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Abstract. Diabetes mellitus is a disease characterized by a range of meta-

bolic complications involving an individual’s blood glucose levels, and its main
regulator, insulin. These complications can vary largely from person to person

depending on their current biophysical state. Biomedical research day-by-day

makes strides to impact the lives of patients of a variety of diseases, including
diabetes. One large stride that is being made is the generation of techniques

to assist physicians to “personalize medicine”. From available physiological

data, biological understanding of the system, and dimensional analysis, a dif-
ferential equation-based mathematical model was built in a sequential matter,

to be able to elucidate clearly how each parameter correlates to the patient’s
current physiological state. We developed a simple mathematical model that

accurately simulates the dynamics between glucose, insulin, and pancreatic

β-cells throughout disease progression with constraints to maintain biological
relevance. The current framework is clearly capable of tracking the patient’s

current progress through the disease, dependent on factors such as latent in-

sulin resistance or an attrite β-cell population. Further interests would be to
develop tools that allow the direct and feasible testing of how effective a given

plan of treatment would be at returning the patient to a desirable biophysical

state.

1. Introduction. Hyperglycaemia is a physiological state characterized by exces-
sive levels of the simple sugar glucose in the blood. Chronic levels of glucose in the
blood have been described in the literature as a frequent symptom of a variety of
metabolic diseases [39]. No other disease is more frequently associated with this
condition than diabetes mellitus (DM), as hyperglycaemia is not only a symptom,
but the principal aggravating factor of this disease that impacts the lives of over 25
million Americans and their families as of 2012, per the American Diabetes Associ-
ation (ADA) [1]. Another key element beside glucose, that is always considered in
DM is insulin. Insulin is a multi-domain peptide hormone produced by β-cells in
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the pancreas. Normally, its principal function is to regulate the metabolism of car-
bohydrates and fat by binding to the cell membrane of skeletal muscle and fat tissue
to signal for the absorption of free-flowing blood glucose. However, the effectiveness
of this signal can vary depending on multiple factors, including the nature of the in-
sulin molecule, its receptor on the cell membrane’s surface, the stability and nature
of the cell membrane, the reactivity of the cellular environment, and a wide variety
of considerations that are still amply being researched [6]. Nonetheless, the overall
extent and impact these facets have upon the effectiveness of the insulin molecule
to signal the absorption of glucose is collectively referred to as insulin resistance
[26]. It has also been shown that fat-consumption exacerbates the rate at which
this resistance progress [18, 27, 32]. As insulin resistance develops, the process of
glucose absorption is hindered, and despite the body attempting to over-produce
insulin to attempt and stabilize glucose levels, glucose begins to accumulate in the
blood, commencing the manifestation of hyperglycaemia [29]. As insulin resistance
develops, its comorbid impact on hyperglycaemia generates an unstable environ-
ment that impacts all of the biomolecule’s in its vicinity, including lipids, proteins,
and perhaps most importantly, DNA [24]. These genetic mutations cause changes
in the kinetics of a variety of biomolecules, including the insulin hormone and its
receptor. As one would expect, research has confirmed that this, in turn, over time,
causes yet an even more severe manifestation of insulin resistance [44]. A graphical
representation of this feedback loop [30] is observable in Figure 1.

These glucose-insulin dynamics are what define the form of diabetes mellitus
known as Type 2 DM. Normally, Type 2 DM is distinguished from other forms
of diabetes due to the body’s unusual elevation in levels of insulin attempting to
cope with its insulin resistance. This condition of elevated insulin concentration is
denominated hyperinsulinemia [10]. However, if a diabetic does not take care of
himself, his condition could be aggravated and pass on to more complicated stages
of diabetes mellitus, including dependence on exogenous insulin. This may in fact
sound contradictory, as previously mentioned, this condition is characterized by
hyperinsulinemia, an excess of insulin, but eventually, the body is unable to sustain
the level of production required to cope with this insulin resistance. The body
then resorts to more extreme mechanisms of glucose elimination that do in fact
lower blood sugar levels, but produce reactive oxidative species, generating a very
unstable environment [31, 32]. This environment is eventually too unstable for even
the source of insulin, the β-cells of the islet of Langerhans, to be able to survive.

In the end, this results in an overall inability to produce insulin all together,
lowering the levels of insulin, but continuing to exacerbate the hyperglycaemia that
has developed with pre-existing stages of diabetes [27, 33]. This final stage, charac-
terized by the inexistence of β-cells, is denominated Type 1 DM, and was previously
thought only to occur in juveniles. A graphical representation of the adverse effects
of chronic hyperglycemia on β-cell function is shown in Figure 2. It has been demon-
strated that what causes its appearance in the youth is a much more cataclysmic
and abrupt death of β-cells we are yet to fully understand, but that adults can also
develop this type of condition if not cautious with their nutrition [16]. With this
level of understanding of what phenomena affect their rate of change, the dynamics
of glucose, insulin, fat, and β-cell mass, one could develop an elementary model
capable of simulating these dynamics.
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Figure 1. Initially, the β-cells in the pancreas function aptly
at maintaining glucose homeostasis and they are said to be in a
healthy state. However, when an ineffective communication is es-
tablished between insulin and its receptor in the liver, the glycemic
levels start to rise, leading to the development of a phenomenon
termed glucose desensitization, the adaptive mechanisms the β-cell
undergoes in response to this short exposure to high intakes of glu-
cose. While the β-cell could return to a physiological status with
moderation of food consumption, constant glucose ingestion could
steer to a potentially pathological state in which concomitant β-cell
exhaustion (depletion of the intracellular insulin reserve) and glu-
cose toxicity (irreversible effects on β-cell function after prolonged
exposure to hyperglycemic levels) are observed.

2. Methodology. Many authors have proposed models of the dynamics we are in-
terested in, but their attempts have frequently recurred to over fit the data available
and result in models that make biologically unreasonable assumptions [19, 42, 43].
Therefore, the approach we shall be taking is parting from the biological knowledge
of the system, and constructing a model that eventually produces the behavior dia-
betes mellitus exhibits as it progresses. As what is understood are the factors that
impact the rates of change of these populations, hence, the mathematical structure
we implemented are differential equations. We utilize the simple Forward Euler
Method programmed in Python 2.7 to simulate the evolution of the differential
equations that will be derived from biological intuition.

2.1. Modelling glucose-insulin dynamics. It is clear that any given entity has
parameters that increase and decrease their rates of change. Amongst these, the
fundamental influences that will commence our construction of the mathematical
model shall be the mutual effects of glucose and insulin on one another. The rate of
change of glucose (G) decreases proportionally to the amount of insulin (I) in the
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Figure 2. One of the proposed ways through which glucose toxi-
city leads to β-cell dysfunction and apoptosis is through the genera-
tion of chronic oxidative stress in the β-cell due to alternative meth-
ods of glucose processing that generate reactive oxidative species
as products. These species have been observed to form peroxides
that are highly toxic to some essential cellular organelles. More-
over, when hyperglycemia is complemented by hyperlipidemia, a
subsequent accumulation of fatty acids as long-fatty acyl CoAs is
observed in the cell. The chronic levels of fatty acids leads to
the buildup of metabolites derived from fatty acid esterification
which play a role in the aforementioned damages in β-cell func-
tion via mitochondrial stress. When damages to the organelles is
detected by the cell, it undergoes a process of programmed cell
death otherwise-known as β-cell apoptosis. While this critical level
of oxidative stress increases the rate of apoptosis considerably, the
rate of replication remains constant. Thus, this leads to a consid-
erable depreciation of β-cell mass and, ultimately, a loss of glucose
homeostasis.

system (variables and parameters in our models are detailed on Table 1). That is
to say:

dG

dt
= −bI (1)

Now, insulin increases in response to the amount of excess glucose available in
the system. Selecting 100mg

dL as the threshold value of glucose [35] would result in
an equation like the following:

dI

dt
= c(G− 100) (2)
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Figure 3. Simulation representing the fundamental assumption
that glucose levels are reduced by insulin, whilst insulin increases
in response to excess glucose. These phenomena are captured in
equations 1 and 2. For this simulation we are using parameter
values b = 0.58 that corresponds to amount of glucose absorbed per
insulin molecule, and c = 2 × 10−5 that corresponds to the insulin
release signal. Shortcomings of these graphs include the un-ending
oscillations and the existence of negative concentrations of insulin.
This was corrected by fixing dI

dt to 0 when glucose concentrations
are lower than 100mg

dl . This characteristics was maintained in all
further simulations.

Initiating a glucose spike of 20 mg
dL corresponding to a breakfast at 8 am, [22,

34, 37] and simulating equations 1 and 2 utilizing a basic forward Euler method
generates the graph observed in Figure 3. This figure generates the quite interest-
ing and fundamental characteristic that these two populations oscillate with one
another. However, it also has a series of characteristics that are biologically un-
feasible. First off, insulin takes on negative values for its concentration, which is
inaccurate for an individual. Moreover, these negative values are the reason glucose
values increase, despite not having consumed any more food. This characteristic is
necessary, and suggests the existence of a mechanism the body utilizes to increase
glucose levels, even while fasting. Such a mechanism does exist and this would be
glycogenolysis, the breaking of polymeric glycogen into its monomer, glucose, to
restore the amount of glucose to a stable level. Selecting 120 mg

dL as the threshold
below which glycogenolysis is conducted, and selecting the amount of glycogen to
be broken down to be proportional to the distance of its current level of glucose
concentration from the threshold [39, 41]. One obtains the following equation:

dG

dt
= a(120 −G) − bI (3)

Simulating once again using equations 2 and 3, Figure 4 is produced. From
this simulation, the satisfactory result of the values tending towards an equilibrium
in between meals consumed at 8 AM, 12 PM, and 5 PM (breakfast, lunch, and
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Figure 4. Glucose - Insulin dynamics model with glycogen break-
down. This model incorporates the breakdown of glycogen to re-
store glucose levels, and the previously mentioned elimination of
negative insulin values. This is achieved by replacing the usage of
equation 1 by equation 3. For this simulation we are using pa-
rameter values a = 1 that correspond to the glucagon production
rate, b = 0.58 and c = 2 × 10−5 that corresponds to the insulin
release signal. Incorporated corrections in this model include re-
ducing oscillations over time, however, the model does not begin
at an equilibrium. Moreover, the reason insulin reduces seems to
be due to high levels of glucose, which is biologically unreasonable.

dinner, respectively) is obtained. However, just as glucose increased in an unrealistic
manner in Figure 4, insulin decreases unrealistically as well and this needs to be
taken into consideration. The reason dI

dt would become negative and in turn cause a
decrease in insulin levels was due to glucose going beneath the threshold level of 100
mg
dL . Insulin would then decrease proportional to the degree of glucose deficiency
the system was under at the moment. This is not what happens physiologically,
if not, insulin naturally diminishes due to its physiological half-life resultant of its
clearance. Therefore, a correction factor that involves this half-life in our equation
for insulin would then result in the following equation:

dI

dt
= c(G− 100) − dI (4)

This is not the only information Figure 4 offers. One can note that the system is
noticeably perturbed even before its initial glucose intake at 8 AM. This is due to
the initial values of 100 mg

dL for G and 0 pM for I not being legitimate equilibrium
values for G and I. Instead, one should set the differential equations to 0 and
attempt to determine the values of G and I from here. This results in a system
with 2 equations and 2 unknowns, which can be solved to result in the following
two equations, where SSG and SSI are the values for Steady-State Glucose and
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Steady-State Insulin, respectively:

SSG =
120ad+ 100bc

ad+ bc
(5)

SSI = c
SSG− 100

d
(6)

Simulating the new equations 3 and 4 with these new initial values (equations
5 and 6) results in the very well-behaved graphs of Figure 5 . Now, despite much
work having been put in, these equations only offer information towards glucose-
insulin dynamics, and truly contain no component that would drive an eventual
development of diabetes mellitus. Nonetheless, as one varies the parameters a, b,
c, and d, the form and behavior of the resultant simulations change. Therefore,
what this suggests is that as diabetes mellitus progresses, what is truly occurring
is that these “constants” are actually evolving, and they contain the manifestation
of important features of disease dynamics.

Figure 5. Glucose - Insulin dynamics model with baseline values.
Simulation incorporating the existence of stable baseline values,
and the incorporation of insulin half-life as the cause of its decay
over time. These produced qualitatively satisfactory simulations of
glucose-insulin dynamics. This is achieved by utilizing equations
3 - 6. For this simulation we are using parameter values a = 1,
b = 0.58, c = 2× 10−5, and d = 4 ∗ ln(2) ≈ 2.77 that correspond to
the insulin decay rate with an insulin half life of approximately 15
minutes.

2.2. Dimensional analysis of dynamics. We propose the usage of dimensional
analysis to reveal the features each constant governs and how these may be de-
termined. Table 1 contains a listing of each parameter, its determined value and
corresponding units. The first we shall analyze is the last constant added (d), whose
units should be 1

hour to satisfy the dimensions of equation 4. As previously stated,
this component was incorporated to that equation to satisfy the notion of insulin’s
decay in the body. Therefore, the constant d is nothing other than a rate constant
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that can be determined from the half-life of insulin. With this being reported in
the literature to be approximately 15 minutes ( 1

4 hours), d can then be determined

to be: d = ln 2
1
4hr

. Continuing on with the constant a of equation 3, one can observe

it also has units of 1
hour . However, it is not truly a decay constant, but instead it

describes the amount of glycogen released per unit of deficiency of glucose, and also,
it incorporates the average length of glycogen that is cleaved into simple glucose
monomers. For its determination, we propose the observation of how glucose levels
gradually rise after the injection and degradation of an insulin bolus.

Moving away from the simpler units of constants a and d, the constant b has a

seemingly more complex dimensional measurement of mg(Glucose)
pmol(Insulin) ×

L
dL×hr . Focus-

ing on the portion that relates Glucose and Insulin, one notes that these units are
related to the amount of glucose that is absorbed per a given amount of insulin in
the blood. This is effectively a measurement of how sensitive, or resistant, the mus-
cle tissue is currently to insulin, so that it can begin to absorb glucose molecules.
Therefore, the modulation of this constant would allow one to model the effects of
insulin resistance. Figure 6 shows how reducing the constant b by a factor of 0.5
every 24 hours results in both hyperglycaemia, and hyperinsulinemia.

In addition, the constant c also has similar complex units of pmol(Insulin)
mg(Glucose) × dL

L×hr ,

and although it does seem to allude to a sensitivity of glucose, it is not of the
muscle tissue, but the β-cells who produce the insulin in response to the glucose.
If we assume that the β-cells in themselves remain equally responsive to changes
of glucose, but that it is the amount of β-cells that gradually reduce, then a decay
in the value of c could be related to the gradual death of the β-cell population.
Figure 7 shows how reducing this constant by a factor of 0.5 every 24 hours results,
similarly to the reduction of b in hyperglycaemia, but, quite distinctly, it does not
result in hyperinsulinemia. Instead, as would our biological intuition suggest, the
levels of insulin also diminish due to the body’s inability to produce it anymore
without β-cells.

Compounding these two effects at a rate of 0.7 for both constants, we obtain
Figure 8. The results of this model are rather intriguing as we can see that the
qualitative behavior of hyperinsulinemia and afterwards insulin deficiency that one
would expect from the development of diabetes mellitus, is achieved as insulin re-
sistance and β-cell decay occur at roughly the same rate. These experiments still
are just qualitative in nature and suffer from the previously criticized practice of
making unrealistic assumptions, such as the spontaneous generation of insulin re-
sistance and death of β-cells every 24 hours. Therefore, it is our responsibility to
incorporate elements that stem from nutritional habits and their influence on the
glucose-insulin dynamics, and these elements will eventually generate these effects
of β-cell decay and insulin resistance.

2.3. Fat-enriched diets. Each day, the simulation incorporates an injection of 20
mg(Glucose)

dL corresponding to the person consuming a carbohydrate-rich meal. How-
ever, unhealthy feeding habits do not only have to do with our sugar intake, if not
many other constituents such as vitamins, minerals, and, arguably most relevant,
fat content. Many reports have established that consuming a diet rich in lipids and
other hydrocarbons leads to the deposition of adipose tissue, which interrupts the
effectivity of the signal processing that occurs between insulin molecules and the
muscle tissue [11, 12, 15, 20, 25, 36, 46]. As the fat supply is adjunct with the sub-
ject’s continuous consumption, the addition of fat should occur simultaneously to
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Table 1. Parameters utilized for model development.

Parameter Description Value/Range Units References
G Glucose Initial calcu-

lated through
SSG Variable

mg
dL [3, 22, 23,

34, 35, 37,
39, 41]

I Insulin Initial calcu-
lated through
SSI Variable

pM [3, 23, 35]

F Fat Estimated
SSG Variable
F (0) = 0

TBD [11, 12, 15,
20, 25, 36,
46]

a Glucose from
glycogen
breakdown

[0.5 − 2] 1
hr [3, 4, 7, 17,

23]

b Glucose
metabo-
lized due
to insulin
release

[0.5 − 0.8] mg × dL
mg × 1

hr [5, 13]

c Insulin re-
leased in
response
to excess
glucose

[1.5 − 2.5] ×
10−5

pM × dL
mg × 1

hr [14, 35, 38,
40]

d Insulin decay [2.5 − 3] 1
hr [28, 35]

g Glucose
elimination
through
oxidation

[1−10]×10−5 1
hr [2, 45]

φ(F ) Insulin re-
sistance
function

(h, i and j
selected for
this to span
from approxi-
mately 1 to 0)
Variable

Unitless [11, 12, 15,
20, 25, 36,
46]

f Fat con-
sumption
over time

[4.5 − 7] TBD [11, 12, 15,
20, 25, 36,
46]

k Rate of β-
cell death
per oxidized
glucose

[0.01 − 0.001] dL
(hr×mg(Glucose)) [11, 18, 27,

31, 32, 36]

β β-cell popu-
lation

1, 000, 000 ini-
tial Variable

β-cells [8, 18, 31]

the subject consuming his glucose. This would result in a “step-like” function that
gradually increases over time, as can be observed in Figure 9. Mathematically, this
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Figure 6. Insulin Resistance Model. Simulation utilizing the pre-
viously established glucose-insulin dynamics, with insulin resis-
tance being artificially aggravated over time. Equations are the
same as in Figure 5 with reducing values of b at each period of 24
hours by half (0.5) with an initial value of b = 0.58 and parameter
values of a = 1, c = 2 × 10−5 and d = 4 ∗ ln(2) ≈ 2.77.

Figure 7. Simulation utilizing the previously established glucose-
insulin dynamics, with β−cells being artificially decimated over
time. Equations are the same as in Figure 5 with reducing values
of c at each period of 24 hours by half (0.5) with an initial value of
c = 2×10−5 and parameter values of a = 1, b = 0.58 and d ≈ 2.77.

can be difficult to incorporate in an equation, but Figure 9 also shows that a linear
function dependent on time can easily capture, especially over long periods of time
such as weeks or days, this step-like increase in fat content. It is clear that although
fat consumption is linear, it is not all deposited as adipose tissue, and the effect
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of this deposition, has no reason to be linear itself as well. The dynamic observed
suggests more of a latency period as the person accumulates weight, then a deca-
dence period where the person’s health begins to severely decline, until it reaches a
point where it cannot realistically continue to get much worse than it is. This sort
of description fits that of a logistic function that could be processing this fat intake
and converting it into an impact of insulin resistance. These revelations about fat
intake allow us to update equation 3 with the creation of two more equations that
describe fat (F) and insulin resistance (φ(F )):

dF

dt
= f (7)

φ(F ) =
1

h+ e−iF+j
(8)

dG

dt
= a(120 −G) − bφ(F )I (9)

Figure 8. The incorporation of β−cell decay and Insulin Resis-
tance was simulated simultaneously, to correlate their physiological
importance with modelled disease progression. Development and
decline of hyperinsulinemia is clearly observable. The observed sim-
ulation is the result of simultaneous reduction of constants b and c
by a factor of 0.7 in the previously established equations 3 and 4
for insulin dynamics. For this simulation we are using parameter
values a = 1, b = 0.58, c = 2 × 10−5 and d = 4 ∗ ln(2) ≈ 2.77.

2.4. Impact of hyperglycaemia on β-cell decay. Hyperglycaemia that results
from the gradual deposition of adipose tissue leads to a phenomenon known as
Glucose Toxicity, where the body resorts to extreme mechanisms in an attempt to
reduce the glucose concentration to feasible levels. As previously mentioned, the
mechanism commonly utilized generates reactive oxidative species and, depending
on how many are generated, more and more β-cells with susceptibility would die.
Nonetheless, an underlying amount of β-cells with considerable resistance should
remain, as the population is typically not completely obliterated, but instead con-
tinues slowly decaying. This suggests that there is an interaction between the
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remaining β-cell population and any glucose that exceeds a given threshold. Select-
ing this threshold as 200 [21, 22] that is considered unusually high for a normal
person, results in the following equations:

dβ

dt
= −kβ(G− 200) (10)

dI

dt
= cβ(G− 100) − dI (11)

dG

dt
= a(120 −G) − bφ(F )I − g(G− 200) (12)

It is important that one incorporate gating factors that do not permit factors,
such as the ones just stated act before the threshold values are surpassed, and do
not act if the parameter is below that given threshold. For example, if left incorrect,
these equations would result in the β-cell population growing out of control whilst
glucose is beneath 200, as its derivative will be positive. This is not true, as research
reveals that the natural replication rate of β-cells is typically canceled out by its
rate of apoptosis, resulting in a rate of change of 0 under non-extreme physiological
conditions (See [8, 9, 18, 27, 31]).

With this final addition, it is now possible to model a disease dynamic that is
only driven by the nutritional and metabolic patterns of the subject. Results of this
model are present in Figure 10.

Figure 9. Inclusion of Fat deposition. Comparison of the usage of
a step-like function of fat deposition, with that of a linear function.
It is evident that this is a convenient way of achieving an equal
effect.

3. Conclusion. Diabetes mellitus is definitely a complex disease that requires a
lot of attention due to the vast population it impacts worldwide. Furthermore,
the attention it requires should be provided in the most effective manner possible,
for which tools that offer comprehensive understanding of the disease’s dynamics
must be crafted. The model we proposed has been constructed to align with the
biological description of the system, and utilized very few unorthodox assumptions.
We believe this model offers a prime example of how biomathematical models should
be developed. Continuously, there was a cycle where a biological phenomenon
suggested a certain set of equations, but after simulating them, one uncovered that
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Figure 10. Complex Model of Glucose, Insulin, β−cell mass and
Fat Dynamics. Simulation of insulin resistance progressing as a
function of fat consumption, and β−cell decay being proportional
to glucose in extreme excess. These factors are captured by the
modified equations 7, 8 and 10 - 12. For this simulation we are
using parameter values a = 1 that correspond to the glucagon
production rate, b = 0.58 that corresponds to amount of glucose
absorbed per insulin molecule, c = 2 × 10−5 that corresponds to
the insulin release signal, and d = 4 ∗ ln(2) ≈ 2.77 that correspond
to the insulin decay rate with an insulin half life of approximately
15 minutes.

certain biological phenomena had been neglected. The gradual development of a
model that included the feedback loop described in Figure 1 was not only powerful,
but simple enough to continue shedding light on previously unconsidered aspects of
the disease dynamics. Even with our careful approach on the modeling, Figure 10 in
itself does not answer all questions with respect to how the disease progresses. For
example, insulin concentrations seem to elevate to levels much too extreme for the
β-cells to realistically sustain such a high concentration. Incorporating the notion
of an insulin reserve could potentially shed light on the period in which a Type 2
diabetic becomes insulin dependent. Another possibility is to incorporate a change
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in metabolic activity on behalf of the subject, and verify the possibility of reversing
the progression of this vicious disease. Much work remains to be done, and perhaps
the mathematical methods implemented are not the most rigorous. However, we
cannot sacrifice insight for mathematical beauty, for our goal must be to reveal the
truth behind these mechanisms, and that truth, might just as well be extremely
complex.

4. Future work. As the model stands, it satisfactorily identifies fat deposition as
the underlying mechanism to the disruption of glucose-insulin dynamics. However,
characterization of fat consumption trends in healthy and unhealthy individuals,
and the incorporation of an elucidated fat-deposition mechanism will be funda-
mental in understanding the effect the diet of the patient will have on disease
progression. In addition, incorporation of contributions to fat deposition such as
physiological activity to characterize fat removal in the system, will assist heav-
ily in diagnosing a regimen for treatment in terms of recommended exercise and
diet modifications. As it has been elucidated to be the driving force of disease
progression, it is clear this work should be of utmost precedence. Thankfully, the
methodical construction of this model would allow seamless integration of this data
once adequate sources of experimental data are identified. Furthermore, with a
complete and biologically feasible model, statistical characterization would be the
stepping stone towards clinical implementation. Developing an adequate correlate
between model predictions and patient prognosis would require extensive sensitivity
analysis between parameters, as well as the identification of reliable clinical assays
which could be developed to locate the patient’s current state in terms of disease
progression. This would require an extended collaboration of clinicians, laboratory
specialists, and our own computational team to unravel this interdisciplinary prob-
lem of clinical implementation, and achieve the final goal of meaningfully impacting
the patient.
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