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Abstract. Understanding the global interaction dynamics between tumor and

the immune system plays a key role in the advancement of cancer therapy.
Bunimovich-Mendrazitsky et al. (2015) developed a mathematical model for

the study of the immune system response to combined therapy for bladder can-

cer with Bacillus Calmette-Guérin (BCG) and interleukin-2 (IL-2) . We utilized
a mathematical approach for bladder cancer treatment model for derivation of

ultimate upper and lower bounds and proving dissipativity property in the

sense of Levinson. Furthermore, tumor clearance conditions for BCG treat-
ment of bladder cancer are presented. Our method is based on localization

of compact invariant sets and may be exploited for a prediction of the cells

populations dynamics involved into the model.

1. Introduction. Most mathematical models for population dynamics are defined
by ordinary differential equations (ODEs). For systems with large number of equa-
tions, it is highly important to determine their dynamics in detail, although it is
frequently extremely difficult or impossible to obtain accurate results. For example,
rigorous studies of global interactions dynamics between tumors and the immune
system were performed by Starkov and coauthors in [15] for the Kirschner–Panetta
model [6] and in [16] for the Owen–Sherratt model [11]. In-depth analysis of both lo-
cal and global dynamics in Bunimovich-Mendrazitsky’s model [1] of bladder cancer
were recently accomplished in [4, 17].

The current work is dedicated to dynamical analysis of the tumor cell population
model elaborated by Bunimovich-Mendrazitsky et al. in [3]. This model uses nine
non-linear ODEs investigated numerically [3], in order to describe the effects of
combined BCG and IL-2 immunotherapy for bladder cancer cells and upon other
cells populations in order to evaluate comparative therapeutic scenarios. For the
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class of models defined by ODEs we propose to examine the following properties as
indicators of the model’s validity:

1) positive invariance property of the nonnegative orthant Rn
+,0;

2) dissipativity property in the sense of Levinson, see e.g. [5];
3) ultimate upper and lower bounds for cells populations involved into the model.
Our approach is based on the localization method of compact invariant sets.

Here localization refers to description of the location of all compact invariant sets
within a chosen domain by utilizing equations and inequalities which depend upon
the system parameters. The localization method based on using the first order
extremal conditions was proposed in [7] and was subsequently developed and applied
for analysis of the Lorenz system [8], and later for study of the global dynamics of
various systems within mathematical biology and physics, see e.g. [9, 12, 13, 14,
15, 16, 17].

Intravesical BCG administration is a type of immunotherapy in use to treat
superficial bladder cancer for more than 40 years [10]. BCG is an attenuated, non-
pathogenic strain of Mycobacterium bovis that was originally used as a vaccine
against tuberculosis. In this treatment, bacterial instillations are introduced into
the bladder via catheter inserted through the urethra. BCG is internalized and
processed by both antigen-presenting cells (APC) and uninfected tumor cells, lead-
ing to presentation of the bacterial antigen (Ag) on the tumor surface, attracting
APCs which in turn ingest the entire tumor host cell. Once a tumor cell has been
ingested, tumor Ag’s are presented by the APCs, inducing further recruitment of
immune effector cells to the tumor. BCG antigens stimulate an immune response
characterized by a surge in pro-inflammatory cytokine levels (such as IL-2) in the
infected areas, which is measurable in the urine. Due to inflammatory environ-
ment created by the bacterial infection, APCs cause the cytotoxic T-lymphocytes
(CTLs) to track bacterial antigen and induce apoptosis of tumor cells according to
their affinity to tumor-associated-antigen (TAA). Hence, two types of CTL popula-
tions can destroy tumor cells - either via the TAA mechanism, targeting uninfected
tumor cells, or via bacteria-associated Ag expressed by infected tumor cells. The ad-
dition of exogenous IL-2 is used to exacerbate the local inflammatory environment,
which in turn stimulates the maturation of CTLs and prolongs their life span.

The model (1) describes the rates of change in concentrations of molecules or cell
populations. The mathematical equations are as follows:

dB

dt
=D1(t)− p1AB − p2BTu − µBB,

dA

dt
=γ + ηAB − µAA− p1AB − λATu

I2
I2 + gI

,

dAB
dt

=p1AB − βAB − µA1
AB ,

dAT
dt

=λATu
I2

I2 + gI
− βAT − µA1

AT ,

dEB
dt

=− µEEB +
β1BABI2
AB + g

− p3EBTi,

dET
dt

=− µEET +
β1TAT I2
x4 + g

− p3ETTu,

dI2
dt

=− µI2I2 +D2 (t) + (AB +AT + EB + ET )

(
q1 − q2

I2
I2 + gI

)
,
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dTi
dt

=p2BTu − p4EBTi − µTi
Ti,

dTu
dt

=rTu −
r

K
T 2
u − p2BTu − (αETTu + λATu)

(
I2

I2 + gI

)(
gT

Tu + gT

)
.

(1)

Equations (1) describe rates of change in concentrations of molecules or cell
populations using the following notations: BCG bacteria within the bladder as B;
APCs (dendritic cells (DCs) and macrophages) as A; activated/matured APC’s
after BCG internalization and processing as AB ; activated/matured APC’s specific
to tumor Ags as AT ; effector T lymphocytes consisting mostly of CTLs that react
to BCG as EB ; effector T lymphocytes consisting mostly of CTLs that react to
tumor Ags as ET ; IL-2 units injected inside the bladder as I2; tumor cells infected
with BCG as Ti; tumor cells not infected by BCG as Tu.

A full explanation of the model is given in [3]; here we present a modified version
described below. In the 1st and the 7th equations piecewise constant functions
D1(t) and D2(t) possess a finite number of points of discontinuity. Also, we assume
that D1(t) > 0, with t ≥ 0, and D2(t) ≥ 0, with t ≥ 0. Functions D1(t) and
D2(t) describe processes of instillations of BCG and IL-2 respectively. After BCG
instillation bacteria accumulate adjacent to the bladder wall. Upon binding to wall
cells, BCG is internalized into the bladder and is processed by APCs at a rate p1.
The free BCG binds to tumor cells infecting them at a rate p2, see the Eq.1 in (1).

When bacteria are present, additional resting APCs (from the closest organs) are
recruited at a rate η in response to activated and infected APCs. This parameter
also includes the rate at which dead tumor cells infected by bacteria are ingested
by APCs. BCG is readily internalized by APCs at a rate p1 and the APCs become
activated by BCG, see the Eq. 2 in (1). The activation of APCs by BCG (AB)
mainly depends on the production rate p1, and migration rate β of recruitment
of APCs to the draining lymphoid tissues, see the Eq. 3 in (1). The activation
of TAA-APC (AT ) is proportional to the number of non-activated APCs (A) and
uninfected tumor, with a rate coefficient λ.

This term is multiplied by the IL-2 dependent term
I2

I2 + gI
, such that in the

absence of IL-2 the production of AT halts, while in the presence of external IL-2
the production term is ∼ 1 representing the migration of activated APCs to the
draining lymphoid tissues.

Tumor cells are divided into two sub populations: those that have been infected
(Ti) with BCG (B) and those that are still uninfected (Tu), see Eq. 8-9 in (1). The
growth of the tumor is logistic with a rate r and the carrying capacity K. Effector
cells as EB and ET target and destroy infected tumor cells (Ti) at a rate p4 and
uninfected tumor cells (Tu) at a rate α accordingly.

In addition to the model from [3], we add to Eq. 8 the rate of infected tumor cells
death rate µTi

based on empirical findings [18]. Activation of the immune response
resulting from encounter between activated APC cells and BCG (AB) is controlled
by parameters βB and βT accordingly, see Eq. 5-6 in (1) describing the rates of
change in concentrations of molecules or cell populations.

Model parameters estimated from biological data are summarized in Appendix
1 of [3]. We added to this table the rate µTi

= 1
2d
−1. This set of parameters is also

used for checking the conditions guaranteeing global tumor clearance conditions and
the ultimate bounds. In order to simplify calculations of the model dynamics the
variable I2 is replaced by the constant value obtained from the simulation in Eq.
5-6 of (1).
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We recall that model equation trajectories of the BCG-IL-2 dynamic system
must remain in the positive orthant for all positive times [3]. The current work
is dedicated to studies of ultimate dynamics of the model from [3], especially for
finding the upper and lower bounds for ultimate densities of interacting cells pop-
ulations, proving the dissipativity property in the sense of Levinson and finding
global asymptotic tumor clearance conditions.

The structure of this article is as follows. The model from [3] is recalled in Section
2. In Section 3, we find ultimate upper bounds for all cells populations in this model.
The lower bounds of BCG, APC, activated APC cells and IL-2 concentrations are
computed as well. These bounds depend on treatment administration (number
of BCG and IL-2 instillations). In Section 4, we obtain convergent sequences of
ultimate upper and lower bounds in order to improve bounds presented in Section
3. These bound sequences are obtained with help of localizing functions used in the
cyclic way. In Section 5, we introduce an additional convergent sequence of ultimate
upper bounds for the infected tumor cells population, further improving bounds.
This sequence is derived by increasing ultimate lower bounds for the population.
Section 6 describes the conditions under which the system [3] has dissipativity
property in the sense of Levinson. In Section 7, we derive conditions under which the
ω-limit set of any trajectory in R9

+ is located within the tumor-free plane. In Section
8, we present results of numerical simulation for verification of our computations.
Obtained results are then discussed in Section 9.

2. Some preliminaries. In what follows we apply the following notation for vari-
ables and parameters in equations (1):

B = x1, A = x2, AB = x3, AT = x4, EB = x5,

ET = x6, I2 = x7, Ti = x8, Tu = x9,

and

a1 = µB , a12 = a13 = p1, a19 = a91 = a80 = p2,

a2 = µA, a22 = p1 − η, a29 = a44 = a92 = λ,

a3 = a4 = β + µA1 , a5 = a6 = µE , a58 = a69 = p3,

a7 = µI2 , a55 = β1B × (IL− 2), a66 = β1T × (IL− 2),

a70 = q1, a77 = q2, a85 = p4,

a8 = µTi
, a9 = r, a99 =

r

K
,

a96 = α, g1 = gI , g2 = g,

g3 = gT .

Below we assume everywhere that

a22 = p1 − η > 0. (2)

Thus the final form of the model equations is:

ẋ1 =D1 (t)− a1x1 − a12x1x2 − a19x1x9,

ẋ2 =γ − a2x2 − a22x1x2 − a29x2x9
x7

x7 + g1
,

ẋ3 =− a3x3 + a13x1x2,

ẋ4 =− a4x4 + a44x2x9
x7

x7 + g1
,
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ẋ5 =− a5x5 − a58x5x8 +
a55x3
x3 + g2

,

ẋ6 =− a6x6 − a69x6x9 +
a66x4
x4 + g2

,

ẋ7 =− a7x7 +D2 (t) + (x3 + x4 + x5 + x6)

(
a70 − a77

x7
x7 + g1

)
,

ẋ8 =− a8x8 + a80x1x9 − a85x5x8,

ẋ9 =a9x9 − a99x29 − a91x1x9 − (a96x6x9 + a92x2x9)

(
x7

x7 + g1

)(
g3

x9 + g3

)
.

(3)

In this section we present some helpful propositions concerning the localization
of compact invariant sets, see [7, 8, 9]. Let us consider a nonlinear system

ẋ = F (x), (4)

where x ∈ Rn, F (x) = (F1(x), . . . , Fn(x))T is a differentiable vector field. By
ϕ(x, t) we denote its solution with initial condition ϕ(x, t) = x. Let h(x) ∈ C1(Rn)
be a function such that h is not the first integral of the system (4). The function
h is exploited in the solution of the localization problem of compact invariant sets
and is called a localizing function. By h|U we denote the restriction of h on a set
U ⊂ Rn. By S(h) we denote the set {x ∈ Rn | LFh(x) = 0}, where LFh(x) is a
Lie derivative with respect to F. Assume that we are interested in the localization
of all compact invariant sets contained in the set U . Further, we define

S(h;U) := S(h) ∩ U = {x ∈ U | LFh(x) = 0};
hinf(U) := inf{h(x) | x ∈ S(h;U)};
hsup(U) := sup{h(x) | x ∈ S(h;U)}.

Assertion 1. For any h(x) ∈ C1(Rn) all compact invariant sets of the system (4)
located in U are contained in the set K(h;U) defined by the formula

K(h;U) = {x ∈ U | hinf(U) ≤ h(x) ≤ hsup(U)},

as well. If U ∩ S(h) = ∅ then there are no compact invariant sets located in U.

Any of sets K(h;U) is called a localization set. We notice that the intersection
of localization sets is a localization set as well. This observation is refined in

Assertion 2. Let hm(x),m = 1, 2, . . . , be a sequence of functions from C1(Rn).
Sets

K1 = K(h1;U), Km = K(hm;Km−1), m > 1,

contain all compact invariant sets of the system (4) located in U and K1 ⊇ K2 ⊇
· · · ⊇ Km ⊇ . . . .

3. Ultimate upper and lower bounds. Considering the direction of the vector
field of the system (3) on the boundary of R9

+,0 it is evident that this system

possesses positive invariance property of R9
+,0.

Finding the ultimate upper bounds for trajectories of cancer tumor growth mod-
els has been already achieved for some other models, see e.g. [15, 16, 17] to verify
the constructed model and to estimate its parameters.

Let maxDj(t) = djmax; minDj(t) = djmin, j = 1, 2. Assertions given in Section 2
allow us to derive upper and lower bounds for the ultimate dynamics. These bounds
are calculated using several localizing functions as follows. Firstly, we notice that
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if D1(t) ≡ 0 then all trajectories in R9
+ are attracted to the maximal invariant set

contained in the plane x1 = 0.
a) Applying h1 = x9 we derive the set S (h1) ∩ {x9 > 0} given by

a99x9 = a9 − a91x1 − (a96x6 + a92x2)

(
x7

x7 + g1

)(
g3

x9 + g3

)
.

Thus we have

x9 ≤ x9max :=
a9
a99

.

b) Applying h2 = x1 yields the set S (h2) given by

D1 (t)− a1x1 − a12x1x2 − a19x1x9 = 0.

Hence on the set S (h2) we may write

x1 ≤
d1max

a1
,

and we can take x1max :=
d1max

a1
.

c) Applying h3 = x2 we determine the set S (h3) to be given by

γ − a2x2 − a22x1x2 − a29x2x9
x7

x7 + g1
= 0.

Hence in virtue of (2) we may write on the set S (h3) that

x2 ≤
γ

a2
,

and we can take x2max :=
γ

a2
.

d) Applying h4 = x3 we derive the set S (h4) to be given by −a3x3+a13x1x2 = 0.
Thus we have the following inequality within S (h3) ∩ {x9 > 0} ∩ {x1 ≤ x1max} ∩
{x2 ≤ x2max}:

x3 ≤ x3max :=
a13x1maxx2max

a3
.

e) Applying h5 = x4 we derive the set S (h5) to be given by

− a4x4 + a44x2x9
x7

x7 + g1
= 0.

Thus we have the following inequality within S (h5) ∩ {x9 > 0} ∩ {x2 ≤ x2max}

x4 ≤ x4max :=
a44x2maxx9max

a4
.

f) Applying h3 = x2 we derive the set S (h3) to be given by

γ − a2x2 − a22x1x2 − a29x2x9
x7

x7 + g1
= 0.

Hence we have the following inequality within S (h3) ∩ {x9 > 0}

x2 ≥ x2min :=
γ

a2 + a22x1max + a29x9max
.

g) Applying h6 = x8 we derive the set S (h6) to be given by

− a8x8 + a80x1x9 − a85x5x8 = 0.

Hence we have the following inequality within S (h6)∩{x9max ≥ x9}∩{x1 ≤ x1max}

x8 ≤ x8max :=
a80x1maxx9max

a8
.
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h) Here we apply h7 = x5. Then we derive the set S (h7) to be given by

a5x5 + a58x5x8 =
a55x3
x3 + g2

.

So we have the following inequality within S (h7)

x5 ≤ x5max :=
a55
a5
.

i) Here we apply h8 = x6. Then we derive the set S (h8) to be given by

a6x6 + a69x6x9 =
a66x4
x4 + g2

.

So we have the following inequality within S (h8)

x6 ≤ x6max :=
a66
a6
.

j) By applying h9 = x7 we derive that the inequality

a7x7 ≤ d2max + a70

6∑
j=3

xjmax,

holds on S (h9) . So we come to

x7 ≤ x7max :=

d2max + a70

6∑
j=3

xjmax

 a−17 .

Suppose now that a70 ≥ a77. Then we obtain that the inequality a7x7 ≥ d2min is
fulfilled on S (h9) . So we come to

x7 ≥ x7min :=
d2min

a7
.

k) Applying h2 = x1 we derive that the inequality

d1min ≤ x1 (a1 + a12x2max + a19x9max)

holds on S (h2) ∩ {x2 ≤ x2max} ∩ {x9 ≤ x9max} . Thus we have

x1 ≥ x1min :=
d1min

a1 + a12x2max + a19x9max
.

l) Applying h4 = x3 we derive that the set S (h4) is given by −a3x3+a13x1x2 = 0.
Thus we have the following inequality within S (h4) ∩ {x9 > 0} ∩ {x1 ≥ x1min} ∩
{x2 ≥ x2min}

x3 ≥ x3min :=
a13x1minx2min

a3
.

Other lower bounds are taken as zero. So we come to

Theorem 3.1. All compact invariant sets are located in the polytope

P := ∩9j=1 {xjmin ≤ xj ≤ xjmax} .

Remark 1. If d1max = 0 hence x1max = 0, and x3max = 0. Therefore using the
function h7 again we obtain that x5max = 0. Despite x1max = 0 we derive that
x4max > 0 and x6max > 0. In the case of no BCG treatment, no immune response
was associated with BCG instillations (x3max = 0 and x5max = 0). However, an
immune response associated with the tumor is observed (x4max > 0 and x6max > 0).
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4. Iterative construction of ultimate bounds. We start from using x9max and
x2min.

a) Applying h2 = x1 we have on the set S (h2)

x1 ≤ x(1)1max :=
d1max

a1 + a12x2min
, (5)

and

x
(1)
1min :=

d1min

a1 + a12x2max + a19x9max
≤ x1. (6)

b) Applying h1 = x9 we have on the set S (h1)

x9 ≤ x(1)9max :=
a9 − a91x(1)1min

a99
< x9max. (7)

c) Applying h3 = x2 we have on the set S (h3)

x2min =
γ

a2 + a22x1max + a29x9max

<x
(1)
2min :=

γ

a2 + a22x
(1)
1max + a29x

(1)
9max

≤ x2.
(8)

d) Applying h6 = x8 we have on the set S (h6)

x8 ≤ x(1)8max :=
a80x

(1)
1maxx

(1)
9max

a8
. (9)

e) Applying h3 = x2 we have on the set S (h3)

x2 ≤ x(1)2max :=
1

a2

(
γ − a22x(1)1minx

(1)
2min

)
. (10)

f) Applying h4 = x3 we have on the set S (h4)

x
(1)
3min :=

a13x
(1)
1minx

(1)
2min

a3
≤ x3 ≤ x(1)3max :=

a13x
(1)
1maxx

(1)
2max

a3
. (11)

g) Applying h5 = x4 we have on the set S (h5)

x4 ≤ x(1)4max :=
a44x

(1)
2maxx

(1)
9max

a4
. (12)

h) Applying h7 = x5 we have on the set S (h7)

x5 ≤ x(1)5max :=
a55x

(1)
3max

a5

(
x
(1)
3max + g2

) . (13)

i) Applying h8 = x6 we have on the set S (h8)

x6 ≤ x(1)6max :=
a66x

(1)
4max

a6

(
x
(1)
4max + g2

) . (14)

j) Applying h9 = x7 we have on the set S (h9)

x7 ≤ x(1)7max :=

d2max + a70

6∑
j=3

x
(1)
jmax

 a−17 . (15)

Now using x
(1)
2min instead of x2min in (5) we obtain x

(2)
1max < x

(1)
1max. Then using

x
(1)
9max instead of x9max in (6) we obtain x

(2)
1min > x

(1)
1min. Further, using x

(2)
1min
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instead of x
(1)
1min in (7) we obtain x

(2)
9max < x

(1)
9max. Next, applying x

(2)
9max instead of

x
(1)
9max in (8) we obtain x

(2)
2min > x

(1)
2min. Next, applying x

(2)
1max and x

(2)
9max instead

of x
(1)
1max and x

(1)
9max in (9) correspondingly we obtain x

(2)
8max < x

(1)
8max. Further,

using x
(2)
1min and x

(2)
2min instead of x

(1)
1min and x

(1)
2min in (10) we get x

(2)
2max < x

(1)
2max.

Next, applying x
(2)
1max and x

(2)
2max instead of x

(1)
1max and x

(1)
2max in (11) we obtain

x
(2)
3max < x

(1)
3max. Similarly, applying x

(2)
1min and x

(2)
2min instead of x

(1)
1min and x

(1)
2min in

(11) we obtain x
(2)
3min > x

(1)
3min. Next, applying x

(2)
2max and x

(2)
9max instead of x

(1)
2max

and x
(1)
9max in (12) correspondingly we obtain x

(2)
4max < x

(1)
4max.

Further, using x
(2)
3max instead of x

(1)
3max in (13) correspondingly we obtain x

(2)
5max ≤

x
(1)
5max. Further, using x

(2)
4max instead of x

(1)
4max in (14) correspondingly we obtain

x
(2)
6 ≤ x(1)6max. Finally, using x

(2)
jmax, j = 3, ..., 6, instead of x

(1)
jmax, j = 3, ..., 6, in (15)

correspondingly we obtain x
(2)
7 ≤ x(1)7max.

By applying to the same sequence the ultimate bounds obtained previously, we
derive convergent sequences of ultimate bounds: 9 decreasing sequences{

x
(m)
jmax

}
m=1,2,...

; j = 1, ..., 9,

and 3 increasing sequences {
x
(m)
jmin

}
m=1,2,...

; j = 1, 2, 3.

5. Refining the upper bound for infected tumor cells population. In this
section, it will be demonstrated how to refine the upper bound for the tumor cells

population infected by BCG. Let us take such number N(ε) for which x
(N)
imax −

x
(N+1)
imax < ε for i = 1, 3, 9 and x

(N+1)
3min − x

(N)
3min < ε for sufficiently small ε > 0.

Now we show how to construct another sequence of decreasing bounds x
(N),(k)
8max , and

k = 1, 2, ..., for the infected tumor cells population. Here x
(N),(1)
8max = x

(N)
8max. With

this goal let us apply the function h7 = x5 and derive that the set S (h7) is given
by

x5 =
a55x3

(x3 + g2) (a5 + a58x8)
.

As a result, we get the lower bound

x
(1)
5min =

a55x
(N)
3min(

x
(N)
3min + g2

)(
a5 + a58x

(N),(1)
8max

) . (16)

Next, we exploit the function h6 = x8 and derive that the set S (h8) is given by

x8 =
a80x1x9
a8 + a85x5

.

This gives the bound

x
(N),(2)
8max =

a80x
(N)
1maxx

(N)
9max

a8 + a85x
(1)
5min

< x
(N),(1)
8max =

a80x
(N)
1maxx

(N)
9max

a8
. (17)

Further, using the expression for x
(N),(2)
8max in the formula (16) instead of x

(N),(1)
8max we

get the new lower bound

x
(2)
5min =

a55x
(N)
3min

(x
(N)
3min + g2)(a5 + a58x

(N),(2)
8max )

> x
(1)
5min. (18)
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Further, using the expression for x
(2)
5min in the formula (18) instead of x

(1)
5min we

get the new upper bound x
(N),(3)
8max < x

(N),(2)
8max etc. As a result, we get one sequence

of improved decreasing upper bounds
{
x
(N),(k)
8max

}
k=1,2,...

and a new sequence of

increasing lower bounds
{
x
(k)
5min

}
k=1,2,...

.

6. Dissipativity in the sense of Levinson of the system (3). Firstly, we
notice that since the vector field of the system (3) is directed inside the positive
orthant at points of its boundary dynamics of (3) is positively invariant. Thus,
for each point x ∈ R9

+,0 = {xj ≥ 0, j = 1, ..., 9} the corresponding positive half

trajectory remains in R9
+,0. Further, as a population dynamics model the system

(3) cannot possess positive half trajectories in R9
+,0 which escape to infinity because

of the boundedness of the available food. The formalization of this property is
dissipativity in the sense of Levinson, see e.g. in [5]. We recall that the system (4)
is called dissipative in the sense of Levinson if there exists r > 0 such that for any
x ∈ Rn we have that

lim
t→∞

sup |ϕ(x, t)| < r,

here |x| is the Euclidean norm of x ∈ Rn. In this case there exists a bounded set
which attracts any point in Rn, see [5].

Now our goal is to prove

Theorem 6.1. The system (3) is dissipative in the sense of Levinson i.e. there is
a bounded domain U in the positive orthant R9

+,0 which attracts any point in R9
+,0.

Proof. Let us apply the function

h10 =

9∑
j=1

ξixi, i = 1, ...., 9,

with all positive ξi and ξ9 = 1. Let

Q = ξ5a58x5x8 + ξ6a69x6x9 + ξ7a77

6∑
j=3

xj
x7

x7 + g1

+ ξ8a85x5x8 + (a96x6x9 + a92x2x9)
x7g3

(x7 + g1) (x9 + g3)
.

Let

M := d1maxξ1 + d2maxξ7 + ξ2γ + ξ5a55 + ξ6a66.

Then we compute that

Lfh10

=D1ξ1 +D2ξ7 − ξ1a1x1 + x1x2 (ξ3a13 − ξ1a12 − ξ2a22) + x1x9(ξ8a80

− ξ1a19 − a91) + ξ2γ − ξ2a2x2 + x2x9
x7

x7 + g1
(ξ4a44 − ξ2a29)

− ξ3a3x3 − ξ4a4x4 − ξ5a5x5 − ξ6a6x6 + ξ5
a55x3
x3 + g2

+ ξ6
a66x4
x4 + g2

− ξ7a7x7 + ξ7a70

6∑
j=3

xj − ξ8a8x8 + a9x9 − a99x29 −Q,

≤d1maxξ1 + d2maxξ7 + ξ2γ + ξ5a55 + ξ6a66 − ξ1a1x1 + x1xll2(ξ3a13
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− ξ1a12 − ξ2a22) + x1x9 (ξ8a80 − ξ1a19 − a91)− ξ2a2x2

+ x2x9
x7

x7 + g1
(ξ4a44 − ξ2a29)− ξ3a3x3 − ξ4a4x4 − ξ5a5x5 − ξ6a6x6

− ξ7a7x7 + ξ7a70

6∑
j=3

xj − ξ8a8x8 + a9x9 − a99x29,

=M − ξ1a1x1 + x1x2 (ξ3a13 − ξ1a12 − ξ2a22) + x1x9(ξ8a80 − ξ1a19 − a91)

− ξ2a2x2 + x2x9
x7

x7 + g1
(ξ4a44 − ξ2a29)

+ x3(ξ7a70 − ξ3a3) + x4(ξ7a70 − ξ4a4) + x5(ξ7a70 − ξ5a5)

+ x6(ξ7a70 − ξ6a6)− ξ7a7x7 − ξ8a8x8 + a9x9 − a99x29.

(19)

Let us examine conditions

ξ3a13 − ξ1a12 − ξ2a22 ≤0,

ξ8a80 − ξ1a19 − a91 ≤0,

ξ4a44 − ξ2a29 ≤0,

ξ7a70 − ξ3a3 <0,

ξ7a70 − ξ4a4 <0,

ξ7a70 − ξ5a5 <0,

ξ7a70 − ξ6a6 <0.

(20)

This system of inequalities is consistent. In order to see this, we take any positive
ξ1, ξ2 and then we choose positive ξ8, ξ4, ξ3 satisfying the 2nd inequality/ the 3rd
inequality/ the 1st inequality respectively:

ξ8 ≤ ξ1
a19
a80

+
a91
a80

,

ξ4 ≤ ξ2
a29
a44

,

ξ3 ≤ ξ1
a12
a13

+
ξ2a22
a13

.

Further, we choose any positive ξ4, ξ5, ξ6, and then choose positive ξ7 satisfying

ξ7 < min {ξ3a3; ξ4a4; ξ5a5; ξ6a6} a−113 ,

and the system (20) is satisfied for this set of ξi, i = 1, ..., 8. Now under this set of
ξi, i = 1, ..., 8, we proceed (19)

Lfh10 ≤M +
a29

4a99
− ξ1a1x1 − ξ2a2x2 + x3 (ξ7a70 − ξ3a3) + x4 (ξ7a70 − ξ4a4)

+ x5 (ξ7a70 − ξ5a5) + x6 (ξ7a70 − ξ6a6)− ξ7a7x7 − ξ8a8x8

− a99
(
x9 −

a9
2a99

)2

.

Then we define the domain U in R9
+,0 by the formula

M +
a29

4a99
< ξ1a1x1 + ξ2a2x2 − x3 (ξ7a70 − ξ3a3)− x4 (ξ7a70 − ξ4a4)

− x5 (ξ7a70 − ξ5a5)− x6 (ξ7a70 − ξ6a6) + ξ7a7x7 + ξ8a8x8

+ a99(x9 −
a9

2a99
)2.
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Let C {U} be the complement to U in the orthant R9
+,0. By the definition, C {U}

is a bounded domain and Lfh10|U < 0. This implies that any trajectory in R9
+,0 is

attracted to the domain U .

Finally, we derive from Theorem 6.1 that for each point in R9
+,0 its ω-limit set

is a compact invariant set that is not empty. Hence, it is located in the polytope
P ⊂ U .

This theorem serves as an important ingredient in the proof of the global as-
ymptotic tumor clearance conditions, see the beginning of the proof of Theorem
7.1.

7. Global asymptotic tumor clearance conditions. We introduce

Gmin :=
a92x2ming3x7min

(x7min + g1) (x9max + g3)
.

Theorem 7.1. Supposing that

d1min >
(a9 −Gmin) (a1a2 + a12γ)

a2a91
, (21)

d1min > Ξ :=
(a9 −Gmin) a19a2 (a1a2 + a12γ) + a99 (a1a2 + a12γ)

2

2a19a22a91
, (22)

d1min >
Ξ2a19a

2
2a91

a99 (a1a2 + a12γ)
2 . (23)

Then the ω− limit set of any positive half trajectory in R9
+ is contained in the

tumor-free plane x9 = 0.

Proof. Since each positive half trajectory in R9
+ is bounded in virtue of Theorem

6.1 we notice that its ω− limit set is a compact invariant set located in the domain
P. Therefore each positive half trajectory in R9

+ eventually enters into the domain
P and remains there or approaches to its boundary asymptotically. Now we can
define the function

h11 = x
−(ζ2)
1 x9,

in the domain {x1 > 0} where positive parameter ζ satisfies the condition ζ ≤√
a99a

−1
19 . Next, we introduce the function

G =
(a96x6 + a92x2) g3x7
(x7 + g1) (x9 + g3)

,

and we notice that

G |{x2min≤x2;x7min≤x7;x9≤x9max}≥ Gmin.

Then we get that the following inequalities are fulfilled on the domain

{x1 > 0;x2min ≤ x2;x7min ≤ x7} :

Lfh7

≤h7
{
−ζ

2d1min

x1
− a91x1 + a1ζ

2 + a9 + ζ2a12x2 − x9
(
a99 − a19ζ2

)
−Gmin

}
≤h7

{
−2ζ

√
d1mina91 + a1ζ

2 + a9 + ζ2a12x2 − x9
(
a99 − a19ζ2

)
−Gmin

}
≤h7

{
−2ζ

√
d1mina91 + a1ζ

2 + a9 + ζ2a12x2 −Gmin

}
.

(24)
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Since each positive half trajectory in R9
+ eventually enters into the domain

{x1 > 0;x2min ≤ x2 ≤ x2max;x7min ≤ x7}
as well and remain there or tends to its boundary asymptotically we continue com-
putations in the inequality (24) as follows:

Lfh7 ≤ h7
{
−2ζ

√
d1mina91 + a1ζ

2 + a9 + ζ2a12
γ

a2
−Gmin

}
. (25)

Now let us examine the inequality

P (ζ) := ζ2
(
a1 + a12

γ

a2

)
− 2ζ

√
d1mina91 + a9 −Gmin < 0.

In virtue of (21) both of roots of the quadratic polynomial P are real and distinct.
By ζ− (ζ+) we denote the lower (the greater) root of P correspondingly; ζ− > 0.
We notice that if

ζ− <

√
a99
a19

, (26)

then one can find ζ∗ > 0 such that

ζ− < ζ∗ < min

{
ζ+,

√
a99
a19

}
.

Taking h7 with this ζ∗ we derive from (25) that

Lfh7 |{x1>0}∩K2
≤ 0.

Since {x1 > 0} ∩ {x2 ≤ x2max} ∩ S (h7) ⊂ {x9 = 0} ∩ {x1 > 0} ∩ {x2 ≤ x2max} we
notice that

h7 |{x1>0;x2≤x2max}∩S(h7)= 0.

Therefore, all compact invariant sets in {x1 > 0} ∩ {x2 ≤ x2max} are contained in
the plane x9 = 0 as well and we get the desirable conclusion.

Now let us consider the condition (26) which entails

θ :=
a2
√
d1mina91

a1a2 + a12γ
−

√
a22d1mina91

(a1a2 + a12γ)
2 −

a2 (a9 −Gmin)

a1a2 + a12γ
−
√
a99
a19

< 0. (27)

It is easy to check that since (22)-(23) are fulfilled the inequality (27) is satisfied.
Thus the proof is completed.

8. Simulation results. In our work, complex biological interactions between the
tumor, immune system, and BCG were represented in a nine-dimensional system.
As the dimension of the system is relatively high, all calculations were performed
with the aid of Matlab subroutines. In order to verify the mathematical model of
this biological system, it is widely accepted to estimate the conditions defined in
the presented theorems based on parameter sets adopted from the biological and
medical literature (these parameters are borrowed from Tables 1 and 2 in [3]).

We examine equations (1) with the following initial conditions:

B (0) = AB(0) = AT (0) = EB(0) = ET (0) = Ti(0) = 0, A(0) = 104,

I2(0) = 50, Tu(0) = Tu0
(0) > 0.

The latter is the initial number of uninfected tumor cells in the urothelium before
BCG treatment.

The calculations performed for instillation BCG at 2.2×106 c.f.u (colony-forming
units, i.e., number of viable bacterial cells) per week, together with 200000 IU
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(international units) of IL-2. Analysis of global tumor clearance conditions was
performed, assuming the growth of cancer cells in the bladder to be logistic.

Upper and lower bounds for ultimate densities of BCG, immune and tumor cell
populations derived as in Sections 3 and 4 are presented in Table 1. These bounds
are given in a form of a polytope in R9

+,0 in order to state Theorem 3.1.

Table 1. Bounds for the system (3).

Variable Lower bound value Upper bound value

x1 0.7857 1.319× 108

x2 0.4700 1.236× 105

x3 2.6× 10−4 1.185× 1010

x4 − 7.186× 109

x8 − 4.183× 1017

x9 4.3× 103 1.0× 1011

In Table 1 lower bounds are presented for BCG, APC and tumor populations.
Values which are less than one for x1;x2;x3 mean that there are no cells of these
types. Upper bounds correspond with data given in medical literature. Only for
the population x8 (tumor uninfected cells) there are no published estimated bounds
since BCG infects both tumor and healthy urothelial cells.

Upper bounds for ultimate densities of effector cells populations x5;x6 and cy-
tokine x7 concentration derived as in Sections 3 and 4 are presented in Table 2.

Table 2. Upper bounds of effector cells parameters in the system (3)

Variable/Protocol x1 x5 x6 x7
(i). 6 BCG 1.319× 108 3.725× 1015 2.941× 1013 2.285× 1012

instillations

(ii). 12 BCG 2.64× 108 4.830× 1015 2.9417× 1013 2.9582× 1012

instillations

(iii). 20 BCG 4.4× 108 5.4810× 1015 2.8712× 1013 3.3537× 1012

instillations

(iv). 6 BCG 1.32× 108 6.581× 1016 5.240× 1014 4.037× 1013

+ 3 IL-2 instillations

(v). 6 BCG 1.32× 108 1.213× 1017 1.255× 1015 1.693× 1015

+ 6 IL-2 instillations

Five bladder cancer BCG treatment protocols are considered:
1.(i): Standard BCG protocol six weekly instillations, without IL-2.
2. Improved protocols which include maintenance therapy: (ii) twelve BCG

instillations;
(iii) twenty BCG instillations.
3. BCG+ IL-2 combined therapy: (iv) six BCG and three IL-2 instillations; (v)

six BCG and six IL-2 instillations.
In Table 2, effector cells that react to BCG (x5) and effector cells reacting to

tumor Ags (x6) in protocol (i) reach the maximum value 6.8× 1015 and 7.1× 1013

respectively. However in protocol (iv) which includes IL-2 treatment, maximum
value of effector cells reaches 6.6×1016 and 5.2×1014. Treatment efficacy is further
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improved when the number of IL-2 instillations increases to six: the effector cells
population grows significantly to 6.6×1016 and 5.2×1014 for x5 and x6 respectively.
Hence, combined treatment with BCG and IL-2 induces a greater number of effector
cells than does the standard BCG treatment alone.

In Section 5 the conditions of global asymptotic tumor clearance were obtained,
assuming that only BCG treatment is applied. Here we notice that the inequality
(27) is slightly violated, i.e. the value of the expression standing in the left side of
(27) is a relatively small positive number under model parameter values taken from
the Table 1 in [3].

Computing the left side of (27) we receive values of θ = 0.00044, θ = 0.00015,
θ = 0.00009 for protocols (i), (ii) and (iii), respectively. Hence, by increasing
the number of BCG instillations during treatment, the probability of cancer cells
eradication is increased. Thus, for patients with clinical parameters sufficiently close
values to those of model values, BCG treatment may be applied in accordance with
(21)-(22)-(23), such that condition (27) is satisfied, achieving asymptotic global
tumor clearance.

9. Conclusions. The model was first developed by Bunimovich-Mendrazitsky et
al. [3] as an analytical tool to predict the treatment outcome before it is performed,
to assist in patient screening and in treatment protocol optimization, especially
in problematic cases. Previous mathematically-based simulations [3] individually
tailored the BCG+ IL-2 combined therapy to augment low doses of BCG with IL-2
maintenance, resulting in predicted therapy success approaching 95%.

While the results presented in [3] were obtained on the basis of a simulation
platform, the current manuscript describes the outcome of analytical methods used
to achieve mathematical validation of the model, and to derive the tumor-free equi-
librium point, at which cancer cells are effectively eliminated.

The main contribution of the present work lies in the mathematical validation
of the nine-dimensional model of bladder cancer immunotherapy, and in obtaining
global tumor clearance conditions via the localization method of compact invariant
sets [7, 8].

In summary:
(a) we derived ultimate upper bounds for all components of the state vector of

the model (3);
(b) we found explicit formulae for conservative ultimate bounds xjmin; j = 1; 2; 3;

5; 7, corresponding to BCG levels, APC population, activated APC population, EB
population and complex IL - 2 concentration, respectively;

(c) we demonstrated the existence of the bounded positively invariant domain.
Immune cells populations’ bounds are presented in Table 1. For any point taken

from this domain, both future intermediate dynamics and ultimate dynamics are
always confined to these bounds, such that the corresponding behavior of tumor
cells, CTL- tumor cells complexes and other cells populations involved in this model
are completely predictable;

(d) we proved that the global tumor clearance dynamics of the model (3) is
achieved if conditions (21)-(22)-(23) are satisfied for sufficiently high values of pa-
rameter d1min.

The analysis of the model (3) may be used to monitor efficacy of individual
patient treatment, based on the conditions required for global tumor clearance.
However, the question remains as to whether a biologically significant set of model
parameters meets these conditions.
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The present findings revealed that extremely high doses of BCG+ IL-2 would be
required to reach the tumor-free equilibrium point, beyond that which is medically
feasible. While the equilibrium point is not currently clinically achievable, these
findings nonetheless represent a significant advancement towards the development
of a clinical tool for monitoring and improving the efficacy of individualized therapy
for bladder cancer with BCG and IL-2.

The derived clearance conditions are based on the assumed treatment schedule
and model parameters for an individual patient. Importantly, these clearance con-
ditions are global, i.e. they do not depend upon initial tumor parameters. Thus, a
most promising direction for further study is to derive attractivity conditions to the
tumor-free equilibrium point under the variation of supply parameters d1min and
d1max within a biologically feasible range and to calculate an attraction domain for
such conditions.

Based upon results of the simulation, we conclude that:
1. increasing the number of BCG instillations does not significantly increase the

number of effector cells;
2. introduction of IL-2 therapy to the treatment protocol increases the number

of effector cells by an order of magnitude.
Importantly, the global tumor clearance conditions are formulated in terms of

the parameter d1min which is bounded from below, as in formulae (21)-(22)-(23)
depending upon the BCG instillation and the biological parameters of the individual
patient. These findings support the validity of the described mathematical model
of BCG therapy and its optimization for treatment of non-invasive bladder cancer.
Therefore the present study may lead to the further development of clinical tools for
monitoring and improving the efficacy of individualized therapy for bladder cancer
with BCG and IL-2.

Acknowledgments. We would like to thank the referees for their valuable com-
ments and suggestions.

The work of the first author is supported by the CONACYT project N 219614
“Análisis de sistemas con dinámica compleja en las áreas de medicina matemática
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