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Manuel González-Navarrete

Institute of Mathematics and Statistics, Universidade de São Paulo

Rua do Matão, 1010, CEP 05508-090, São Paulo, Brazil

(Communicated by Yi Jiang)

Abstract. We study an alternative approach to model the dynamical behav-

iors of biological feedback loop, that is, a type-dependent spin system, this class

of stochastic models was introduced by Fernández et. al [13], and are useful
since take account to inherent variability of gene expression. We analyze a non-

symmetric feedback module being an extension for the repressilator, the first
synthetic biological oscillator, invented by Elowitz and Leibler [7]. We consider

a mean-field dynamics for a type-dependent Ising model, and then study the

empirical-magnetization vector representing concentration of molecules. We
apply a convergence result from stochastic jump processes to deterministic

trajectories and present a bifurcation analysis for the associated dynamical

system. We show that non-symmetric module under study can exhibit very
rich behaviours, including the empirical oscillations described by repressilator.

1. Introduction. Elowitz and Leibler [7] addressed the design and construction
of a synthetic network providing the basic functionality of generating oscillations.
Such functionality is essential to organize time-modulated biological functions like,
for instance, the required periodic adjustment of an organism’s physiology to the
circadian rhythm [12, 29]. Their idea was to construct a negative feedback loop com-
posed by three transcriptional repressors that are not part of any natural biological
clock. The resulting oscillating module was called repressilator (see Figure 1(a) for
illustration).

We remark, as done by Elowitz and Leibler [7], that the repressilator displayed
noisy behavior, this fact must be related with stochastic fluctuations of its compo-
nents. Indeed, Elowitz et al. [8] verified that gene expression is inherently variable,
or noisy, due to random fluctuations in individual cells (see also, Shahrezaei and
Swain [31] and Swain et al. [33]).

Progress in the understanding of this module, as well as others naturally occur-
ring networks, and their associated control mechanisms demand the development of
mathematical models that manage good balance between simplicity and usefulness.
In the literature there exist several different approaches to this aim. For instance,
in the case of the repressilator we could find works such as Chen and Aihara [4],
Chen et al. [5] and Wang et al. [37].
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This kind of interaction modules are widely known as feedback loops, which
carry out specific functions in a cell, decomposing realistic cellular control networks
[1, 32]. The study of feedbacks loops have received extensive attention in recent
years [3, 24, 28]. Particularly, the development of general frameworks can be found
in Along [2], Tyson and Novak [36], and especially in Wang et al. [38]. In general,
we are interested in understanding for the dynamical behaviour of the concentration
of molecules involved in the interactions.

In this work, we propose an alternative approach, which consists in the appli-
cation of a class of interacting particle systems (see [22]). The ideas are taken
from the type-dependent stochastic spin system, proposed by Fernández et al. [13].
Essentially, the main feature of this approach is taking account the inherent ran-
dom variability in gene expression. The potential applications in general biological
signaling networks are discussed in Fernández et al. [13].

As an illustration of our approach, we propose the study of a particular cyclic-
interaction loop, that we call non-symmetric clock module, which is a simple exten-
sion of repressilator. Thus, to address this kind of qualitative approach, we propose
the application of a mean-field type-dependent Ising model dynamics. Although the
Ising model was initially studied to understand the physical phenomenon of ferro-
magnetism [16], nowadays this model represents a useful tool in different areas such
as image processing, neural networks or earthquake dynamics [6, 30, 35], among
others.

In our modeling scheme, the dynamics of the type-dependent Ising models is
projected onto associated continuous-time jump processes, called density-profile pro-
cesses, which are random walks mapping the macroscopic evolution of the particle
systems.

Fernández et al. [13] showed that for arbitrary but fixed time intervals, in the
limit of a very large number of particles (thermodynamics limit), the evolution of
these jump processes converges to time dependent functions satisfying a correspon-
dent deterministic dynamical system. We will include a simpler and straightforward
proof of the convergence from the stochastic trajectories of the density-profile to de-
terministic paths ruled by non-linear differential equations. Our technique is based
on the work of Ethier and Kurtz [11], who characterized a class of Markov jump
processes called density dependent population processes (see also Kurtz [19]).

Therefore, we use the convergence result to study the dynamical behaviours of
our non-symmetric clock module. Particularly, we will analyse the influence of
parameters in the behaviours of our model. The characterization of the evolution
of the associated dynamical systems, that is a bifurcation analysis, completes our
work.

We remark that the approach introduced by Fernández et al. [13] allows us
to analyse general classes of feedback loops. For instance, we can enumerate the
class of feedback loops studied in [21], which are simple enough to be analysed in a
theoretical framework, but admiting very rich dynamical behaviours. Moreover, all
the loops have been found in transcriptional regulatory networks (Leite and Wang
[21]).

As we will see in section 3.2 the approach proposes a non-reversible stochastic mi-
croscopic dynamics based on interacting particle systems and statistical mechanics
ideas. We used a mean-field version as a suitable approximation of other Ising-type
interactions. In this sense, Mendonça and de Oliveira [23] discussed properties of
the stationary measure of a TDSIM with near neighbours interaction in the study
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of repressilator. Further investigations could focus in other feedback loops, ex-
ploiting applications and to better understanding of the type-dependent stochastic
dynamics.

The paper is organized in the following way. In section 2 we introduce the non-
symmetric clock module, which will be used as an illustration. Section 3 includes
the definition of type-dependent spin models, and particularly the dynamics of
the mean-field type-dependent stochastic Ising model. We construct the associated
density-profile process and prove convergence to deterministic trajectories in section
4. Section 5 includes a bifurcation analysis of the dynamical system associated to
our non-symmetric clock module. Finally, section 6 contains some conclusions and
further investigations.

2. Feedback loops: The example of a non-symmetric clock module. In
this section we introduce a specific feedback module, which will be used to explain
the step by step of our modeling scheme. However, we remark that the stochastic
approach in Section 3 can be applied for dynamical studies of general feedback
loops.

We use the notion of network motifs to design the repressilator and our non-
symmetric clock module. A feedback loop motif is a simple representation of a
transcriptional regulation network [21, 36]. That is a cycle in a directed graph
whose vertices (also called nodes) can represent concentrations of proteins or genes
(see Figure 1). In this sense, the edges can represent either positive or negative
interactions. In other words, a positive (resp. negative) edge implies that the
component in tail vertex activates (resp. represses) the transcription of the gene of
the element in head vertex.

We shall consider a simple feedback loop that we call non-symmetric clock mod-
ule, it is based on the repressilator proposed by Elowitz and Leibler [7]. The repres-
silator is a three transcriptional repressor systems that are not part of any natural
biological clock, and were used to build an oscillating network in Escherichia coli. In
other words, this is a negative feedback loop which provides the basic functionality
of generating oscillations. Which is biologically required in several contexts like in
cell-cycle and in the setting up of circadian cycle.

Figure 1(a) shows the representation of the repressilator. We denote by A, B
and C, the LacI protein, the TetR gene and the CI gene, respectively. Accordingly,
the first repressor protein, LacI from E. coli, inhibits the transcription of the sec-
ond repressor gene, tetR from the tetracycline-resistance transposon Tn10, whose
protein product in turn inhibits the expression of a third gene, cI from l phage.
Finally, CI inhibits lacI expression, completing the cycle. In other words, the rate
of change of component A density at each time depends only on C density in an
inhibitory manner: the density of A tends to decrease if the concentration of C is
high. A similar dependence holds between C and B and between B and A.

In this work, we propose the study of a non-symmetric cyclic-interaction module,
see Figure 1(b). We will refer to A,B and C as being three types of molecules. We
focus on this simple feedback loop because it is large enough to admit complex
dynamical behaviours. The model includes the parameter J that measures the
strength of the interaction and a parameter δ ∈ [0, 1], which allows us to distribute
the interactions between each pair of the three components (A,B,C). Note that
the interactions between neighbour components could be non-symmetric, but the
global interaction holds the invariance.
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(a) (b)

Figure 1. Representation of cyclic feedback modules: (a) Repressilator: a sim-

ple model of transcriptional regulation representing the loop of feedback inhibition

among three components indicated by A, B and C. The blunt arrows indicate inhi-

bition. (b) Motif of our non-symmetric clock module (including the rates of inter-

action). The parameter δ ∈ [0, 1], and for positive or negative values of J, we have

inhibition or activation cycles, respectively.

The particular cases when δ is equal 0 or 1, are similar to the repressilator above
defined. Although, it is important to stress that for positive or negative values
of J , we have inhibition or activation cycles, respectively. We are interested in a
characterization of dynamical behaviour for this module, as a function of parameter
J and δ.

Therefore, we describe a microscopic stochastic approach to derive an associated
dynamical systems, which only seeks to incorporate the essential qualitative infor-
mation about the biochemical interactions. This approach is based in the work of
Fernández et al. [13], which borrows ideas from interacting particle systems [22], in
such a way that spins represent the internal states of components of the feedback
loop.

3. Modeling setup: Microscopic type-dependent dynamics. In this section
we describe the type-dependent stochastic spin systems proposed by Fernández
et al. [13] to study signaling biological networks. We focus our explanation by
studying the dynamical behaviours of the non-symmetric clock module exposed
in previous section. In particular, we will define a type-dependent stochastic Ising
model (TDSIM). That is, a microscopic model with Ising-type interactions and
having dynamical evolution defined by the type-dependent dynamics proposed in
Fernández et al. [13].

3.1. A family of interacting particle systems. The type-dependent stochastic
spin models are a family of stochastic spin-flip systems introduced in Fernández et
al. [13]. This family extends the usual definition of particle systems [22], to allow
asymmetric dependence of rates on the energy function, the Hamiltonian. As a
consequence of this asymmetric dependence, a particularity of these models is its
non-reversible stochastic dynamics.

Next, we explain these models. We need to introduce a set of spin types T ,
of cardinal k, representing genes or proteins (for instance: LacI, TetR and CI, in
repressilator above). Also, a vertex set V of a simple finite graph of order N = |V|,
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denoting spatial positions available for each one of the types. We call the ordered
pair (i, n) ∈ Λ = T × V a site. Moreover, the set of internal states for each i ∈ T ,
will be denoted by Si = {a1, . . . , asi}. Hence, the spin system has site-space Λ
and configuration space ΩΛ =

∏
i∈T SVi . For a configuration σ ∈ ΩΛ we denote by

σ(i, n) the value of the spin at site (i, n) (see Figure 2).

Figure 2. Lattice representation of the site-space Λ for a type-dependent spin

system. Each vertical line represents a type i ∈ T . At horizontal lines we see the

spatial positions V. The central spin shows the notation σ(i, n) ∈ Si, for a given

configuration σ ∈ ΩΛ.

The continuous-time evolution of these models is governed by a non-reversible
Glauber spin-flip stochastic dynamics. In other words, we have a stochastic evolu-
tion in continuous time, for which only one particle flips at each transition. More-
over, the dynamics is non-reversible with respect to the Gibbs measure (defined in
(6)).

The corresponding rates are determined in terms of a function HΛ : ΩΛ → R,
the Hamiltonian of the spin system. To define the Hamiltonian, we denote

C = {i = (i, a) : i ∈ T , a ∈ Si} , (1)

then, the Hamiltonian of these models is determined by a family of interaction
matrices Jn,l : C × C → R, one for each pair of spatial positions n, l ∈ V. Due to
the original applications in signaling biological networks, these matrices Jn,l[·; ·] are
not assumed to be symmetric. Particularly, we say that Jn,l[(i, a); (j, b)] indicates
the strength of the influence that a spin at a site (i, n) ∈ Λ in internal state a ∈ Si
has upon a spin at (j, l) ∈ Λ that is in internal state b ∈ Sj .

As we illustrated in the repressilator module (see Figure 1(a)), type A compo-
nents act upon type B components, while the reciprocal interaction does not occur.
Then, it is reasonable that the quantity Jn,l[(i, a); (j, b)] may be noticeably differ-
ent that the one in the opposite direction Jl,n[(j, b); (i, a)]. However, we are not
assuming asymmetry with respect spatial positions, because the interaction is only
associated to types, that is

Jn,l [(i, a); (j, b)] = Jl,n [(i, a); (j, b)] , (2)
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for n, l ∈ V, i, j ∈ T , a ∈ Si and b ∈ Sj . Consequently, as usual in statistical
mechanics, the Hamiltonian is then defined by

HΛ(σ) = −
∑

(i,n)∈Λ

∑
(j,l)∈Λ

Jl,n [(j, σ(j, l)); (i, σ(i, n))] , (3)

for each configuration σ ∈ ΩΛ.

3.2. Type-dependent stochastic dynamics. We define the stochastic dynamics
proposed by Fernández et al. [13]. This dynamics allows only single spin-flips, more
precisely, single-site internal-state transitions. In other words, we assume that at
each time only one molecule could be produced or degraded. In statistical mechanics
notation, we say that we have a Glauber type stochastic dynamics.

Formally, given a configuration σ ∈ ΩΛ, a site (i, n) and an internal state a ∈ Si,
we denote σa(i,n) the configuration with

[σa(i,n)](j, l) =

{
a, if (j, l) = (i, n),

σ(j, l), otherwise.
(4)

That is, a configuration for which we fix the value a for the spin at site (i, n).
Thus, the energy cost for the transition from σa(i,n) to σb(i,n) is given by

∆a→b
(i,n)(σ) = H(σb(i,n))−H(σa(i,n)). (5)

Usually, this total change of the energy associated to the flip at site (i, n) from
state a to b, is used to define the rates of transition in particle systems. Hence, gen-
erally we have a continuous-time stochastic evolution being reversible with respect
to the Gibbs measure,

µΛ(σ) =
e−HΛ(σ)∑

η∈ΩΛ
e−HΛ(η)

, (6)

for each σ ∈ ΩΛ.
However, in type-dependent spin models the definition of the rates of transition

is quite different. The asymmetry of the interaction defined above leads naturally
to the decomposition of (5) in the following manner,

∆a→b
(i,n)(σ) = ∆[IN]a→b(i,n)(σ) + ∆[OUT]a→b(i,n)(σ), (7)

where,

∆[IN]a→b(i,n)(σ) =
∑

(j,l)∈Λ

(Jl,n [(j, σ(j, l)); (i, a)]− Jl,n [(j, σ(j, l)); (i, b)]) , (8)

that collects the change in the influence of the configuration σ upon the site (i, n),
when internal state there changes from a to b. On the other hand,

∆[OUT]a→b(i,n)(σ) =
∑

(j,l)∈Λ

(Jn,l [(i, a); (j, σ(j, l))]− Jn,l [(i, b); (j, σ(j, l))]) , (9)

collects the change of the influence that the site (i, n) has on all other sites when
its internal state flips from a to b.

Furthermore, as a particularity of the type-dependent spin models, each transi-
tion rate depends only on the energy changes brought upon the site (8). Thus, we
denote λa→b(i,n)(σ) the rate of a transition flipping σa(i,n) to σb(i,n), which depends only

on (8), that is,

λa→b(i,n)(σ) = Φ
(

∆[IN]a→b(i,n)(σ)
)
, (10)
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where Φ is a non-increasing R+-valued function satisfying the detailed-balance con-
dition Φ(∆)e∆ = Φ(−∆)e−∆.

Finally, we state a formal definition of the spin models proposed by Fernández
et al. [13].

Definition 3.1. A type-dependent stochastic spin model is the continuous-time
process (σt)t≥0 on ΩΛ, defined by a spin model with a type-dependent interaction,
given by the Hamiltonian in (3) and a dynamics with rates of the form (10).

The dynamics of these spin systems yields non-reversibility with respect to the
Gibbs measure (6). Then, the type-dependent dynamics has mathematical interest
for itself. It is natural to study the stationary measure for particular cases of
the interactions matrices (Ji,j)i,j∈C . That is, for instance local interactions like

nearest neighbors (n.n), as usual in many particles systems. In Mendonça and de
Oliveira [23], was proposed an Ising-type n.n interaction to analyse, by Monte Carlo
simulations, some properties of the stationary measure for the repressilator.

In this work, as done in Fernández et al. [13], we consider a mean-field interac-
tion for an Ising model. The mean-field interaction is a natural approximation of
local interactions and given our interest in concentrations of molecule, as global ob-
servable, this is a suitable choice. Of course, the convergence results to be explained
in Section 4 hold whenever we assume mean-field dynamics.

Definition 3.2. A type-dependent stochastic spin model is mean-field if the Hamil-
tonian parameters are of the form

Jn,l[(i, a); (j, b)] =
α(i,a),(j,b)

|V|
, (11)

where {αi,j}i,j∈C , is a real matrix.

We conclude this section explaining the particular modeling setup that we will
use to study the non-symmetric clock module.

3.3. Mean-field TDSIM. We follow the ideas of Fernández et al. [13] to model
our non-symmetric clock module through a type-dependent stochastic Ising model
(TDSIM), which has all internal state spaces Si = {−1,+1}, for all i ∈ T .

We think the spin types as points {A,B,C} over the circle (see Figure 1(b))
and, for each i ∈ T = {A,B,C}, we denote h(i) the neighbour of i in the clockwise
direction. And a(i) to be the neighbour in the anti-clockwise direction. Borrowing
statistical mechanical nomenclature, we say that for J < 0, the activation interac-
tions in the Figure 1(b) are ferromagnetic. Moreover, for J > 0, the inhibition cycle
is said to be an anti-ferromagnetic model.

Next, observe that the set (1) will be particularly defined by

C∗ = {(A,+1); (A,−1); (B,+1); (B,−1); (C,+1); (C,−1)} . (12)

In addition, the set of vertices V will represent a reservoir of capacity N (actually,
we have three reservoirs, one for each type of molecule in T ). In this way, for a
configuration σ ∈ {−1,+1}Λ, the spin value σ(i, n) = +1 means that there is a
molecule of type i ∈ T at spatial position n ∈ V. Otherwise, if σ(i, n) = −1, it
means the absence of molecules of type i ∈ T in the corresponding reservoir at
spatial position n ∈ V.

Acordingly, the mean-field TDSIM must be defined by rates functions as in (10),
where Φ(∆) = e−∆ (for details, see [13]). In addition, the real matrix {αi,j}i,j∈C∗
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as in (11) is given by

α(i,a),(j,b) =


−δJb, if j = h(i) and a = +1,

−(1− δ)Jb, if j = a(i) and a = +1,
κi, if j = i,
0, otherwise,

(13)

for (i, a), (j, b) ∈ C∗, and where J ∈ R, δ ∈ [0, 1], and κi ∈ R is an external field (or
chemical potential). It must be clear that a site (i, n) ∈ Λ in internal state −1, will
not influence others sites, because at (i, n) there is no molecule.

Notice that, as we said above, for δ = 0 (as well as δ = 1) and J > 0, the
totally asymmetric case, we obtain an Ising model for the repressilator represented
in Figure 1(a).

Finally, the transition rates for TDSIM are defined for each σ ∈ ΩΛ by

λ−1→+1
(i,n) (σ) = exp

(
+2
[
− δJ
|V| · a

+
i −

(1−δ)J
|V| · h

+
i + κi

])
, and

λ+1→−1
(i,n) (σ) = exp

(
−2
[
− δJ
|V| · a

+
i −

(1−δ)J
|V| · h

+
i + κi

])
,

(14)

where a+
i = |{l ∈ V : σ(a(i), l) = +1}|, and h+

i = |{l ∈ V : σ(h(i), l) = +1}|, for
i ∈ {A,B,C}. For each type i, the parameter κi must be interpreted as the own
rate of production of molecules i ∈ T . In general κi is a linear function of parameter
J . Because we are interested in the relation between two-body interaction (J) with
individual interaction (κ).

We summarize our modeling setup in the following statement:

Definition 3.3. The microscopic evolution of the non-symmetric clock module is
described by a mean-field type-dependent stochastic Ising model with continuous-
time Glauber dynamics (σt)t≥0, whose rates of transition are given by (14).

In the next section we will focus in the macroscopic evolution of the non-symmetr-
ic clock module. Thus, we shall define the density-profile processes, which are a
family of random walks with continuous time evolution. Moreover, we will prove
an almost sure convergence from these stochastic trajectories to deterministic paths
governed by non-linear differential equations.

4. Macroscopic evolution: The density-profile process and its conver-
gence to deterministic dynamics. In this section we focus our attention in the
concentrations of biochemical components into our feedback loop defined in Section
2. Hence, we will mostly be interested on the vector of empirical magnetization of
the mean-field TDSIM. Finally, we will study the thermodynamic limit, that is, the
behaviours when |V| = N →∞.

We project the mean-field TDSIM onto a jump Markov process in R3, called
density-profile process, that represents the densities of the three biochemical com-
ponents in our feedback loop. Thus, in statistical mechanics notation, the stochastic
spin system and the density-profile process provide, respectively, the microscopic
and macroscopic views of the same model.

Definition 4.1. The density-profile process associated to the non-symmetric
clock module is a continuous-time jump process (XN (t))t≥0 ∈ DN =

{[0, 1] ∩ {k/N : k ∈ Z}}3, for |V| = N ≥ 1. That is defined for each t ≥ 0 by

XN (t) := (XN
A (t), XN

B (t), XN
C (t)), (15)
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where

XN
i (t) =

|{n ∈ V : σt(i, n) = +1}|
N

, (16)

i ∈ {A,B,C}. Moreover, the jumps of this process are of the form l/N , where l

belong to J = {±(1, 0, 0);±(0, 1, 0);±(0, 0, 1)}.

We describe the evolution of that processes in the following way: for each position
XN (t) = x ∈ DN , the jumps of the form

x→ x+
l

N
, (17)

where l ∈ J , are defined by a collection βl(x) of functions, βl : DN → [0,∞], l ∈ J .
Of course, we require that x ∈ DN and βl(x) > 0, imply x+ l/N ∈ DN . It must be
clear that each βl(x) will be defined as a function of the transition rates in (14).

Therefore, the jump in (17) occurs with rate

Nβl(x) =
d

ds
P

(
XN (t+ s) = x+

l

N

) ∣∣∣∣
s=0

, (18)

where

βl(x) =

 xiλ
+1→−1
(i,n) (σt), if l = −ei,

(1− xi)λ−1→+1
(i,n) (σt), if l = ei,

(19)

where xi = XN
i (t) as defined in (16), and ei is the unitary vector in the direction

of i ∈ {A,B,C}.
Note that each variable xi represents the density of elements of type i, or we say

as well, the concentration of the component i ∈ {A,B,C} in our non-symmetric
clock module. Thus, Nxi will represent the number of molecules of the type i, and
in some abstract sense, N(1−xi) denotes the available number of possible molecules
into the reservoir of size N . Although, in the Ising system, this last quantity is just
the number of sites of type i ∈ T , with spin-value equal to −1.

The next step is the characterization of these jump processes in the thermody-
namics limit, that is N → ∞. Particularly, Fernández et al. [13], showed that in
the limit of a very large number of spins, these density-profile processes converge to
time dependent functions satisfying a correspondent deterministic dynamical sys-
tem. They used a pathwise approach, which strongly exploits large deviation theory
[26], and coupling of random variables [34]. Their method provides explicit bounds
for the distance between the stochastic and deterministic trajectories.

However, the qualitative study of the behaviors of our feedback loop, does not re-
quire this kind of accurate results obtained in [13]. Therefore, we follow the works of
Kurtz [19] and Ethier and Kurtz [11], to obtain a simpler and straightforward proof
of the convergence from the paths of the density-profile processes to deterministic
trajectories, these latter ruled by non-linear differential equations.

Now, we aim to state our first theorem and prove it. The main tool that we will
use is the characterization of a family of jump processes given by Kurtz [19]. We
stress that our result can be easily extended to more general models, that include
applications to a very extensive class of feedback loops.

Initially, we define a jump Markov process X̂N on Z3, for which we will use some
properties given by Kurtz [19]. Particularly, the jumps of this process are of the form
l ∈ J (see Definition 4.1), and their intensities will be given by β∗l (k) = Nβl(k/N),
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k ∈ Z3, where βl(x) as defined in (19). Thus, let X̂N (0) being non-random, the

evolution of X̂N at time t ≥ 0, can be written as

X̂N (t) = X̂N (0) +
∑
l

lZl(t), (20)

where Zl(t) := |{s ≤ t; X̂N (s)− X̂N (s−) = l}|, that is, the number of jumps of size
l until time t. Then, by some results from Chapter 7 of [19], we have:

X̂N (t) = X̂N (0) +
∑
l

lYl

(
N

∫ t

0

βl

(
X̂N (s)

N

)
ds

)
, (21)

for each t ≥ 0, where the Yl(u), l ∈ J , represent independent Poisson processes
with corresponding intensities u.

Now, setting

F (x) =
∑
l

lβl(x), (22)

and XN = N−1X̂N . Thus, we have

XN (t) = XN (0) +
∑
l

l

N
Ỹl

(
N

∫ t

0

βl
(
XN (s)

)
ds

)
+

∫ t

0

F (XN (s))ds, (23)

for each t ≥ 0, where Ỹl(u) = Yl(u) − u, is the Poisson process centred at its
expectation. Thus, our first result is the almost sure convergence of stochastic
trajectories (15) to associated deterministic paths.

Theorem 4.2. Consider the density-profile process XN (t), as defined in (15)-
(16), with intensities given by (18), (19) and (14), which satisfies (23). Suppose
limN→∞XN (0) = x0, and X satisfying

X(t) = x0 +

∫ t

0

F (X(s))ds, t ≥ 0. (24)

Then for every t ≥ 0,

lim
N→∞

sup
s≤t
|XN (s)−X(s)| = 0 a.s. (25)

The proof of this result is essentially repeat the arguments of Theorem 2.1 from
Chapter 11 of [11], but we include the proof for completeness.

Proof. First of all, denote β̄l := supx∈DN
βl(x). Thus, it is easy to see that∑

l

|l|β̄l <∞, (26)

and by the Lipschitz continuity of the rates of the jumps (19), there exists a fixed
M > 0 such that

|F (x)− F (y)| ≤M |x− y|, x, y ∈ DN . (27)

Observe that by (23) and (24), we have for each t ≥ 0,

|XN (t)−X(t)| ≤ |XN (0)− x0|+

∣∣∣∣∣∑
l

l

N
Ỹl

(
N

∫ t

0

βl
(
XN (s)

)
ds

)∣∣∣∣∣
+

∣∣∣∣∫ t

0

[F (XN (s))− F (X(s))]ds

∣∣∣∣ .
(28)
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Now, let denote

εN (t) := sup
u≤t

∣∣∣∣∣∑
l

l

N
Ỹl

(
N

∫ u

0

βl
(
XN (s)

)
ds

)∣∣∣∣∣ . (29)

Therefore, using (27), (29) and the Gronwall inequality, we can rewrite (28) as
follows,

|XN (t)−X(t)| ≤ |XN (0)− x0|+ εN (t) +

∫ t

0

M |XN (s)−X(s)|ds

≤ (|XN (0)− x0|+ εN (t))eMt,

(30)

for all t ≥ 0. Thus, since εN (t) is a non-decreasing function,

sup
s≤t
|XN (s)−X(s)| ≤ (|XN (0)− x0|+ εN (t))eMt. (31)

To obtain (25) we need the following lemma.

Lemma 4.3. For every t ≥ 0,

lim
N→∞

εN (t) = 0 a.s. (32)

Proof. First, note that we have the following equivalence in distribution

Ỹl(Nu)

N

D
=

N∑
i=1

Y il (u)

N
− u, (33)

where Y il (u) are independent Poisson processes with rate u. Then, the strong law
of large number implies that

lim
N→∞

sup
u≤v
|N−1Ỹl(Nu)| = 0 a.s., v ≥ 0. (34)

Furthermore, by definition of β̄l above, it follows that

εN (t) ≤
∑
l

|l| sup
u≤t

∣∣∣∣∣ Ỹl
(
Nuβ̄l

)
N

∣∣∣∣∣ . (35)

If u ≤ t, a basic property of Poisson processes states that,

Yl
(
Nuβ̄l

)
≤ Yl

(
Ntβ̄l

)
, (36)

for each l ∈ J . Then,

|l| sup
u≤t

∣∣∣∣∣ Ỹl
(
Nuβ̄l

)
N

∣∣∣∣∣ ≤ |l|N (
Yl
(
Ntβ̄l

)
+Ntβ̄l

)
= |l|

Yl
(
Ntβ̄l

)
N

+ |l|tβ̄l,
(37)

for all N ≥ 1 and each l ∈ J . Now, note that,∑
l

|l|
Yl
(
Ntβ̄l

)
N

D
=
∑
l

|l|
N∑
i=1

Y il (tβ̄l)

N
=

N∑
i=1

1

N

(∑
l

|l|Y il (tβ̄l)

)
, (38)

where Y il (u) are again independent Poisson processes with instensity u. Finally, by
the law of large numbers applied to the independent random variables in bracket
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at r.h.s of (38), and by condition (26),

lim
N→∞

∑
l

|l|
Yl
(
Ntβ̄l

)
N

=
∑
l

|l|tβ̄l

=
∑
l

|l| lim
N→∞

N∑
i=1

Y il (tβ̄l)

N
.

(39)

That is, by (37) we can interchange the limit and summation for the expression
at r.h.s in (35). Therefore, using (34), the Lemma follows.

Finally, from inequality (31), by condition limN→∞XN (0) = x0, and Lemma
4.3, then for every t ≥ 0,

lim
N→∞

sup
s≤t
|XN (s)−X(s)| = 0 a.s. (40)

Next section is devoted to our results about modeling a specific biological feed-
back loop, that is, our non-symmetric clock module. Clearly, the application of the
Theorem 4.2 allows us to analyse the qualitative behaviour of the concentrations of
the molecules involved in the interactions. Therefore, we are able to include the role
of stochasticity in the gene expression, but we also simplify the qualitative study
through a bifurcation analysis for the associated dynamical system.

5. The associated dynamical system: Formulation and bifurcation anal-
ysis. In this section we include a qualitative study of the dynamical behaviours of
the non-symmetric clock module. We use the ideas of previous sections to analyse a
dynamical system related to stochastic evolution of the concentration of molecules
involved in our feedback loop.

First, we briefly summarize the ideas in previous sections. Initially, we stated a
mean-field TDSIM (σt)t≥0 on ΩΛ and defined its dynamics by the rates of transition
(14). Thus, the concentrations of each component in our non-symmetric loop (types
A,B and C) were characterized by a density-profile process, defined in (15). In the
Ising case, the only independent variables are the densities of activated types that
we denoted XN

i (t), i ∈ {A,B,C}. The rate of a jump in density-profile process was
defined in (18) and (19), based on the rate of corresponding transition in TDSIM.
After that, in Section 4, we also studied the thermodynamic limit of the particle
system (N →∞), proving that the density-profile process converges to deterministic
trajectories governed by non-linear differential equations (see Theorem 4.2).

Finally, in this section we show that depending on the parameter values, the
magnetization random path can either converges to a unique stable fixed point (if
−1 < J < 2), converges to one of a pair of stable fixed points (for J < −1), or
asymptotically evolves close to a deterministic orbit in R3 (when J > 2).

Therefore, we follow Theorem 4.2 to study the dynamics of our non-symmetric
clock module by analysing the associated dynamical system. However, we remark
that the behaviours of the dynamical system are deterministic approximations of
the stochastic evolutions of the jump processes in our approach.

The system of differential equations associated to the cycle-interaction module
in Figure 1(b), and with rates given by (14) will be expressed by

ẋi = (1− xi)e2[−δJxa(i)−(1−δ)Jxh(i)+κi] − xie−2[−δJxa(i)−(1−δ)Jxh(i)+κi], (41)
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for i ∈ {A,B,C}, J ∈ R, δ ∈ [0, 1], and κi ∈ R. As usual, we will consider κi = J/2,
i ∈ {A,B,C}, that it, proportional to the molecules interaction parameter. The
particular value is to reduce the number of parameters and to obtain suitable fixed
points in dynamical analysis (steady state of concentrations (1/2, 1/2, 1/2)).

Our next result is the statement of a bifurcation analysis to guarantee for the
non-symmetric clock module that: for 0 < J < Jc = 2, the concentration of all
three components (A,B,C) remains stable, but oscillates with large amplitude as
soon as J increases past the threshold Jc = 2. For J < 0, we can see the appearance
of two stable points when J < −1. These situations are showed in Figure 3.

Figure 3. Bifurcation diagram for the non-symmetric clock module. The verti-

cal axis represents the concentration of one of the three molecules. At right hand, we

see a Hopf bifurcation with respect to the parameter J, that measures the strength

of the interactions. Solid lines indicate stable points; dotted lines indicate unsta-

ble points; black circles indicate maximum and minimum values of stable orbits;

bifurcation diagram obtained with xpp-aut [10].

Proposition 1. Consider the dynamical system (41), with δ ∈ D = [0, 1/2) ∪
(1/2, 1], and κi = J/2, then

a) For J < 0, there is a bifurcation at Jc = −1: the fixed point (1/2, 1/2, 1/2)T

loses the stability and appear two stable points for J < Jc.
b) If J > 0, there is a Hopf (or Andronov-Hopf) bifurcation at Jc = 2.

Proof. First, it is easy to see that the dynamical system has a fixed point at x0 =
(1/2, 1/2, 1/2)T , because ẋ = F (x0, J, δ) = (0, 0, 0)T , for all J ∈ R and δ ∈ D.

From now on, we consider the dynamical system ẏ = F ∗(y, J, δ), where y =
(y1, y2, y3)T and xi = 1

2 + yi. Then, the fixed point for the new system is 0 =

(0, 0, 0)T .
Following the theory in Perko [27] and Kuznetsov [20], we could guarantee that

near 0 = (0, 0, 0)T , the dynamical system is locally topologically equivalent to its

linearisation ẏ = Ay, where A denotes the Jacobian matrix dF∗

dy evaluated at 0.

Then, y0 is stable if all eigenvalues λ of A satisfy Re λ < 0, and stability is lost
when one of the real parts becomes positive.

Notice that A = ∂F ∗(0) is given by the expression

− 2

 1 (1− δ)J δJ
δJ 1 (1− δ)J

(1− δ)J δJ 1

 . (42)
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The eigenvalues of this matrix are

λ1 = −J − 1,

λ2 = J(1− 2δ)
√

3i+ (J − 2), and

λ3 = J(2δ − 1)
√

3i+ (J − 2).

(43)

Therefore, the fixed point y0 loses the stability at Jc = −1, when λ1 crosses the
imaginary axis through the origin. Thus, we have two stable fixed points. This
bifurcation is called fold (or pitchfork) bifurcation. The values of these fixed points
could be calculated by solving: sinh(2Jy) + 2y cosh(2Jy) = 0, thus we obtain the
relation

J =
1

4y
· log

1− 2y

1 + 2y
(44)

for y 6= 0. We notice the symmetry around J-axis, this fact could be seen at left
hand of Figure 3.

On the other hand, the stability is lost when λ2 and λ3, symmetric around the
real axis, cross the imaginary axis. This fact occurs when J = 2. The phenomenon
includes the appearance of a stable orbit, this kind of bifurcation is known as Hopf
bifurcation.

The oscillations experimentally verified in the repressilator (Elowitz and Leibler
[7]) are explained in this dynamical behaviour through the (supercritical) Hopf
bifurcation with respect to the interaction strength parameter J .

5.1. Deterministic macroscopic evolution in details. Let us finally show a
detailed analysis of the dynamical behaviours of the system using linearisation tools.
In fact, we do not study the dynamical system (41), however we analyse the linear
system that approximates it.

We will exhibit a qualitative analysis of the concentration of the molecules in-
volved in the interactions. The idea is a better understanding of the influence of
parameter δ in the dynamical behaviours.

Therefore, we must translate and rotate the coordinate system X1X2X3 onto
a new system Z1Z2Z3. Particularly, this new coordinate system has the origin at
(1/2, 1/2, 1/2). Thus, Z3 will be the diagonal, from (0, 0, 0) to (1, 1, 1); the Z2-axis
is directed to x = (0, 1, 1/2); and the Z1-axis is oriented to x = (3/4, 3/4, 0).

Equivalently, remember that y = (y1, y2, y3)T and xi = 1
2 + yi, for i = {1, 2, 3}.

We can say that the system Z1Z2Z3 is obtained by the following two operations in
the system Y1Y2Y3:

1.- Rotate the Y1Y2Y3-system around the Y3-axis by α = 45◦ (anticlockwise di-
rection);

2.- Rotate the Y1Y2Y3-system again about the new rotated Y2-axis by β = 55◦

(clockwise direction);

Finally, to obtain the new coordinates of the system, we have (z1, z2, z3) =
(y1, y2, y3) ·R, with

R =


1√
6
− 1√

2
1√
3

1√
6

1√
2

1√
3

− 2√
6

0 1√
3

 . (45)
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Again, by the theory in [20, 27], the behaviour of the dynamical system in
Z1Z2Z3, could be studied by linearisation, that is, we analyse

ż = Az, with z =

z1

z2

z3

 , (46)

where A = R−1 · ∂F ∗(0) ·R, because R is an orthonormal matrix. Then,

A =


J − 2

√
3J(2δ − 1) 0

−
√

3J(2δ − 1) J − 2 0

0 0 −(2J + 2)

 , (47)

and expression (46) represents the following system:
ż1 = (J − 2)z1 +

√
3J(2δ − 1)z2,

ż2 = −
√

3J(2δ − 1)z1 + (J − 2)z2,

ż3 = −(2J + 2)z3.

(48)

Notice that the behaviour over Z3-axis is independent of the dynamics on Z1Z2-
plane. Then, we could establish the following two elementary conclusions:

C1) For any J > −1, the trajectory on Z3-axis goes to zero, because ż3 is negative
for z3 > 0, and positive for z3 < 0;

C2) For any J < 2, the dynamics on Z1Z2-plane goes to zero in both directions.
In other words, it goes to the point (0,0). Of course, the velocity and direction
depend on δ and J .

Accordingly, given C1) and C2), we conclude that for −1 < J < 2 the system
has a stable point at 0 = (0, 0, 0)T .

Now, we study the dynamics for J = −1. In this situation, ż3 = 0, for any z3.
Then, in adition with C2), any initial condition z(0) = (z1(0), z2(0), z3(0))T goes
to (0, 0, z3(0))T , as t → ∞. So, for J < −1 it is easy to see that, ż3 < 0 when
z3 is negative, and becomes positive when z3 > 0. Namely, if the initial condition
is established above the Z1Z2-plane, the trajectory goes to (0, 0,K)T , as t → ∞,
where K ≡ K(J, δ) is a positive constant that depends on J and δ. When the
system starts at the bottom of the Z1Z2-plane, the trajectory goes to (0, 0,−K)T ,
as t→∞. These are the two stable points in Proposition 1.

Furthermore, considering J = 2, since C1), we just need to study the dynamics
over Z1Z2-plane. That is,  ż1 = 2

√
3(2δ − 1)z2,

ż2 = −2
√

3(2δ − 1)z1.
(49)

We could change variables to polar coordinates. Let z1 = rcosθ, z2 = rsinθ.
To derive a differential equation for r, we note z2

1 + z2
2 = r2, so z1ż1 + z2ż2 = rṙ.

Substituting for ż1 and ż2 yields ṙ = 0. Thus from θ̇ = (z1ż2 − z2ż1)/r2, we find

θ̇ = −2
√

3(2δ − 1). Therefore, the origin is a center, and any initial condition
z(0) = (z1(0), z2(0), z3(0))T evolves over the Z1Z2-plane on the circle with radius
r(0) = z1(0)2 + z2(0)2, the direction and velocity of the cycle depend on δ. The
Figure 4 shows us the behaviour of the cycle for different values of δ.
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Figure 4. Phase portraits for J = 2 and different values of δ. At left hand, we

see the behaviour for δ < 1/2. The right picture show us the cycles for δ > 1/2.

The highest velocities will be reach at δ = 0 and δ = 1.

In the remaining case, for J > 2, we must study the two-dimensional linear
system ż = Az with

A =

 J − 2
√

3J(2δ − 1)

−
√

3J(2δ − 1) J − 2

 (50)

thus, changing variables to polar coordinates we obtain the system ṙ = r(J − 2),

and θ̇ = −
√

3J(2δ− 1). Notice that, ṙ > 0 for all r > 0, and the value of θ̇ depends
on δ. See Figure 5.

Figure 5. Phase portraits for J > 2. The left picture shows us the behaviours

for δ < 1/2. At right side, we see the cycles for δ > 1/2.

6. Conclusions and comments. On one hand, based on a particular feedback
loop we have described a theoretical framework to model and analyse the non-linear
dynamics of gene regulatory networks. In the literature there exist several different
approaches to this aim. However, in previous sections we showed that our approach,
based on the well studied Ising model, can include the inherent variability in gene
expression, also this microscopic approach could capture detailed characteristics
of the system interpreted as a promotion-inhibition circuitry. Thus, it may be
particularly useful to illuminate how simple feedback loops manage to perform their
basic functionalities and how these functionalities are further integrated into the
whole cellular regulatory network.

On the other hand, the mathematical study of the type-dependent dynamics
suggests a long-standing theme of statistical physics of nonequilibrium systems.
That is, the question of the nature of their stationary measure, and in particular
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of the existence of phase transitions. Thus, it will be interesting for us to propose
local interactions in type-dependent Ising models, instead of mean-field interaction,
at this point we could consider several lattices (like Zd or triangular lattice) and
treat these questions.

Particularly, the study of the TDSIM with local interactions is closely related
with works like Godrèche [14] and Godrèche and Bray [15] (see also de Oliveira
[25]). They considered a kind of asymmetric Ising dynamics, called directed Ising
model. In [14, 15] was studied several dynamics, like Glauber or Metropolis. They
obtained a large space of parameters defining the rates functions allowing irreversible
Gibbsian Ising models, whenever the dynamics is not totally asymmetric.

Furthermore, bifurcations showed in the associated dynamical systems (Section
5) suggest the existence of phase transitions in the type-dependent Ising model. Of
course, it would also be natural to consider metastability issues [26] to characterize
the dynamical behaviors of this particle system. In this sense, a related work is due
to Kotecký and Olivieri [17], they studied a discrete-time Metropolis dynamics for
a two dimensional ferromagnetic asymmetric Ising model, in which the vertical and
horizontal interaction parameters have different values.

Finally, we say that another very interesting mathematical question is the charac-
terization of loss and recovery of Gibbsianness in stochastic evolutions, considered in
recent works, in the area of mathematical physics. For instance, van Enter et al. [9]
studied some Ising models for which this phenomenon occurs. In addition, Kulske
and Le Ny [18] initiated a fruitful research direction showing that Gibbs-non-Gibbs
transitions can also be defined naturally for mean-field models.
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