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Abstract. This paper concerns modeling the coupled within-host popula-

tion dynamics of virus and CTL (Cytotoxic T Lymphocyte) immune response.

There is substantial evidence that the CTL immune response plays a crucial
role in controlling HIV in infected patients. Recent experimental studies have

demonstrated that certain CTL variants can recognize HIV infected cells early

in the infected cell lifecycle before viral production, while other CTLs only de-
tect viral proteins (epitopes) presented on the surface of infected cells after viral

production. The kinetics of epitope presentation and immune recognition can

impact the efficacy of the immune response. We extend previous virus mod-
els to include cell infection-age structure in the infected cell compartment and

immune response killing/activation rates of a PDE-ODE system. We charac-
terize solutions to our system utilizing semigroup theory, determine equilibria

and reproduction numbers, and prove stability and persistence results. Nu-

merical simulations show that “early immune recognition” precipitates both
enhanced viral control and sustained oscillations via a Hopf bifurcation. In

addition to inducing oscillatory dynamics, considering immune process rates

to be functions of cell infection-age can also lead to coexistence of multiple
distinct immune effector populations.

1. Introduction. Mathematical modeling of within-host virus dynamics has been
an extensive subject of research over the past two decades. Many of the models
have been related to a differential equation system often referred to as the standard
virus model [31]. This standard model describes the coupled changes in target cells,
infected cells, and free virus particles through time in an infected individual. The
model has been very useful in quantifying certain parameters, especially for HIV,
and providing insights for viral infections.

The standard virus model neglects certain features that may be important to
consider for HIV, such as the host immune response. There is substantial evidence
that the CD8+ T cell, also known as CTL (Cytotoxic T Lymphocyte), immune
response plays a crucial role in controlling HIV and disease progression in infected
patients [42]. CTL immune effectors recognize pathogen-derived proteins (epitopes)
presented on the surface of infected cells to mediate their killing [19]. The CTL
immune response has been included in various extensions of the standard virus
model. Nowak and Bangham considered an immune effector population which kills
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and is activated by infected cells according to a “mass-action” (bilinear) rate [27].
In subsequent work, e.g. [28, 44], the most popular functional forms for the killing
and proliferation rates of immune effectors are this mass-action kinetics, although
other forms have been utilized and can offer certain advantages [12].

Additionally, the standard virus model does not include details of infected cell
lifecycle, in particular, the time lag between viral entry of a target cell and subse-
quent viral production from the newly infected cell. To account for this intracellular
delay, many authors have studied virus models with discrete or distributed delays
[11, 26, 5, 21, 35]. Nelson et al. considered a model with age structure in the
infected cell component, which generalizes the delay standard virus model by al-
lowing for infected cell death and viral production rates to vary with age since
infection of an infected cell [25]. This model has appeared often in the literature
[3, 15, 17, 32, 13, 6, 20] and the global dynamics were analyzed in [7].

Intracellular delays and immune response, along with delays in immune activa-
tion process have been considered together in the virus model, e.g. [21, 38, 43, 35].
Delays in the immune activation have been found to induce oscillations via Hopf bi-
furcation [38, 43, 35]. Even with no immune activation delays (or immune response
in the model), it is known that some target-cell dynamics can cause sustained oscil-
lations [37]. In the absence of immune activation delay and with certain restrictions
on the target cell growth rate, in a general viral model with distributed intracel-
lular delays and immune response, Shu et al. proved the global stability of the
system equilibria [35]. In their model, along with others in the literature, the im-
mune activation and killing rates are assumed to be functions of the total amount
of virus-producing infected cells. However, it may be important for immune effector
activation and killing processes to be more general functions of cellular infection-age
since different epitopes can be presented at distinct stages in the infected cell life,
in particular prior to viral production, as discussed in the next paragraph.

Recent experimental studies [34, 29, 19, 8, 10, 4] have demonstrated the impor-
tance and heterogeneity of epitope presentation timing with respect to the infected
cell lifecycle for subsequent clearance of the infected cells. Certain immune effec-
tor populations have shown the ability to recognize and kill infected cells early in
the infected cell lifecycle before viral production. The kinetics of antigen presenta-
tion may be a crucial determinant of the effectiveness of certain HIV-specific CTL
clones, as the earlier the recognition, the more likely it is that the cell will be killed
before the release of new virions and the less likely that the CTLs will be affected
by Nef-mediated class I downregulation [10, 19, 4]. Also CTLs which attack early
in the infected cell life cycle could reduce the amount of latently infected cells [8].

In this article, motivated by the aforementioned HIV research, we generalize the
standard virus model to include immune effector processes dependent upon cellular
infection age by considering the following PDE-ODE system:

dT (t)

dt
= s− cT − kV (t)T (t),

∂T ∗(t, a)

∂t
+
∂T ∗(t, a)

∂a
= −δ(a)T ∗(t, a)− r(a)E(t)T ∗(t, a), (1)

T ∗(t, 0) = kV (t)T (t),

dV (t)

dt
=

∫ ∞
0

p(a)T ∗(t, a) da− γV (t),
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dE(t)

dt
= qE(t)

∫ ∞
0

r(a)T ∗(t, a) da− µE(t),

T (0), V (0), E(0) ∈ R+, T ∗(0, ·) ∈ L1
+(0,∞).

The variables T (t) and V (t) denote the concentration of uninfected target cells and
free virus particles, respectively. T ∗(t, a) denotes the density, with respect to age
since infection, of infected cells. E(t) is the concentration of a population of immune
effector cells. Here L1

+(0,∞) is the non-negative cone of L1(0,∞) and R+ = [0,∞).
The function f(T ) = s − cT represents the net growth rate of the uninfected cell
population. The parameters k and γ are the infection rate and clearance rate for the
virus. The functions δ(a) and p(a) are the infection-age dependent (per-capita) rates
of infected cell death and virion production for infected cells, respectively. The age
dependent parameter r(a) describes the killing rate of the immune cell population
E (with respect to relevant epitopes presented on infected cell surface) as a function
of time-since infection of the infected cells. The activation rate of immune cells E
responding to epitopes presented on the infected cell is assumed to be proportional
to r(a) with proportionality factor q. Note the mass-action forms of the immune
killing and activation rates are representative of actions that occur proportionally
to the strength of interaction, denoted σ(a), between immune cells and epitopes on
the surface of infected cells (of age a). Thus it is reasonable to assume that the
(cell infection-age dependent) killing and activation rate functions are of the form
r(a) = rσ(a) and q(a) = qrσ(a), respectively, which gives the respective rates r(a)
and qr(a). Finally, the parameter µ denotes the death rate of the immune effector
cells.

Mathematical analysis of continuous age-structured models such as system (1)
are complicated by the infinite-dimensionality of the underlying state space. A gen-
eral approach is to study the nonlinear semigroup generated by solutions through
recasting the system utilizing integrated semigroup theory or integrating along char-
acteristic curves. We utilize both of these methods, along with prior results, in
order to prove existence and uniqueness of solutions and asymptotic smoothness
of the generated semigroup. In addition, we find two threshold quantities, R0 and
R1, which yield conditions for uniform persistence of the virus and immune ef-
fector solution components, respectively, along with existence and stability results
for the virus-free equilibrium, immune-free virus equilibrium and positive immune-
controlled virus equilibrium.

Numerical simulations corroborate the basic kinetic advantage of immune effector
cells which recognize epitopes early in the infected cell life, however we interestingly
find that this “early immune recognition” can destabilize the positive equilibrium
and induce sustained oscillations via Hopf bifurcation. Thus early immune recogni-
tion can be a fundamental mechanism for oscillatory dynamics in the virus model.
As an extension of model (1), we also consider the case of two distinct immune ef-
fector populations competing for an infected cell population. Here we find another
consequence of cell-infection age dependent immune processes; namely, coexistence
of the effector populations can occur whereas the analogous ODE model produces
competitive exclusion of immune responses.

The paper is organized as follows: In Section 2, we reformulate the model (1)
and prove existence of a dissipative, asymptotically smooth semigroup generated
by its solutions. In Section 3, equilibria and reproduction numbers are determine,
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along with associated threshold properties consisting of local stability and persis-
tence results. In Section 4, we conduct numerical simulations of model (1) and
study an associated stage-structured ODE system, in order to explore enhanced
control and oscillatory dynamics induced by early immune recognition. In Section
5, we extend the age-structured PDE model (1) to include multiple immune effec-
tor populations and find coexistence of immune responses. Finally in Section 6, we
provide a discussion of our results and outline future work.

2. Existence of solutions and semigroup properties. Various approaches
have been developed for formulating solutions of age structured models. One ap-
proach is to use the theory of integrated semigroups [22, 41]. Another approach
is integrating solutions along the characteristics to obtain an equivalent integral
equation, referred to as the Volterra formulation [45]. We will use both methods to
represent solutions. First, we state a few assumptions on the parameters of model
(1). Each age-dependent parameter function (δ(a), p(a), r(a)) is assumed to be in
L∞+ (0,∞), the non-negative cone of L∞(0,∞). In addition, it is reasonable to as-
sume that δ(a) ≥ c ∀a ∈ (0,∞). We also note that the term −kV T associated with
the loss of free virus particles due to absorption in target cell upon infection have
been ignored in the dV

dt equations. This is a common assumption in HIV models
since the loss terms are considered relatively small and can be absorbed into the
virus clearance rate γ [30].

2.1. Volterra formulation. We find the Volterra formulation of system (1). De-
fine the following functions:

φ(a) = e−
∫ a
0
δ(s) ds, ψ(a,E(t)) = e−

∫ a
0
r(s)E(t−a+s) ds (2)

The function ψ(a,E(t)) represents the probability of infected cells (infected at time
t − a) surviving the immune response to age a. The product φ(a)ψ(a,E(t)) gives
the probability of the infected cells surviving (both immune response and death
by other causes) to age a. Also, denote 1{t>a} as the indicator function for the
set {a ∈ (0,∞) : t > a}. Integrating along the characteristics, we can reformulate
system (1) as:

dT (t)

dt
= s− cT − kV (t)T (t),

T ∗(t, a) = φ(a)ψ(a,E(t))kV (t− a)T (t− a)1{t>a}

+
φ(a)

φ(a− t)
ψ(a,E(t))

ψ(a− t, E(t))
T ∗(0, a− t)1{a>t},

dV (t)

dt
=

∫ ∞
0

p(a)T ∗(t, a) da− γV (t), (3)

dE(t)

dt
= qE(t)

∫ ∞
0

r(a)T ∗(t, a) da− µE(t)

2.2. Integrated semigroup formulation. We introduce the Banach space X̂ =
R × L1(0,∞), its positive cone X̂+ = R+ × L1

+(0,∞) and the linear operator

Â : D(Â) ⊂ X̂ → X̂ defined by

D(Â) = {0} ×W 1,1(0,∞), Â

(
0
φ

)
=

(
−φ(0)
−φ′ − δφ

)
.
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Next consider the Banach space X̃ and its positive cone X̃+ defined by

X̃ = R× X̂ × R2, X̃+ = R+ × X̂+ × R2
+,

endowed with the product norm. Let A : D(A) ⊂ X̃ → X̃ be the linear operator
defined by

D(A) = R×D(Â)× R2, A = diag
(
−c, Â,−γ,−µ

)
.

Then we define the nonlinear map F : D(A)→ X̃ defined by

F
(

(T, (0, T ∗(a)), V, E)
)

=(
s− kV T, (0,−r(a)T ∗(a)E),

∫ ∞
0

p(a)T ∗(a)da, qE

∫ ∞
0

r(a)T ∗(a)da

)
.

Now set X0 = D(A) ∩ X̃+. Then the system (1) can be rewritten as the following
non-densely defined Cauchy problem:

du(t)

dt
= Au(t) + F (u(t)), t ≥ 0, u(0) = u0 ∈ X0 (4)

We can now derive that the above abstract Cauchy problem generates a unique
globally defined, positive and point dissipative, strongly continuous semigroup.

Theorem 2.1. Consider the assumptions put on the parameters of system (1).
Then there exists a unique strongly continuous semigroup (U(t))t≥0 on X0 such

that for each u0 ∈ X0, the map u ∈ C ([0,∞), X0) defined by u(t) = U(t)u0 is a
mild solution of (4), i.e. it satisfies∫ t

0

u(s)ds ∈ D(A), u(t) = u0 +A

∫ t

0

u(s)ds+

∫ t

0

F (u(s))ds, ∀t ≥ 0.

Furthermore (U(t))t≥0 satisfies the following properties:

(i) Let U(t)u0 =
(

(T (t), (0, T ∗(t, a)), V (t), E(t))
)
. Then

S(t)x =
(

(T (t), T ∗(t, a), V (t), E(t))
)

defines a strongly continuous semigroup

(S(t))t≥0 on X := R+ × L1
+(0,∞) × R2

+, where x ∈ X and the components

satisfy the equations in (3).
(ii) The semigroup S(t) is point dissipative in X.

(iii) The semigroup S(t) is asymptotically smooth.

Proof. The proof of existence and uniqueness of mild solution is relatively standard.
Indeed, it is easy to show that the operator A satisfies the Hille-Yosida property.
Also, the non-linearities are Lipschitz continuous on bounded sets. Existence of
solution and semigroup U(t) follows by results from any of [23, 39]. Then integrating
along the characteristics to obtain the Volterra formulation [45], we establish (i).
Next, we show (ii), i.e. the dissipativity of the semigroup S(t). Define I(t) =∫∞

0
T ∗(t, a) da. Note that it can be ascertained that I(t) is differentiable in t by

the smoothing properties of convolution which defines the Volterra formulation (3).
Consider the time-derivative of M(t) := T (t) + I(t) + c

2‖p‖V (t) + 1
2qE(t):

d

dt
M(t) = s− cT −

∫ ∞
0

δ(a)T ∗(t, a) da− E(t)

∫ ∞
0

r(a)T ∗(t, a) da

c

2 ‖p‖

(∫ ∞
0

p(a)T ∗(t, a) da− γV
)
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+
1

2q
qE(t)

(∫ ∞
0

r(a)T ∗(t, a) da− µ
)

≤ s− cT − c
∫ ∞

0

T ∗ da+
c

2

∫ ∞
0

T ∗ da− c

2 ‖p‖
γV

− 1

2
E(t)

∫ ∞
0

r(a)T ∗(t, a) da− µ

2q
E(t)

≤ s− αM(t)

where α = min( c2 , γ, µ). This implies that

lim sup
t→∞

M(t) ≤ s

α
.

Boundedness follows from positivity of solutions.
Finally, to show asymptotic smoothness, we simply note that the proof is almost

identical to the proof of Proposition 1 in [7].

3. Threshold dynamics.

3.1. Equilibria and reproduction numbers. First, we can readily obtain the
virus-free equilibrium x0 :=

(
s
c , 0, 0, 0

)
. Define the basic reproduction number, R0:

R0 =
sk
∫∞

0
p(a)φ(a) da

cγ
.

If R0 > 1, then there exists the immune-free virus equilibrium,

x1 = (T 1, T
∗
1(a), V 1, 0), where

T 1 =
s

cR0
, V i =

s− cT 1

kT 1

, T
∗
1(a) = kV 1T 1φ(a).

In order to determine existence of a positive immune-controlled virus equilibrium,

let x2 = (T , T
∗
(a), V , E) denote such an equilibrium. Thus, we find that T

∗
(a) =

kV Tφ(a)exp
(
−E

∫ a
0
r(`) d`

)
. Inserting this expression into the RHS of the V̇ equa-

tion and equating to zero, we find

T =
γ

k
∫∞

0
p(a)φ(a)exp

(
−E

∫ a
0
r(`) d`

)
da
.

Then, utilizing the fact that kV T = s− cT and inserting T
∗
(a) into the RHS of the

Ė equation and setting equal to zero, we obtain the equation:

s− cγ

k
∫∞

0
p(a)φ(a)exp

(
−E

∫ a
0
r(`) d`

)
da

=
µ

q
∫∞

0
r(a)φ(a)exp

(
−E

∫ a
0
r(`) d`

)
da
.

Denote the LHS of the above equation as g(E) and the RHS as h(E). Observe that
g(E) is decreasing and h(E) is increasing. Thus there exists the positive equilibrium
x2, which is always unique, if and only if:

g(0) > h(0)⇔ s− cγ

k
∫∞

0
p(a)φ(a) da

=
µ

q
∫∞

0
r(a)φ(a) da

⇔ 1 <

(
1− 1

R0

)
RE ,

where RE :=
sq

µ

∫ ∞
0

r(a)φ(a) da.
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Thus, we define

R1 =

(
1− 1

R0

)
RE . (6)

The unique positive equilibrium x2 exists if and only if R1 > 1. Note that R0 > 1
is required for this condition to hold.

3.2. Stability analysis. In the following, we will conduct stability analysis of the
equilibria x0 and x1 (the characteristic equation corresponding to x2 is too complex
for any analytical results). For local stability, the strategy is to linearize about the
equilibrium xi, where i = 0, 1, 2:

du(t)

dt
= Au(t) +DF (xi)(u(t)) (7)

We first show that the point spectrum is the relevant subset of the spectrum to look
at for stability.

Lemma 3.1. Let Ω = {λ ∈ C : Re(λ) > min(−c,−γ,−µ)}. Then the spectrum
σ (A+DF (xi)) ∩ Ω only consists of the point spectrum.

Proof. Define A0 as the part of A in D(A). It is the infinitesimal generator of a

C0-semigroup on D(A), denoted by (SA0
(t))t≥0. It is not hard to show that the

exponential growth rate of this semigroup satisfies ωess(A0) ≤ min(−c,−γ,−µ).
Clearly DF (xi) is a bounded linear operator and since the semigroup (S(t)) is
asymptotically smooth, it is not hard to show that DF (xi) is also compact. Denote(
SA0+DF (xi)(t)

)
t≥0

as the linear C0-semigroup generated by (A0 +DF (xi))0, the

part of A0 +DF (xi) in D(A). It follows that
ωess ((A0 +DF (xi))0) ≤ min(−c,−γ,−µ). Applying results in [40, 14], we find
that the spectrum σ (A+DF (xi)) ∩ Ω only consists of the point spectrum.

Proposition 1. Consider the system (3). If R0 < 1, then the infection-free equi-
librium x0 is globally asymptotically stable in the state space X. Conversely, if
R0 > 1, then x0 is unstable.

Proof. We first determine local stability by considering the linear system (7) about
x0. In order to linearize around x0, consider perturbations around x0: x(t) =
T (t) − s

c , y(t, a) = T ∗(t, a), v(t) = V (t) and u(t) = E(t). After simplification and
neglecting nonlinear terms, we obtain the following equations:

dx(t)

dt
= −cx(t)− k s

c
v(t)

∂y(t, a)

∂t
+
∂y(t, a)

∂a
= −δ(a)y(t, a), y(t, 0) = kv(t)

s

c
dv(t)

dt
=

∫ ∞
0

p(a)y(t, a) da− γv(t)

du(t)

dt
= −µu(t).

By Lemma 3.1, we only need to consider exponential solutions to the above system
of the form x(t) = x0e

λt, y(t, a) = y0(a)eλt, v(t) = v0e
λt, and u(t) = u0e

λt. The
below linear system follows:

λx0 = −cx0 − k
s

c
v0
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λy0(a) + y′0(a) = −δ(a)y0(a), y0(0) = kv0
s

c

λv0 =

∫ ∞
0

p(a)y0(a) da− γv0

λu0 = −µu0

Thus y0(a) = kv0
s
cφ(a)e−λa. Inserting this into the third equation above and

canceling out v0, the characteristic equation for λ is obtained:

λ+ γ = k
s

c

∫ ∞
0

p(a)φ(a)e−λa da

First, suppose that R0 < 1. We will show that any eigenvalue λ of the characteristic
equation has negative real part. Suppose by way of contradiction that Re(λ) ≥ 0.
Then

1 ≤ |λ+ γ|
γ

=
k sc
∫∞

0
p(a)φ(a)|e−λa| da

γ
≤
k sc
∫∞

0
p(a)φ(a) da

γ
= R0.

This implies that R0 ≥ 1, which is a contradiction. Hence, Re(λ) < 0 and x0 is
locally asymptotically stable when R0 < 1. On the other hand if R0 > 1, then
γ < k sc

∫∞
0
p(a)φ(a) da, which implies there is a positive eigenvalue λ. Thus, x0 is

unstable.
Furthermore, it can be proved that x0 is globally asymptotically stable when

R0 < 1. Indeed, since E(t) is non-negative for all t, we find that

dV (t)

dt
≤
∫ t

0

kp(a)φ(a)V (t− a)T (t− a) da+

∫ ∞
t

φ(a)

φ(a− t)
T ∗(0, a− t) da− γV (t)

Then using a simple comparison principle and Theorem 3.3 in [7], we find that
V (t)→ 0 as t→∞. With the same argument contained in the proof of Proposition
4.1 in [6], we also conclude that T ∗(t, a)→ 0 in L1

+(0,∞) as t→∞.

Proposition 2. If R1 < 1 < R0, then x1 is locally asymptotically stable. However,
if R1 > 1, then x1 is unstable.

Proof. Linearizing around x1 produces the following system:

dx(t)

dt
= −cx(t)− kT 1v(t)− kV 1x(t)

∂y(t, a)

∂t
+
∂y(t, a)

∂a
= −δ(a)y(t, a)− r(a)T

∗
(a)u(t), y(t, 0) = kv(t)T 1 + kV 1x(t)

dv(t)

dt
=

∫ ∞
0

p(a)y(t, a) da− γv(t)

du(t)

dt
= u(t)

∫ ∞
0

q(a)T
∗
(a) da− µu(t).

Assuming solutions of the exponential form as previously, we obtain the following
system:

λx0 = −cx0 − kT 1v0 − kV 1x0

λy0(a) + y′0(a) = −δ(a)y0(a)− r(a)T
∗
(a)u0, y0(0) = kv0T 1 + kV 1x0

λv0 =

∫ ∞
0

p(a)y0(a) da− γv0

λu0 = u0q

∫ ∞
0

r(a)T
∗
(a) da− µu0. (8)



STRUCTURED IMMUNE-VIRUS MODEL 895

If u0 6= 0 and x0 = v0 = 0, y0(a) ≡ 0, then the equation (8) gives the eigenvalue:

λ = q

∫ ∞
0

r(a)T
∗
(a) da− µ

= kV 1T 1q

∫ ∞
0

r(a)φ(a) da− µ

= (s− cT 1)q

∫ ∞
0

r(a)φ(a) da− µ

= µ

[(
1− 1

R0

)
sq

µ

∫ ∞
0

r(a)φ(a) da− 1

]
= µ(R1 − 1)

Thus λ > 0 when R1 > 1. Therefore x1 is unstable when R1 > 1. If R1 < 1, then
this eigenvalue λ is negative. In this case, the other equations need to be checked.
Hence, we assume that u0 = 0. Then, y0(a) = k(v0T 1 + x0V 1)φ(a)e−λa. Also,

x0 = −kv0T 1

λ+c+kV 1
. Then:

λv0 = k

[
v0T 1 −

(
kv0T 1

λ+ c+ kV 1

)
V 1

] ∫ ∞
0

p(a)φ(a)e−λa da− γv0

⇒
(
λ+ c+ kV 1

)
(λ+ γ)

λ+ c
= kT 1

∫ ∞
0

p(a)φ(a)e−λa da

Now suppose by way of contradiction that Re(λ) ≥ 0. Then:

1 <

∣∣∣∣∣
(
λ+ c+ kV 1

)
(λ+ γ)

(λ+ c)γ

∣∣∣∣∣ =
kT 1

γ

∫ ∞
0

p(a)φ(a)|e−λa| da

≤ ks

γcR0

∫ ∞
0

p(a)φ(a) da =
R0

R0
= 1

Thus we obtain 1 < 1, a contradiction. Hence Re(λ) < 0 for this eigenvalue. This
implies that x1 is locally asymptotically stable when R1 < 1 and R0 > 1.

We conjecture that x1 is globally asymptotically stable whenR1 < 1 < R0. How-
ever, a comparison argument does not work in this case and a Lyapunov functional
seems difficult to find. We also remark that Lemma 3.1 applies to the positive
equilibrium x2, so that the point spectrum determines the stability. Linearizing
about x2 and looking for exponential solutions, we find the characteristic equation
G(λ) = 1 where

G(λ) =
qE

λ

 (λ+ c)kT
∫∞
0
r(a)φ(a)ψ(a,E)e−λa da

∫∞
0
p(a)

∫ a
0
r(b)T

∗
(b)

φ(a)
φ(b)

ψ(a,E)

ψ(b,E)
e−λ(a−b) db da

(λ+ c+ kV )(λ+ γ)− (λ+ c)kT
∫∞
0
p(a)φ(a)ψ(a,E)e−λa da

+

∫ ∞
0

r(a)

∫ a

0

r(b)T
∗
(b)

φ(a)

φ(b)

ψ(a,E)

ψ(b, E)
e
−λ(a−b)

db da

]
. (9)

This characteristic equation is too difficult to analyze, and in Section 4, numerical
simulations suggest that x2 can be destabilized when R1 > 1, undergoing a Hopf
bifurcation.

3.3. Uniform persistence. In this section, we consider uniform persistence of the
system by utilizing results of Hale and Waltman [16].
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Let ā1 = sup {a ∈ (0,∞) : p(a) > 0} and a2 = sup {a ∈ (0,∞) : q(a) > 0}. Note
that, possibly, āi = +∞. Define the following sets:

∂M1 =

{
η(a) ∈ L1

+(0,∞) :

∫ ā1

0

η(a) da = 0

}
, M1 = L1

+(0,∞) \ ∂M1

∂M =

{
η(a) ∈ L1

+(0,∞) :

∫ ā1∨ā2

0

η(a) da = 0

}
, M = L1

+(0,∞) \ ∂M

∂X1 = R+ × ∂M1 × {0} × R+, X1 = X \ ∂X1, X+
1 = R+ ×M1 × (0,∞)× R+

∂X2 =
(
R+ × L1

+(0,∞)× R+ × {0}
)⋃

(R+ × ∂M × {0} × R+) , X2 = X \ ∂X2

Lemma 3.2. The sets X1, X2, ∂X1 and ∂X2 are forward invariant under the
semigroup S(t). Also, ∀x ∈ ∂X1, we have S(t)x → x0 as t → ∞; and ∀x ∈
∂X2 ∩X1, we have S(t)x→ x1 as t→∞. In addition, S(t)X1 ⊂ X+

1 ∀t > 0.

Proof. First we show the conclusions for ∂X1. Suppose by way of contradic-
tion that there exists x ∈ ∂X1 and t1 > 0 such that S(t1)x ∈ X1. Let τ =
inf {t > 0 : S(t)x ∈ X1}. Since X1 is an open set in X and by the continuity of the
semigroup S(t), we obtain that S(τ)x /∈ X1 and, hence, S(τ)x ∈ ∂X1. For t ≥ 0, de-

fine x3(t) = 0, x4(t) = E(t), x2(t, a) = φ(a)
φ(a−t)

ψ(a,E(t))
ψ(a−t,E(t))T

∗(0, a− t)1{a>τ+t}. Then,

ξ(t) := (T (t+ τ), x2(t, a), x3(t), x4(t+ τ)) is a solution to the system with initial
condition ξ(0) = S(τ)x and ξ(t) ∈ ∂X1 ∀t ≥ 0. Then, by forward uniqueness of
solutions, S(t)x ∈ ∂X1 ∀t ≥ 0, which contradicts our assumption that S(t1)x ∈ X1.
Thus ∂X1 is forward invariant. It is clear that for any solution in ∂X1, T (t)→ T0,
hence we have S(t)x→ x0 as t→∞.

Now we show X1 is forward invariant. Notice that V (t) ≥ V (0)e−γt for all t ≥ 0.
If V (0) > 0, then the result follows. If V (0) = 0, then

∫∞
0
p(a)T ∗(0, a) da > 0

(since x ∈ X1), which implies that ∃τ > 0 such that ∀t ∈ (0, τ ], we have V (t) > 0.
Note that in this case, we can choose τ such that

∫∞
0
p(a)T ∗(t, a) da > 0 for all

t ∈ [0, τ ]. Then, the same argument applies with V (t) ≥ V (τ)e−γt for t ≥ τ .
Hence V (t) > 0 ∀t > 0. Then, since T (t) > 0 ∀t > 0, we have that T ∗(t, a) ≥
kV (t − a)T (t − a)φ(a) > 0 for all t > 0. Therefore, S(t)X1 ⊂ X+

1 for all t > 0
and S(t)X+

1 ⊂ X
+
1 for all t ≥ 0. With a simple argument, this implies that ∂X2 is

forward invariant. By Theorem 3.7 in [7], ∀x ∈ ∂X2 ∩X1, we have S(t)x → x1 as
t→∞. Finally, E(t) ≥ E(0)e−µt implies that X2 is forward invariant.

We will use the following definitions. The omega limit set of x ∈ X, ω(x), is
defined as

ω(x) := {y ∈ X : ∃ tn ↑ ∞ such that S(tn)x→ y} .
The stable manifold of a compact invariant set A ⊂ X:

Ws(A) = {x ∈ X : ω(x) 6= ∅ and ω(x) ⊂ A} .
The alpha limit set of x, α(x), and unstable manifold of a compact invariant set A,
Wu(A), can be similarly defined with the added caveat that there is no backward
uniqueness hence the definitions will possibly consider multiple backward orbits
from a point.

Theorem 3.3. Suppose that R0 > 1. Then S(t) is uniformly persistent with respect
to X1, i.e. ∃ε > 0 such that for any x ∈ X1, lim inft→∞ d(S(t)x, ∂X1) ≥ ε.

Proof. We will apply Theorem 4.2 in [16] to prove uniform persistence. Observe that
∂X1 ⊂ Ws({x0}). Also (∂X1 \ {x0}) ∩Wu({x0}) = ∅. Indeed, let x ∈ ∂X1 \ {x0}.
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Any backward orbit of x must stay in ∂X1 since X1 is forward invariant. Suppose
x = (T (0), `(a), 0, E(0)). If `(a) = 0 (in L1), then we have an ODE with a unique
equilibrium and limt→−∞ T (t) = 0 or ∞. Thus in this case x0 cannot be an α-limit
point of x. Also such an x cannot be contained on a complete orbit. With this, we
conclude that {x0} is isolated in ∂X1. Now suppose

∫∞
0
`(a) da > 0. Since x ∈ ∂X1,∫ a1

0
`(a) da = 0. Suppose ∃τ > 0, x1 = (T (−τ), `1(a), 0, E(−τ)) ∈ ∂X1 such that

S(τ)x1 = x. Then,
∫∞
a1
`(a) da =

∫∞
a1+τ

e−
∫ a
a−τδ(s) ds`(a − τ) da <

∫∞
a+τ

`1(a) da.

Hence, the norm of the L1-component is strictly increasing on backward orbits and
hence x0 cannot be an α-limit point of x. Therefore, in order for {x0} to be acyclic
and isolated (which would satisfy the assumptions of Theorem 4.2 in [16]), and to
satisfy the equivalent condition for uniform persistence given in the conclusion of
the same theorem, we need only to prove Ws({x0}) ∩X1 = ∅.

Suppose by way of contradiction that there exists x ∈ X1 such that x ∈Ws({x0}).
Then, utilizing arguments contained in the proof of Theorem 3.6 in [7] and the
asymptotic smoothness of S(t), we can establish S(t)x → x0 as t → ∞. It follows
that we can find a sequence (xn) ⊂ X1 such that

‖S(t)xn − x0‖ <
1

n
∀t ≥ 0.

Let S(t)xn = (Tn(t), T ∗n(t, a), Vn(t), En(t)) and xn = (Tn(0), T ∗n(0, a), Vn(0), En(t)).
The following is true:

|Tn(t)− T0| ≤
1

n
,En(t) ≤ 1

n
∀t ≥ 0.

Then, by inserting the integrated formal solution of T ∗(t, a) into the V̇ equation
and applying a simple comparison principle, we deduce that Vn(t) ≥ yn(t) where
yn(t) is a solution of

dyn(t)

dt
=

∫ t

0

kp(a)φ(a)e
−a
n ‖r‖∞

(
T0 −

1

n

)
yn(t− a) da− γyn(t), yn(0) = Vn(0).

Note that if Vn(0) = 0, then clearly T ∗n(0, a) ∈M1 and hence ẏn(0) > 0, so without
loss of generality we can take Vn(0) > 0. We claim that for n sufficiently large, yn is
unbounded. The assumption R0 > 1 is equivalent to −γ + kT0

∫∞
0
p(a)φ(a) da > 0.

Hence ∃N ∈ N such that −γ + k
(
T0 − 1

N

) ∫∞
0
p(a)φ(a)exp

(
−a‖r‖∞

n

)
da > 0. Then

by Lemma 3.5 in [7], yN is unbounded. Since VN ≥ yN , we get that VN is unbounded
and, hence, S(t)xN is unbounded, which is certainly a contradiction. Therefore
Ws({x0}) ∩X1 = ∅. By Theorem 4.2 [16], we get that S(t) is uniformly persistent
with respect to X1. Then by Theorem 3.7 in [24], we can conclude for our case
that there exists a compact set A0 ⊂ X1 which is a global attractor for {S(t)}t≥0

in X1.

Because S(t)X1 ⊂ X+
1 , the global attractor, A0, is actually contained in X+

1 .
Therefore, there exists ε > 0 such that

lim inf
t→∞

V (t) ≥ ε, and lim inf
t→∞

d(T ∗(t, a), ∂M0) ≥ ε.

Theorem 3.4. Suppose that R1 > 1. Then S(t) is uniformly persistent with respect
to X2, i.e. ∃ε > 0 such that for any x ∈ X2, lim inft→∞ d(S(t)x, ∂X2) ≥ ε.

Proof. Again, we will apply Theorem 4.2 in [16] to prove uniform persistence. Let
Aδ be the (strong) global attractor of ∂X2. Partition ∂X2 as Y1

⋃
Y2 where Y1 =



898 CAMERON BROWNE

(R+ × ∂M × {0} × R+) and Y2 = ∂X2 \ Y1. Observe that Y2 is forward invariant.
Observe that Y1 ⊂ Ws({x0}). Also (Ws({x0}) ∩ ∂X2) = Y1. In addition, Y2 =
∂X2 ∩X1, and utilizing Lemma 3.2, we can obtain (Ws({x1}) ∩ ∂X2) = Y2. Also,

consider Ãδ := ∪Aδω(x). We obtain that Ãδ = {x0, x1}. We claim that {x0} and
{x1} are isolated invariant sets. Clearly {x0} is isolated by the same argument
contained in Theorem 3.3. Next, let B := Br(x1) be an open ball of sufficiently
small radius r around x1. We claim that B is an isolating neighborhood. Suppose
by way of contradiction that {x1} is not a maximal invariant set. Then, let M ⊂ B
be an invariant set with M 6= {x1}. There exists a complete orbit γ(x) ⊂ M for
x ∈ M \ {x1} ⊂ X \ Y1. If x ∈ Y2, then Theorem 3.7 in [7] implies x = x1,
a contradiction. If x ∈ M ∩ X2, then, using Proposition 2, the instability of x1

implies that S(t)x /∈ M for some t, contradicting the invariance of M . Therefore,

Ãδ is isolated.
The next condition to check is for Ãδ to be acyclic. Consider the semigroup

restricted to the boundary, i.e. S(t)|∂X2 and first suppose there is a cycle of length
2. If this is the case, then there exists x ∈ ∂X2 such that x ∈Wu({x1})∩Ws({x0}).
Then S(0)x ∈ Y1, i.e. V (0) = 0 and T ∗(0, a) ∈ ∂M . Note that Y1 ⊂ ∂X1. The
forward invariance of X1 implies that V (t) = 0 and T ∗(t, a) ∈ ∂M1 for any negative
t on a backward orbit through x. Thus α(x) ⊂ ∂X1. So x /∈ Wu({x1}). Next,
consider the possibility of a cycle of length 1. We can use similar arguments to
those contained in Theorem 5.1 (Lemma 2) of [6] to show that there can not be
x ∈ Wu({xi}) ∩Ws({xi}) for x 6= xi, i = 1, 2, and x ∈ ∂X2. It remains only to
prove that Ws({x1}) ∩X2 = ∅.

Suppose by way of contradiction that there exists x ∈ X2 such that x ∈Ws({x1}).
Then, as before S(t)x → x1 as t → ∞. It follows that we can find a sequence
(xn) ⊂ X2 such that

‖S(t)xn − x0‖ <
1

n
∀t ≥ 0.

Let S(t)xn = (Tn(t), T ∗n(t, a), Vn(t), En(t)) and xn = (Tn(0), T ∗n(0, a), Vn(0), En(t)).
The following is true:

|Tn(t)− T 1| ≤
1

n
, |Vn(t)− V 1| ≤

1

n
, En(t) ≤ 1

n
∀t ≥ 0.

Then, by inserting T ∗(t, a) into the Ė equation and applying a simple comparison
principle as before, we deduce that En(t) ≥ yn(t) where yn(t) is a solution of

dyn(t)

dt
=

(
(T 1 −

1

n
)(V 1 −

1

n
)

∫ t

0

kq(a)φ(a)e
−a
n ‖r‖∞ da− µ

)
yn(t),

where yn(0) = En(0) > 0. We claim that for n sufficiently large, yn is unbounded.
The assumption R1 > 1 is equivalent to

kV 1T 1

∫ ∞
0

q(a)φ(a)da− µ > 0.

Then for sufficiently large n, there exists τn such that dyn(t)
dt ≥ Ayn(t) for all t ≥ τn

for some positive constant A. Thus yn is unbounded and, since En(t) ≥ yn(t),
En is unbounded, which is a contradiction. Therefore Ws({x1}) ∩ X2 = ∅. By
Theorem 4.2 [16], we get that S(t) is uniformly persistent with respect to X2. Then
by Theorem 3.7 in [24], we can conclude for our case that there exists a compact
set A0 ⊂ X2 which is a global attractor for {S(t)}t≥0 in X2.
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Analogous to the case R0 > 1, this result implies that if R1 > 1, then there
exists ε > 0 such that

lim inf
t→∞

V (t) ≥ ε, lim inf
t→∞

E(t) ≥ ε, and lim inf
t→∞

d(T ∗(t, a), ∂M0) ≥ ε.

Summarizing the results of this subsection, we found that: (i) if R0 > 1, then the
viral components of the solution to (1) are uniformly persistent; and (ii) if R1 > 1,
then both the viral components and the immune effector population are uniformly
persistent.

4. Numerical simulations and oscillatory dynamics. In this section, we first
conduct numerical simulations of solutions to model (1). Suppose τ is the in-
tracellular delay between viral entry of an infected cell and viral production, i.e.
τ = inf {a : p(a) > 0}. Also, suppose that the immune recognition is of the form
r(a) = r1{a>σ}, i.e. the immune cells can recognize infected cells σ units of time
after cell infection. If σ = τ , i.e. immune recognition occurs when viral produc-
tion starts, then the system can be rewritten with distributed delays and Shu et
al. proved that the positive equilibrium x2 is globally stable in such a model [35].
In the following simulations, we consider the piecewise constant viral production
rate p(a) = p1{a>τ} and infected cell death rate δ(a) = c1{a<τ} + ν1{a>τ}. As σ

decreases from values larger than τ , the healthy cell equilibrium, T , increases since
the immune response can recognize and kill the infected cell at earlier infection-ages
(see Figure 1(a)).

Interestingly we find that the equilibrium x2 can go from local stability to insta-
bility as the age of immune recognition σ decreases. Indeed simulations show that
when σ decreases past a critical value σ∗ < τ , a bifurcation occurs in which the
numerical solutions produce sustained oscillations for σ < σ∗ (see Figure 1). For
the chosen parameters (note that τ = 2 d (days)), σ∗ ≈ 1.57 d. We hypothesize
that this value σ∗ corresponds to a Hopf bifurcation, but given the complexity of
the characteristic equation for the eigenvalues corresponding to the equilibrium x2,
it is difficult to directly confirm this. Despite the fact that the ability of the immune
effectors to recognize infected cells before viral production can induce oscillations,
early immune recognition still likely confers an advantage for the host. Indeed,
Figure 1 shows that the amount of healthy T-cells is substantially increased for
σ = 0.5 d and, to a lesser extent, σ = 1.5 d, compared with σ = 1.8 d. However,
at the trough of the periodic solution, the T-cell count for σ = 1.5 d becomes lower
than the stable equilibrium for σ = 1.8 d, and the large amplitude in V (t) for
σ = 0.5 d and σ = 1.5 d pushes the peak viral load well above the steady state
value for V when σ = 1.8 d.

Numerical simulations indicate that the system can undergo a Hopf bifurcation
and have sustained oscillations when the “early immune recognition” is sufficient,
but further evidence is needed to support this assertion. Unfortunately, the char-
acteristic equation (9) is too complicated to find the eigenvalues. Additionally,
oscillations are often found to occur in age-structured and delay differential equa-
tion models. Thus it would be informative to isolate the effect of “early killing”
inducing oscillations in an ordinary differential equation model in which the eigen-
values corresponding to the positive equilibrium can be calculated. Indeed, we will
show that oscillatory dynamics are produced by an ODE which is motivated from
a special case of a slightly generalized version of model (12). The ODE also pro-
vides a simple means of modeling CTL “early killing” or “late killing” of infected
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Figure 1. Effect of early immune recognition on dynamics. Simu-
lations of (1) in the case of piecewise constant parameters: p(a) =
p1{a>τ}, r(a) = r1{a>σ} and δ(a) = c1{a<τ} + ν1{a>τ}. (a) The

equilibrium number of healthy cells, T , increases as the time of im-
mune recognition after cell infection, σ, decreases. However smaller
values of σ also lead to instability of the equilibrium and sustained
oscillations of virus (red), healthy cells (blue) and immune effec-
tors (green). The bifurcation from stable equilibrium to sustained
oscillations occurs as σ decreases below σ∗ ≈ 1.57 d. In the sim-
ulations, σ is varied as follows: (b) σ = 0.5 d, (c) σ = 1.5 d, (d)
σ = 1.8 d. Note that in (b), the initial condition for the simulation
is set as the (unstable) positive equilibrium, whereas in (c) and (d)
the initial condition is set as an initial unit of virus in an otherwise
healthy individual (T (0) = 106 ml−1, T ∗(0, a) ≡ 0 ml−1, V (0) =
1 ml−1, E(0) = 1 ml−1). Also, note that the cell infection age
when viral production begins is assumed τ = 2 d. The other pa-
rameters are s = 104 ml−1 d−1, c = 0.01 d−1, k = 8×10−7 ml d−1,
ν = 0.7 d−1, p = 200 d−1, r = 0.003 ml d−1, q = 0.1 and µ = 1 d−1.

cells. To derive an ODE from the aforementioned age-structured model, we use
the linear chain trick [36]. For simplicity let T ∗(0, a) ≡ 0. Also, we assume the
age-independent rates δ(a) ≡ α and r(a) ≡ r. Define Y (t) :=

∫∞
0
T ∗(t, a) da.

Y (t) =

∫ t

0

T ∗(t, a) da

=

∫ t

0

kV (t− a)T (t− a)e−αae−r
∫ a
0
E(t−a+`) d` da
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=

∫ t

0

kV (u)T (u)e−(α(t−u)+r
∫ t−u
0

E(u+`) d`) du

Therefore,

dY (t)

dt
= kV (t)T (t)− (α+ rE(t))

∫ t

0

kV (u)T (u)e−(α(t−u)+r
∫ t−u
0

E(u+`) d`) du

= kV (t)T (t)− αY (t)− rE(t)Y (t).

Now define I(t) =
∫∞

0
αaT ∗(t, a) da. Thus

dI(t)

dt
=

d

dt

∫ t

0

α(t− u)kV (u)T (u)e−(α(t−u)+r
∫ t−u
0

E(u+`) d`) du

=

∫ t

0

kV (u)T (u)e−(α(t−u)+r
∫ t−u
0

E(u+`) d`) [α− (α+ rE(t))α(t− u)] du

= αY (t)− αI(t)− rE(t)I(t).

For this case, we remove the assumption that p(a) ∈ L∞, and let p(a) = pαa.
Also, we generalize the constant parameter q to the age-dependent function q(a) =
q1 + q2αa. Then,

dV (t)

dt
= p

∫ ∞
0

αaT ∗(t, a) da− γV (t) = pI(t)− γV (t),

dE(t)

dt
= rE(t)

∫ ∞
0

(q1 + q2αa)T
∗(t, a)da− µE(t) = rE(t)(q1Y (t) + q2I(t))− µE(t)

Now to reduce the dimension of the system we make the quasi-steady state approx-
imation V (t) ≈ p

γ I(t), a common assumption for within-host virus models. Let

β := k pγ and then the following ODE system is obtained:

dT

dt
= s− cT − βIT

dY

dt
= βIT − αY − rEY

dI

dt
= αY − αI − rEI

dE

dt
= rE(q1Y + q2I)− µE

This is a special case of the following ODE model:

dT

dt
= s− cT − βIT

dY

dt
= βIT − αY − ηY − r1EY (10)

dI

dt
= αY − νI − r2EI

dE

dt
= E(q1r1Y + q2r2I)− µE.

Here Y (t) can be thought of as infected cells in the eclipse (non-productive) phase
and I(t) are the infected cells in the productive stage. The immune effector cells
can recognize infected cells in both phases with r1 being the killing rate during the
eclipse phase and r2 the killing rate during the productive phase of the infected cell.
Inclusion of an eclipse phase in the standard ODE virus model has been considered
in various works [9, 2, 33, 47]. In particular, Zhou et al. [47] studied system
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(10) without immune recognition of infected cells in eclipse phase (r1 = 0) and
an additional term allowing infected cells to transition back to healthy cells from
the eclipse stage. They classified the global dynamics in such a system and found
that the positive equilibrium is globally asymptotically stable under the appropriate
conditions. Specifically, if we consider system (10) with r1 = 0, then the unique
positive equilibrium y2 = (T , Y , I, E) is globally stable whenever it exists (in the
positive orthant). We will show that letting r1 > 0 can destabilize this equilibrium
through a Hopf bifurcation. We also remark that Althaus et al. [2] considered the
standard virus model with eclipse phase and implicit inclusion of “early” and “late”
killing by immune effectors, i.e. they did not consider an E variable and assumed
that the immune response simply alters η or ν.
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Figure 2. Sustained oscillations in ODE model of “early immune
recognition and killing” (system (10)). (a) The real part of the pair
of complex eigenvalues λ = a± bi with maximal real part, Reλ, of
the Jacobian (11) corresponding to the positive equilibrium x2 as
r1 varies. A Hopf bifurcation occurs at r1 ≈ 0.0014 ml d−1 and
Reλ > 0 for r1 ∈ [0.0014, 0.003]. (b,c) Simulation of the solution
to (10) when r1 = 0.002 ml d−1. (d) Asymptotic periodic solution
in the case r1 = 0.0015 ml d−1. In all simulations, the remaining
parameters are: s = 104 ml−1 d−1, c = η = 0.01 d−1, ν = 0.7 d−1,
α = 0.5 d−1, β = 1.29 × 10−5 ml d−1, q1 = q2 = 0.1, r2 =
0.003 ml d−1.

Analogous to the general age-structured model (1), we can define the following
reproductive numbers for the ODE system (10) (which are consistent with findings
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in [33, 47]):

R0 =
sβα

c(α+ η)ν
, where β =

kp

γ
,

RE =
sq1r1

µ(α+ η)

(
1 +

α

ν

q2r2

q1r1

)
,

R1 =

(
1− 1

R0

)
RE .

Then it can be shown that there exists a immune-free infection steady state x1 =(
T̄1, Ȳ1, Ī1, 0

)
(with T̄1, Ȳ1, Ī1 > 0) when R0 > 1. And there exists a positive steady

state x2 =
(
T̄ , Ȳ , Ī, Ē

)
(with T̄ , Ȳ , Ī, Ē > 0) when R1 > 1. The Jacobian of the

system (10) at the equilibrium x2 is:

J =


−c− βĪ 0 −βT̄ 0
βĪ −η − α− r1Ē βT̄ −r1Ȳ
0 α −ν − r2Ē −r2Ī
0 q1r1Ē q2r2Ē 0

 (11)

The characteristic polynomial of J , det(λI − J), is generally a quartic polynomial
in λ where some coefficients are complicated expressions of the model parameters.
Thus it seems too difficult to analytically prove whether or not a Hopf bifurcation
occurs with respect to the parameter r1. However, we numerically calculate the
equilibrium x2, along with the eigenvalues of (11), while varying r1 and find that
a Hopf bifurcation occurs. In particular, for the chosen parameters in Figure 2(a),
as r1 increases past approximately 0.0014, the real part of the pair of complex
eigenvalues with maximal real part goes from negative to positive, and then becomes
negative again after r1 ≈ 0.003. This signals that a Hopf bifurcation occurs at
r1 ≈ 0.0014, with oscillatory dynamics in the parameter range r1 ∈ [0.0014, 0.003],
as opposed to a stable attractive equilibrium for values of r1 outside this range.
The sustained oscillations are illustrated in Figure 2.

5. Extension to multiple immune effector populations. In this section, we
extend the age-structured model (1) to include multiple distinct immune effector
populations. Consider the following general model for the interaction of multiple
variants of immune effector cells and a virus population, with age-since-infection
structure in the infected cell compartment:

dT (t)

dt
= s− cT − kV (t)T (t),

∂T ∗(t, a)

∂t
+
∂T ∗(t, a)

∂a
= −δ(a)T ∗(t, a)− T ∗(t, a)

m∑
j=1

rj(a)Ej(t), (12)

T ∗(t, 0) = kV (t)T (t),

dV (t)

dt
=

∫ ∞
0

p(a)T ∗(t, a) da− γV (t),

dEj(t)

dt
= qjEj(t)

∫ ∞
0

rj(a)T ∗(t, a) da− µjEj(t), j = 1, . . . , n.

This is a generalization of the ODE model:

dT (t)

dt
= s− cT − kV (t)T (t),



904 CAMERON BROWNE

dT ∗(t)

dt
= kV (t)T (t)− δT ∗(t)− T ∗(t)

m∑
j=1

rjEj(t), (13)

dV (t)

dt
= pT ∗(t)− γV (t),

dEj(t)

dt
= qjrjT

∗(t)Ej(t)− µjEj(t), j = 1, . . . , n.

Assume, without loss of generality that
q1r1

µ1
≥ q2r2

µ2
≥ · · · ≥ qnrn

µn
.

In system (13), multiple variants of immune response can not coexist in the asymp-
totic dynamics, except in the degenerate case where q1r1

µ1
= q2r2

µ2
. Indeed, consider

the function Wj(t) := Eq1r1j /E
qjrj
1 for each j = 2, . . . , n. Calculating the time

derivative, we find:

dWj(t)

dt
=
Ej(t)

q1r1

E1(t)qjrj

(
q1r1

Ėj(t)

Ej(t)
− qjrj

Ė1(t)

E1

)
= Wj(t) (q1r1(qjrjT

∗(t)− µj)− qjrj(q1r1T
∗(t)− µ1))

= Wj(t) (qjrjµ1 − q1r1µj)

Since in the non-degenerate case q1r1
µ1

>
qjrj
µj

, we obtain that Wj(t) → 0 exponen-

tially which implies Ej(t) → 0 for j = 2, . . . , n. Thus coexistence can not occur in
this model. Note that it is not hard to prove that E1 persists if the reproduction
number, R1, is larger than 1 (where R1 is defined as before, here with respect to
E1) and, hence, E1 competitively excludes the other variants.

We will show that the addition of cell infection-age a and immune recognition
rates ri(a) which are functions of a can induce coexistence of multiple variants.
For simplicity, consider the case of two immune variants. Let E1, E2 be positive
components corresponding to distinct immune variants in a coexistence equilibrium

x2 =
(
T , T

∗
(a), V , E1, E2

)
. The following relations are obtained by setting the

LHS of (12) equal to zero:∫ ∞
0

ri(a)T
∗
(a) da =

µi
qi
, i = 1, 2

kT

∫ ∞
0

p(a)T
∗
(a) da = γ,

T
∗
(a) = kV Tφ(a)exp

(
−
∫ a

0

∑
ri(`)Ei d`

)
kV T = s− cT .

Utilizing these relations, we arrive at the following system of two equations for E1,
E2:

s− cγ

k
∫∞

0
p(a)φ(a)e−

∫ a
0

∑
ri(`)Eid` da

=
µi

qi
∫∞

0
ri(a)φ(a)e−

∫ a
0

∑
ri(`)Eid` da

(14)

Subtracting the two equations and rearranging, we can obtain the following formula:∫ ∞
0

φ(a)exp

(
−
∫ a

0

∑
ri(`)Ei d`

)[
µ1

q1
r2(a)− µ2

q2
r1(a)

]
da = 0 (15)
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(a) (b)

Figure 3. With two immune effector variants (green and black),
the cell infection age-structure can lead to co-existence as stable
equilibrium (a) or sustained oscillations (b).

Clearly, if q1r1(a)
µ1

< (>) q2r2(a)
µ2

for all a ∈ [0,∞), then the coexistence equilibrium

is not possible.
Now we consider the special case where δ(a) = δ11(0,τ)+δ21(τ,∞), p(a) = p1(τ,∞),

r1(a) = r11(σ,τ) and r2(a) = r21(τ,∞). Inserting these functional forms into (15)
and simplifying yields:

δ2 + r2E2 =
µ1q2r2(δ1 + r1E1)

µ2q1r1

(
e(δ1+r1E1)(τ−σ) − 1

) (16)

Now by the first equation in (14), we find that:

s− cγµ1q2r2(δ1 + r1E1)

pkµ2q1r1e−δ1σ
(

1− e−(δ1+r1E1)(τ−σ)
) =

µ1(δ1 + r1E1)

q1r1

(
1− e−(δ1+r1E1)(τ−σ)

)
Define f(z) = s− cγµ1q2r2

pkµ2q1r1
h(z) and g(z) = µ1

q1r1
h(z) where h(z) = z

1−e−(τ−σ)z . Thus

the equilibrium condition is f(δ1 + r1E1) = g(δ1 + r1E1). It can be shown that
h′(z) > 0 for z > 0. Therefore f ′(z) < 0 and g′(z) > 0 for z > 0. Hence, a positive
equilibrium component E1 exists (and is unique) if and only if:

E1 > 0⇔ f(δ1) > g(δ1)

⇔ s− cγµ1q2r2δ1
pkµ2q1r1e−δ1σ(1− e−(τ−σ)δ1)

>
µ1δ1

q1r1(1− e−(τ−σ)δ1)

⇔ 1− e−(τ−σ)δ1

δ1
>

µ1

sq1r1

(
cγq2r2

pkµ2e−δ1σ
+ 1

)
(17)

By (16), we have that

E2 =
µ1q2(δ1 + r1E1)

µ2q1r1

(
e(δ1+r1E1)(τ−σ) − 1

) − δ2
r2

(18)

Thus if (17) is satisfied and (18) is positive, then there is a coexistence equilibrium.
Notice that if (17) is satisfied, then for δ2 sufficiently small, (18) is positive and a
coexistence equilibrium will exist.

The ODE version of this extended model, system (13), has been discussed as a pit-
fall for assuming mass-action killing and proliferation when explicitly modeling im-
mune response [12, 46], since there is competitive exclusion by the dominant immune
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effector population which conflicts with the observed presence of sub-dominant re-
sponses [1, 18]. The preceding argument shows the existence of a (immune effector)
coexistence equilibrium for certain parameters in the age-structured PDE model
(12). Thus, by adding the biologically motivated infected cell age-structure, we can
obtain coexistence of different CTL clones responding to distinct epitopes, which is
observed in reality. The result can be interpreted in ecological terms. Two species
can not occupy the same niche, but by including the infected cell age-structure,
the two immune cell populations can specialize in attacking different parts of the
infected cell lifecycle. Numerical simulations confirm the coexistence equilibrium,
and also show that this equilibrium can either be stable or unstable with sustained
oscillations, as displayed in Figure 3.

6. Discussion. In this article we have considered a within-host virus model with
cellular infection-age structure and immune effectors. The infection-age structure
allows for general intracellular delays and the immune effector population dynamics
can describe the CTL immune response upon interaction with epitopes presented on
the surface of infected cells. Both features have often been included in virus models,
but the general dependence of immune epitope recognition on cellular infection age
in our model (r(a)) is novel and motivated by recent experiments. In particular,
recent research [19] has shown that certain CTL populations can recognize infected
cells early within a few hours of infection well before viral production, whereas
other epitopes are only effective after viral production. The experiments show
“early recognition” CTLs to be especially effective immune responders.

In our general model (1), we find three types of equilibria: virus-free equilibrium
x0, immune-free virus equilibrium x1, and immune-controlled virus equilibrium x2.
Two reproduction numbers determine threshold dynamics: basic reproduction num-
ber R0 and immune reproduction number (at viral steady state) R1. We proved:
(i) if R0 < 1, then the virus-free equilibrium x0 is globally asymptotically stable;
(ii) if R1 < 1 < R0, then x0 is unstable, and the immune-free virus equilibrium
x1 exists and is locally asymptotically stable; (iii) if R1 > 1, then x1 (and x0) is
unstable and the immune-controlled virus equilibrium x2 exists. Furthermore, we
establish the following persistence results: (iv) if R0 > 1, then the virus is uniformly
persistent; (v) if R1 > 1, then the entire system (virus and immune response) is
uniformly persistent.

In the particular case of piecewise constant age-dependent parameters, numerical
simulations show that decreasing σ, the infection-age when epitopes are first recog-
nized, causes an increase in the healthy cell population for the equilibrium x2. This
is in agreement with experimental results showing the importance of early-presented
viral epitopes for rapid elimination of HIV-1-infected cells [19]. Interestingly, in the
numerical simulations, decreasing σ past a critical value σ∗ < τ , where τ is the
intracellular delay in viral production, causes x2 to undergo a Hopf bifurcation and
sustained oscillations occur for σ < σ∗. In addition, we numerically show that
this Hopf bifurcation also occurs in a simpler stage-structured ODE model with
respect to the rate of immune killing of infected cells in their eclipse phase. In
contrast, previous works assume immune recognition exclusively of virus producing
infected cells and have found globally stable equilibria [35, 47]. Thus, early immune
recognition of epitopes is a fundamental mechanism causing sustained oscillations
in within-host virus models. We also find that extending our model to multiple cel-
lular infection-age dependent immune responses can induce coexistence of immune
effector populations.
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There are several directions for future research related to our work in this paper.
Data indicates a dose-response dependency between the levels of “early recognition”
CTL activation and the amount of virus inoculum involved in HIV cell infection
[4, 19]. Thus, we may consider the immune recognition rate to be a function of
cellular infection-age and viral load at infection, i.e. r(a, V (t − a)). In addition,
latently infected cells remain the largest barrier to eradication of HIV and there is
experimental evidence that “early recognition” CTLs can reduce the latent reservoir
[8]. We will include latently infected cells in our model to assess this effect. Finally,
an extended version of model (12) with, both, multiple immune and viral variants
would be difficult to analyze, but may offer insights into an optimal immune response
in a diverse, evolving host immune-virus system.
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