaque is commonly associated with the
expansion of the arterial wall [16]. For the atheromatous plaque, the second Piola-

Kirchhoff stress tensor S is computed as S =
∂ω

∂ε
where ω is the elastic strain energy

density. According to the Mooney-Rivlin model for hyperelastic materials, choosen
to model the lipid pool and the fibrous cap, the energy function reads

ω = C10(Ī1 − 3) + C01(Ī2 − 3) +
1

2
κ(J̄ − 1)2, (4)

where J̄ is the ratio between the current and original volumes and Ī1, Ī2 are the
two first strain invariants, modified to be independent of the volume change (Ī1 =
I1/J̄

2/3 and Ī2 = I2/J̄
4/3, where I1 and I2 are the two first strain invariants).

The use of these modified invariants and the last term in equation (4) allows the
description of nearly incompressible materials. The parameters C10, C01 and κ are
choosen in agreement with experimental measurements, and their values for the
fibrous cap and the lipid pool are taken from [28, 40] (Table 1):

Plaque components C10 (N.m−2) C01 (N.m−2) κ (MPa) Density (kg.m−3)

Fibrous cap 9200 0 3000 1000
Lipid pool 500 0 200 1000

Table 1. Parameters used for the plaque components.
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2.4. ALE formulation. Since the vessel wall deforms under the action of the
fluid, the mathematical formulation should allow points in the vessel structure to
move at every time instant, as well as the points inside the fluid domain. Neither
the Lagrangian or the Eulerian formulations allow this behavior without perturbing
the artificial upstream and downstream boundaries. Therefore, an ALE formulation
is used. We denote by w the domain velocity. If w is zero, the method is simply
an Eulerian approach, otherwise, if w is equal to the velocity of the fluid then the
approach is Lagrangian. w can vary arbitrarily and continuously from one value to
another in the fluid field.

We rewrite the equations of the fluid, the generalized Navier-Stokes equations,
in the ALE formulation as

ρf
∂u

∂t
|X + ρf ((u−w) · ∇)u−∇x · (2µ(s(u))Du) +∇xp = 0 (5)

where X is the Lagrangian coordinate and x is the Eulerian coordinate. From a
mechanical point of view, the coupling between the systems (5) and (4) is realized
by imposing at the interface:

• the continuity of the velocity over time:

u =
∂η

∂t

• and the equilibrium of the stresses

−(2µ(s(u))Du− pI3)n = S(η) · n,
where n is the outward unit vector to the physical interface. This condition should
be rewritten on the interface at t = 0 to be prescribed on the structure model.
Using the Piola transform we have

−(det∇0η)(2µ(s(u))Du− pI3)(∇−T0 η) · n0 = P(η) · n0,

where P = P(η) is the first Piola-Kirchhoff tensor, ∇0 indicates the gradient with
respect to the Lagrangian coordinates, and n0 the outward unit vector to the inter-
face at t = 0 (see [23])

Figure 3. Sagittal cut of 3D meshed geometry. The mesh is more
refined in the stenosed region (1) and less refined far from the
stenosis (parts 2, 3 and 4) .
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The resulting coupled system of motion and fluid equations was solved using
a finite element space discretization based on P1-P1 stabilized elements for the
fluid, and P2 elements for the structure. The time discretization was based on
the BDF of order 2, with a maximum time step of 5 × 10−3s. The nonlinearities
were tackled using Newton’s method and each linear iteration solved with the direct
PARDISO solver. The simulations were made using Comsol Multiphysics 4.3b [7] in
a workstation with twelve Intel R© Xeon(R) CPU ES-2620 v2 @ 2.10GHz processors.

In order to improve the accuracy while minimizing the computational cost, we set
different element sizes for the mesh approximating the 3D geometry. Therefore, we
used smaller element sizes for the lipid pool and the fibrous cap, which are regions
characterized by strong gradients and high stresses, than for the vessel wall. Also,
the fluid domain was divided into four parts corresponding to different element sizes
(see Figure 3), corresponding to a better accuracy in the stenosed region.

All the computations and results presented in the next section were performed
with the mesh shown in Figure 3, which corresponds to a total number of degrees of
freedom (DOF) of 449 048. Additional simulations for a non-Newtonian Carreau-
Yasuda fluid using a coarse and a fine mesh have been performed to analyze the
convergence of the numerical solutions with respect to the mesh size (Figure 4). The
displacement of the wall was prescribed to be zero only at the artificial boundaries,
close to the inlet and outlet fluid boundaries. In the following we call this the
moving wall case.

In Figure 5 one can notice that the total displacement curves, in the three meshes,
are almost correlated. An exception to this pattern could be the displacement pro-
files observed after t=0.4s. Although it seems to be an evidence for the oscillations
described in section 2.2, which are due to the artificial boundaries, it is not clear
why the oscillations increase for the finer mesh. Future analysis, requiring an extra
computing power, should include the finer meshes in order to clarify this point.
For the velocity magnitude curves, a significant gap is noticed between the coarse
mesh curve and the other curves during the time interval corresponding to the peak
values of the inlet pressure waveform (see Figure 2). Thus, due to the high compu-
tational cost associated to the fine mesh, and that the convergence of the numerical
solutions using the coarse mesh is not guaranteed during all the simulation time,
an intermediate size mesh was used in this study.

3. Results and discussion.

Figure 4. Extra meshes for convergence study. Detail of regions
1, 2 and 3 (see Figure 3) representing the lumen, fibrous cap and
lipid pool. The total number of DOF for the coarse mesh (left) is
359 231 and for the fine mesh (right) is 780 283.
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3.1. Newtonian vs non-Newtonian blood flow. The choice between a New-
tonian or a shear-thinning non-Newtonian inelastic model to represent the blood
flow is mainly related with the aim of the study. Here we performed numerical
simulations for both models in the case of rigid and moving walls to compare the
results. Figure 6 gives a comparison between the four cases displaying the total
volume displacement of the fibrous cap. One can notice that, practically, there is
no significant difference in the total displacement values between the Newtonian
model and the non-Newtonian one.

Another important hemodynamic indicator is the wall shear stress (WSS), which
is the tangential stress that the fluid exherts on the wall, consisting on the tangential
component of the stress tensor, which is given by σ = pI− τ , on the wall:

WSS = σn − (σn · n)n = τn − (τn · n)n,

where n is the outward unit normal to the wall surface, and σn and τn are the
normal components of the stress and extra-stress tensors, respectively [15]. The
variation of this quantity was observed on the fibrous cap surface. Figure 7 confirms
the above observation on the difference between the use of the Newtonian and the
non-Newtonian models for blood. Therefore, in the following discussion of the
numerical results, we will focus on the 3D FSI model with the fluid described by
the Carreau-Yasuda non-Newtonian model. This choice is motivated by the fact
that the non-Newtonian behavior is more realistic in its description of the blood
flow, since the aim of this paper is to study a 3D FSI model in an idealized stenosed
vessel with an absorbing BC imposed directly on the outflow section and its influence
on the WSS distribution in the case of moving and fixed walls.

3.2. Results for fixed vs moving arterial wall. The numerical results show
that the total volume displacement of the fibrous cap at the peak of the pressure
(t=0.22s) is different between these two cases (0.34 mm and 0.53 mm as maximal
displacement values for a fixed and moving walls, respectively). The results also
indicate a significant difference for the WSS around the fibrous cap observed in the
case of a fixed wall, when compared to the one of a moving wall (Figure 7).

In what follows, we will investigate the distribution of the von Mises stress and
WSS over the plaque, since the critical stress indicators are more sensitive to changes
of physiological conditions and may provide a better assessment for plaque vulner-
ability.

Figure 9 plots the von Mises stress in the fibrous cap surface upstream and
downstream the stenosis. The stress induced within the plaque was significantly
affected by the motion of the wall. In the case of a moving wall, the highest von
Mises stress (13.48 KPa) is observed in the region upstream the stenosis, whereas for
the fixed wall configuration the highest value (10.45 KPa) is observed downstream
the stenosis. This result is in contradiction with the study presented in [3] where
the maximum value of the von Mises stress is located upstream the stenosis in the
case of the rigid wall. However, two major considerations distinguish our study:
(1) the inlet pressure wave and the absorbing BC chosen for the inlet and outlet,
respectively and (2) the differentiation between Young modulus values for the vessel
wall (E = 3 ·105 Pa in the upstream and downstream extended sections and E = 6 ·
105 Pa in the vessel wall surrounding the plaque). Furthermore, Figure 8 illustrates
how the von Mises stress average changes over the interface of the fibrous cap,
in accordance with its distribution over the plaque, as shown in Figure 9. An
insignificant difference between the upstream and downstream regions of the stenosis
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Figure 5. Comparison between the maximal values of WSS in the
stenosed region (1) (left) and the total displacement values of the
fibrous cap (right) in a coarse, intermediate size and fine mesh.

Figure 6. Total volume displacement of the fibrous cap at the
peak of the pressure (t = 0.22 s). The upper figures, left and right,
represent the case of a fixed wall where blood is modeled as a New-
tonian fluid and a shear-thinning non-Newtonian fluid using the
Carreau-Yasuda viscosity model, respectively. The representation
for the same models in the case of a moving wall is in the lower
figures.
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Figure 7. Average variation of the WSS at the interface of the
volume shown in Figure 6.

Figure 8. Average variation of the von Mises stress at the inter-
face of the volume shown in Figure 6.

is observed in the case of a fixed wall, but a significant difference exists in the case
of moving wall. In terms of interpretation based on the average values, the risk of
arterial damage and/or rupture is overestimated for a moving wall, and in the case
of a fixed wall, the plaque provides significant load-bearing capabilities.

The WSS distribution on the fibrous cap is depicted in Figure 10. From the plots
of different models one can notice that the maximum values upstream (173.27 Pa)
and downstream (179.54 Pa) the stenosis in the case of a fixed wall are slightly higher
than those observed in the case of a moving wall. However, Figure 11 indicates
that the highest average WSS (24.27 Pa) is localized upstream the stenosis with
fixed wall, while the difference is insignificant downstream the stenosis between the
moving and fixed wall cases. Therefore, the model with rigid wall underestimates
the risk of the accumulation of fatty material, since it is commonly believed that
intimal thickness will be greater in low shear regions.
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Figure 9. The von Mises stress distribution on the fibrous cap
at the peak of the pressure (t = 0.22 s). upstream the stenosis
for fixed and moving walls (top left and right, respectively) and
downstream the stenosis (down left and right, respectively).

4. Conclusions. In this work, 3D FSI numerical simulations for blood flow in an
atherosclerotic artery have been performed. The computational FSI model consid-
ered blood as a shear-thinning viscosity fluid and hyperelastic structures to describe
the human carotid artery with an atheromatous plaque. A LAC has been imposed
as outlet BC to eliminate the reflexion of pressure waves. To enhance the impor-
tance of a fully FSI model, simulations were also performed in the case of a fixed wall
structure. The results indicate that the von Mises stress is highly underestimated
in the plaque region upstream the stenosis, if a fixed wall model is considered.

Some important aspects still remain to be addressed in order to obtain a more
realistic model. Among them we can mention multilayered structure and anisotropic
properties of the vessel wall, cell activities, plaque growth and remodeling. Despite
these simplifications, the present model demonstrates the importance of the vessel
wall movement in terms of the plaque sensitivity to the stress, which may have
significant implications for plaque vulnerability assessment.
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Figure 10. The WSS distribution on the fibrous cap at the peak
of the pressure (t = 0.22 s). upstream the stenosis for fixed and
moving walls (top left and right, respectively) and downstream the
stenosis (down left and right, respectively).

Figure 11. Average variation of the WSS at the interface of the
volume shown in Figure 6.
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