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Abstract. Urban areas, with large and dense populations, offer conditions

that favor the emergence and spread of certain infectious diseases. One com-

mon feature of urban populations is the existence of large socioeconomic in-
equalities which are often mirrored by disparities in access to healthcare. Re-

cent empirical evidence suggests that higher levels of socioeconomic inequalities

are associated with worsened public health outcomes, including higher rates of
sexually transmitted diseases (STD’s) and lower life expectancy. However, the

reasons for these associations are still speculative. Here we formulate a math-
ematical model to study the effect of healthcare disparities on the spread of

an infectious disease that does not confer lasting immunity, such as is true of

certain STD’s. Using a simple epidemic model of a population divided into
two groups that differ in their recovery rates due to different levels of access

to healthcare, we find that both the basic reproductive number (R0) of the

disease and its endemic prevalence are increasing functions of the disparity
between the two groups, in agreement with empirical evidence. Unexpectedly,

this can be true even when the fraction of the population with better access
to healthcare is increased if this is offset by reduced access within the disad-
vantaged group. Extending our model to more than two groups with different

levels of access to healthcare, we find that increasing the variance of recovery

rates among groups, while keeping the mean recovery rate constant, also in-
creases R0 and disease prevalence. In addition, we show that these conclusions

are sensitive to how we quantify the inequalities in our model, underscoring the
importance of basing analyses on appropriate measures of inequalities. These

insights shed light on the possible impact that increasing levels of inequalities

in healthcare access can have on epidemic outcomes, while offering plausible
explanations for the observed empirical patterns.
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1. Introduction. The world is becoming increasingly urbanized, especially devel-
oping countries in Asia and Africa. Today, more than half of the world’s population
lives in cities, and by mid-century it is expected that this proportion will rise to
over 60% [43]. Rapid urbanization can have significant public-health implications
[13, 18, 19, 21, 26]. In particular, when combined with poor living conditions and an
overburdened public health infrastructure, rapid growth of urban populations can
create favorable conditions for the spread of certain infectious and chronic diseases
[1, 3, 4, 32, 47].

One common feature of urbanization is the amplification of socioeconomic in-
equalities among residents. Urban dwellers enjoy, on average, better health, edu-
cation and income. At the same time, these benefits are usually not evenly dis-
tributed across the population [14, 34, 40]. Figure 1 (left) illustrates an example
of this phenomenon by showing larger income inequality in households within U.S.
Metropolitan Statistical Areas (MSAs) as compared to households outside MSAs.
Moreover, recent evidence shows that income inequality has been on the rise in the
United States during the past four decades, and wealth inequality is today more
extreme than at any time since the Great Depression [39].

Large disparities in economic, social and living conditions can in turn result in
inequalities in access to healthcare and other social services, all potentially affecting
the well-being of individuals. For example, limited access to professional medical
attention, vaccination and medication are common challenges for poorer urban res-
idents [26], which can result in the emergence of drug resistance in urban areas
in part because of difficulties in adhering to complicated and expensive treatment
regimes [10, 12]. The evidence also suggests that within urban areas across the
world, wealthier residents have better access to education and mass media, and are
more exposed to campaigns for disease prevention (see right panel of Figure 1).

Interplay between inequalities in healthcare access and epidemic out-
comes. Empirical evidence suggests that health outcomes are worse in societies
with larger income differences [46]. This observation is important because, in many
countries, inequalities in health have been increasing [33, 38, 39]. However, in most
of these studies, the term ‘health’ has been equated with ‘life expectancy’ [11, 45],
while other factors, such as infectious diseases (IDs), have not been thoroughly
considered.

Additionally, the literature on this topic lacks mechanistic (causal) pathways to
explain these statistical findings [46]. Thus an important question arises: why is
income inequality, rather than income per-capita, often the factor more strongly
associated with worsened health outcomes? Focusing on mortality rates, this asso-
ciation can be explained, at least in part, by observing that although more money
can buy better healthcare, this impact is greater for people that are lower on the
income distribution than for those at the top. In particular, this diminishing returns
hypothesis can explain why average life expectancy would be negatively related to
income inequality when comparing societies with similar average incomes.

Adopting a more holistic view on health beyond mortality rates, we note that
within the literature on socioeconomic inequality and public health, the relationship
between inequalities and infectious diseases has received much less attention. Higher
levels of income inequality were found to be associated with an increase in the
incidence of chlamydia, gonorrhea and syphilis [37], as well as AIDS [23], thus
supporting the view that greater income inequality correlates with worsened health
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Figure 1. (left) Household Income distribution in MSA and non MSA
areas of the U.S. in 2011. The mean (m) and standard deviation (SD)
are computed excluding the fraction that makes more than $200,000.
Even though average income in MSAs is larger, the income distribution
in MSAs is broader (larger SD) than in non MSAs, suggesting larger
income inequalities. Data Source: U.S. Census Bureau, Current Popu-
lation Survey, 2012 Annual Social and Economic Supplement. (right)
HIV/AIDS transmission dynamics knowledge in urban areas. In all rep-
resented countries, poorer residents within urban areas have less knowl-
edge regarding the transmission of HIV. Data Source: World Health
Organization.

outcomes. These association studies, however, do not provide a clear mechanistic
explanation for how income inequalities affect the spread of infectious diseases.

Through the scope of a mathematical model, this paper aims to provide a more
mechanistic understanding of the impact of socioeconomic inequalities on the dy-
namics of infectious diseases. As explained below, we focus on diseases that do
not confer lasting immunity (such as certain sexually transmitted diseases) and we
assume that the population can be divided into two groups that differ in their re-
covery rates due to differences in access to healthcare. We also address some of the
consequences of relaxing these assumptions.

Epidemic model formulation. As noted above, it has been found that some
sexually transmitted diseases, such as chlamydia, gonorrhea and syphilis, occur at
higher rates in urban areas with greater levels of income inequality [37]. Because
these diseases confer only temporary immunity upon recovery from infection, we
will study the impact of healthcare access inequalities by modifying a Susceptible-
Infected-Susceptible (SIS) epidemiological model. The SIS model has been widely
used to study the dynamics of certain infectious diseases in both homogeneously
[2, 6, 7, 24] and heterogeneously [8, 9, 22, 27] mixed populations, where follow-
ing pathogen clearance from the host, due to treatment or immune response, an
infectious individual recovers but is once again susceptible to infection.

In our framework, individuals belong to one of two groups based on their re-
spective infectious periods. In this regard, we assume that the time from infection
to treatment is significantly determined by individual socioeconomic aspects such
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as income, education and access to healthcare services [18, 21]. In the model we
postulate that the net outcome of all these factors can be represented by a single
parameter, the recovery rate. Thus, how this parameter varies among individuals
is a characterization of the health-related inequalities in the population. We as-
sume that these two groups mix homogeneously in their shared geographic location
(i.e., we are not dealing with a metapopulation model). Once individuals become
infected, they recover at different per-capita rates γ1 and γ2, returning to their re-
spective susceptible classes. We assume that individuals in group ‘1’ recover at a
faster rate, thus γ1 ≥ γ2. Our main objective is to understand how the dynamics
of the infectious disease are affected by variation in the recovery rates γ1 and γ2

between the two groups.
For the sake of clarity and simplicity of argument, for the moment we neglect

differences in susceptibility, although we recognize that these also could influence
the relationship between socioeconomic inequality and infectious disease [35]. In
the discussion and in Appendix H we investigate the effects of having a population
divided into two groups with different susceptibilities.

Mathematical model and the basic reproduction number. Consider a closed popula-
tion of constant size N which is divided into two groups that differ in their access to
healthcare. The first group represents a proportion f of the total population and its
individuals have better healthcare access than those in the second group. In keeping
with the SIS framework, we will assume that each individual is either susceptible or
infected, and we let Si and Ii represent the proportion of susceptible and infected
individuals, respectively, of group i (where i ∈ {1, 2}). Thus, S1 + I1 = f and
S2 + I2 = 1− f . Assuming that susceptible individuals in both groups are equally
susceptible and are infected at a rate β(I1 + I2), the SIS model can be completely
specified by the following two equations,

dI1
dt

= β(f − I1)(I1 + I2)− γ1I1,

dI2
dt

= β[(1− f)− I2](I1 + I2)− γ2I2, (1)

where the respective susceptible populations are given by S1 = f − I1 and S2 =
1− f − I2.

The basic reproductive number, defined as the expected number of secondary
infectious cases generated by a typical infectious case in an entirely susceptible
population, is a key parameter in the analysis of infectious disease dynamics. In
particular, it provides important insight into the following three issues: i) the po-
tential for an infectious agent to start an outbreak, ii) the extent of transmission in
the absence of control measures, and iii) our ability to deploy control measures to
reduce a potential spread [28].

Following the Next Generation Matrix approach described in [42], the basic re-
production number is given by:

R0 = β

(
f

γ1
+

1− f
γ2

)
. (2)

From Eq.(2) we can clearly see that the reproduction number has a contribu-
tion from the fast-recovering group and one from the slow-recovering group, each
weighted by their respective representativeness in the population.
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Conditions for the existence and stability of equilibria. Steady states of model (1)
can be obtained by setting the derivatives in the left hand side equal to zero and
then solving for I1 and I2. The model has both an infection-free equilibrium (IFE)
E0 = (0, 0) and an endemic equilibrium E∗ = (I∗1 , I

∗
2 )′, which will be determined

below. The stability of the IFE is determined by the trace and determinant of the
matrix of the linearized system at the IFE [41], and in Appendix B we prove the
following proposition:

Proposition 1. The infection-free equilibrium E0 = (0, 0)′ is locally asymptotically
stable if and only if R0 < 1.

In addition, the endemic equilibria of system (1), namely I∗1 and I∗2 , are given by

I∗1 =
fλ∗

λ∗ + γ1
and I∗2 =

(1− f)λ∗

λ∗ + γ2

where λ∗ is the positive solution of the second-degree equation

F (λ∗) = λ∗2 − λ∗Tr(L)− γ1γ2 (R0 − 1) = 0 (3)

which is given by

λ∗ =
Tr(L) +

√
((Tr(L))2 + 4γ1γ2 (R0 − 1)

2
, (4)

with L being the matrix of the linearized system at the IFE:

L =

(
βf − γ1 βf
β(1− f) β(1− f)− γ2

)
. (5)

It is easy to check that, for R0 < 1, all coefficients of the quadratic polynomial
(3) are positive. Thus, equation (3) has no positive solution for R0 < 1. If R0 > 1,
then equation (3) has a unique positive solution. Consequently, model (1) has a
unique endemic equilibrium forR0 > 1. We summarize these results in the following
proposition

Proposition 2. If R0 > 1, then model (1) has a unique endemic equilibrium
E∗ = (I∗1 , I

∗
2 )′ which is locally asymptotically stable whenever it exists.

The stability analysis of the equilibrium E∗ is deferred to Appendix C.
For future analyses, we need to state the following proposition which is straight-

forward to prove.

Proposition 3. The quantity λ∗, as well as the proportions I∗1 and I∗2 , satisfy the
following properties:

1. λ∗ = 0 (and therefore, I∗1 = 0 and I∗2 = 0) if and only if R0 = 1,
2. I∗1 increases with λ∗, and
3. I∗2 increases with λ∗.

Analysis in terms of the mean and the variance of recovery rates. In this
section we describe how the dynamics of the SIS model depend on the variance
in the recovery rates when the mean recovery rate is kept constant. Formally, the
(weighted) mean (µ) and the variance (ν) of the recovery rates in this two-group
population are given by

µ = fγ1 + (1− f)γ2, ν = f(γ1 − µ)2 + (1− f)(γ2 − µ)2.
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Isolating γ1 and γ2 from these two expressions yields:

γ1 = µ+

√
(1− f)ν

f
, γ2 = µ−

√
fν

(1− f)
. (6)

In particular, we observe that for the inequality γ2 > 0 to be satisfied, the variance
must satisfy the inequality ν < µ2(1− f)/f := νmax.

Reproduction number in terms of the mean and the variance. Substituting the ex-
pressions in (6) into R0 in (2) gives

R0 = β

 f

µ+

√
(1− f)ν

f

+
1− f

µ−
√

fν

(1− f)

 . (7)

In particular, we would like to know how R0 varies with ν when f and µ are held
constant, which we can do by calculating the partial derivative ∂R0

∂ν
1. In Appendix

G we show that
∂R0

∂ν
> 0

for all biologically relevant values of µ and f . Hence, increasing the variance in-
creases the reproductive number of the disease.

Similarly, we can determine the values of ν for which the infection will persist by
studying the inequality R0(ν) > 1, which is equivalent to

F (ν) := ν +
(1− 2f)(β − µ)√

f(1− f)
ν

1
2 + µ(β − µ) > 0. (8)

It is clear that if ν = 0, the relation (8) holds if and only if µ < β. However, if
µ > β, then µ(β − µ) < 0 and, therefore, irrespective of the sign of the coefficient

of ν
1
2 , the inequality (8) holds if and only if ν > ν1 where

ν1 =

[
(µ− β)

2
√
f(1− f)

(
1− 2f +

√
1 + 4f(1− f)

β

µ− β

)]2

. (9)

We summarize our results in the following proposition.

Proposition 4. The basic reproduction number, as a function of the variance ν, is
such that

• R0 always increases with ν,
• R0 > 1 if and only if either of the following is held

µ < β or (10)

µ > β and ν > ν1. (11)

• R0 = 1 only if β = µ or (µ > β and ν = ν1)

This result is illustrated in Figure 2, where we also see that when µ is small,
increasing ν has a larger impact on R0. That is, the variance in recovery rates
matters more when the average recovery of individuals is slow. Moreover, even
when individuals recover fast enough on average as to make the quantity β/µ (the

1It is prudent to remark that the change in ν(γ1, γ2, f) in this partial derivative can only be
due to changes in γ1 and γ2, not in f , given that f is held constant in the rest of the expression

for R0.
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standard way of quantifying the reproduction number) less than 1, the disease can
still persist if there is sufficient heterogeneity in the population.

Figure 2 also suggests that the basic reproductive number will increase more
rapidly with ν when the fraction f of individuals in the fast-recovering group is
larger. Formally,

∂(∂R0(ν, f)/∂ν)

∂f
> 0, ∀f < fmax =

µ2

ν + µ2
, (12)

where fmax is the value of f over which γ2 < 0; thus values of f larger than
fmax are not relevant to our purposes. The expression (12) has been confirmed
via numerical experiments. Moreover, it is clear from Figure 2 that for a given
value of ν, if f1 > f2, then R0(f1) > R0(f2), which seems counterintuitive at first
sight. In fact, extensive numerical explorations suggest that, all else being equal,
R0 increases with f . One way to make sense of this observation is by realizing that,
if µ and γ1 are held fixed, then γ2 must decrease as f increases, meaning that those
that recover at the slower rate are that much worse off. In other words, increasing
f decreases γ2 at a rate that offsets the benefits of having a larger fraction of the
population recovering at a faster pace. Furthermore, increasing f augments the
pool of fast-recovering susceptible individuals that can be infected multiple times
by individuals with longer periods of infection; hence an increase in the expected
number of new infections generated by each slow-recovering individual which results
in the increase of R0.
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Figure 2. Reproduction number as a function of the variance ν, for
different populations structures: f = 0.3 and f = 0.7. Part (a) shows
the case µ < β, while part (b) shows the case µ > β, where β = 0.3.
Note that in part (b), the variance has to be relatively large for the
reproduction number to increase beyond 1. Notice also thatR0 increases
more steeply with ν for larger values of f . The graphs have vertical
asymptotes for νmax = µ2(1− f)/f , at which point γ2 = 0.
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Prevalence in terms of the mean and the variance. The endemic prevalence I∗T =
I∗1 + I∗2 as a function of the mean µ and the variance ν is given by

I∗T =
1

2β

β − 2µ− (1− 2f)√
f(1− f)

ν
1
2 +

√√√√(β +
1√

f(1− f)
ν

1
2

)2

− 4fβ√
f(1− f)

ν
1
2

 .
(13)

To investigate the system in the limit of no heterogeneity, it is easy to check that

lim
ν→0+

I∗T (ν) =

(
1− µ

β

)
(14)

which is positive if and only if β > µ. Hence, in case µ > β, the proportion I∗T
is negative for values of ν in the neighborhood of ν = 0 (in fact, I∗T < 0 for all
values of ν less than ν1). In further investigating the behavior of I∗T (ν) near the
no-heterogeneity limit, we find that

lim
ν→0+

∂I∗T
∂ν

=
1

β2
> 0. (15)

This inequality implies that the endemic prevalence I∗T (ν) increases initially with
the increase of the variance ν.

It is easy to check that

I∗T (νmax) =
1

2β

β − µ

f
+

√(
β − µ

f

)2

+ 4(1− f)β
µ

f

 > 0. (16)

Moreover, I∗T = 0 if and only if R0 = 1 (and by proposition 4) if and only if β = µ
or (µ > β and ν = ν1). Also, from the second item in proposition 3 and expression
(4) it can be concluded that I∗T increases with R0, which in turn, by proposition 4,
increases with ν. Thus, I∗T always increases with ν. Figure 3 shows this behavior
for different values of model parameters. We collect the above results to state
the following proposition that shows the qualitative behavior of the prevalence of
infection at equilibrium as a function of ν.

Proposition 5. The qualitative behavior of the prevalence I∗T (ν) has two cases:

1. Case 1: µ ≤ β. In this case, I∗T (ν = 0) > 0 and, therefore, I∗T (ν) is always
increasing until reaching its maximum at ν = νmax (see Figure 3(a) & (b)).

2. Case 2: µ > β. Here, R0(ν = 0) < 1, I∗T (ν = 0) < 0 and therefore I∗T
is defined only for ν ≥ ν1, with I∗T (ν = ν1) = 0. In this case I∗T increases
whenever it is defined, reaching its maximum at ν = νmax (see Figure 3(c) &
(d)).

Analysis in populations with multiple groups with different recovery
rates. In the previous section we assumed that the population was subdivided into
only two groups. More generally, individuals can be part of K “recovery” groups.
In that case, one would need K − 1 fractions fi, i = {1,K − 1}, to fully determine
the “inequality” structure of the population. Extending our analysis to the more
general case where the population is divided into K groups, each representing a frac-
tion fk of the population and with recovery rates γk with k ∈ {1, 2, 3...K}, it can be
shown using the Next Generation Matrix method [42] that the basic reproduction
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Figure 3. The prevalence I∗T as a function of the variance, for different
values of f and µ, as explained in the heads of each subfigure. Parts (a)
and (b) are drawn with µ = 0.3β (dotted curves), µ = 0.6β (broken
curves) and µ = 0.9β (solid curves). However, parts (c) and (d) are
done with values of µ = 1.5β (dashed-dotted curves), µ = 2β (thin-solid
curves) and µ = 2.5β (heavy-solid curves).

number is given by

R0 = β

K∑
k=1

fk
γk
.

In other words, we can write the basic reproductive number as R0 = β/mh, where

mh =

(∑
k

fk
γk

)−1

is the weighted harmonic mean of the recovery rates over the

different groups making up the population. In contrast, the arithmetic mean would
be given by ma =

∑
k fkγk. It is known that the harmonic mean is less than the

arithmetic mean, i.e., mh < ma, thus R0 = β/mh > β/ma.
Let us compare two cases: i) the limiting case where the population is composed

of only one group of individuals with recovery rate given by ma, and ii) the pop-
ulation is split into K groups based on their recovery rates, while preserving the
mean recovery rate. In case i) the reproduction number would be given by β/ma,
whereas the second scenario leads to a reproduction number equal to β/mh, with
β/ma < β/mh as we have just shown. Thus, we can conclude that a disease has
less potential to spread in a homogeneous population than in a heterogeneous with
the same mean recovery rate2. In other words, recovery-rate heterogeneity in the
population increases the transmission potential of a disease.

2In this paper we equate the term “heterogeneity in the population” to the variance of the
recovery rates in the population. We note that this equivalency can be ambiguous in certain situa-
tions, such as in the case where the recovery rates in the population follow “fat-tail” distributions,

which can feature large variances even though most recovery rates are concentrated around a given
value, and can therefore be effectively characterized as a homogeneous population.
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Analysis via agent-based model simulations. Here we build on the idea of multiple
groups with different healthcare access. We take an agent-based approach where
instead of having two groups of individuals characterized by two different recovery
rates, each individual is assigned a recovery rate. As before, we aim to better under-
stand how recovery rate heterogeneity affects disease prevalence in the population.

Other models have already shown the importance of heterogeneity among individ-
uals [31, 15, 20, 35], and the implications for disease dynamics due to the inclusion
of more realistic infectious period distribution [25, 29, 30, 44, 28]. For example, the
authors in [30] used a Susceptible-Infected-Recovered (SIR) type framework and
found that less dispersed infectious periods destabilize the dynamics, leading more
often to extinction or to larger stochastic fluctuations around the endemic equilib-
rium. In the context of SARS, [28] showed that if there is large variation in the
number of secondary cases generated by each index case, the probability of a large
epidemic is lessened as compared to the cases with less variation.

The model we present here conforms to the SIS type model we have been using
thus far. Susceptible individuals are infected at a rate proportional to the frequency
of interactions with infected individuals, and the transmission rate, β. In contrast
to the two-group approach presented before, the recovery rates of each individual in
this model are sampled from distributions with different properties (e.g., variance),
allowing us to assess how these properties affect disease outcome.

By assuming that the transition processes from one class to another is a homo-
geneous Poisson process, the conditional probability that an individual susceptible
at time t becomes infected between time t and t+ dt, say PI(t), is given by

PI(t) = 1− exp(−βI(t)dt/N) + o(dt), (17)

where the other parameters in the transition rate are I(t), the number of infected
at time t, and the size of the population, N .

When infected, individuals recover at different rates, moving back to the suscepti-
ble class. We model the recovery rate as a random variable with a Beta distribution
kernel (see Appendix I for details). Using the Beta distribution as a kernel allows for
the shape of this distribution to be considered a descriptive proxy for the structure
of inequalities in the population. Different inequality profiles– that is, distribution
profiles– can be easily obtained by calibrating the parameters in the distribution,
making this theoretical framework quite flexible to test the effects of different in-
equality profiles on epidemic outcomes. More specifically, we focus on symmetric
recovery rate distributions with fixed means, and test the effects of changing the
variance of the distribution.

In the simulations, once a recovery rate, namely γi, has been assigned to the
ith agent, the duration of each infection suffered by this agent is exponentially
distributed with mean 1/γi. It is noteworthy that the distribution of infectious
periods does not necessarily share the same symmetry properties as that of the
recovery rates. In fact, when the recovery rates are symmetrically distributed, the
distribution of infectious periods tend to be skewed to the right.

In addition to exploring the role of the variance on disease prevalence, we in-
vestigated the role of the mean recovery rate as well as pathogen transmissibility.
For each run, the prevalence was computed as the mean of the prevalence values
over the last 100 time steps conditional on non extinction. For each parameter
value, we plot the mean of prevalences over 20 simulations, along with the standard



HEALTHCARE ACCESS INEQUALITIES IN EPIDEMIC OUTCOMES 1021

errors, versus the variance of the corresponding recovery rates distributions. For
more details regarding the simulation set up see Appendix I.

In line with results thus far, Figure 4 shows that the prevalence increases along
with the variance of the recovery rates. Moreover, the rate of increase is different
for different transmission rates and different mean recovery rates. The effect of
the variance of the recovery rates on the prevalence is larger for less transmissible
diseases. Additionally, we find that the effect of the variance on the prevalence is
larger when individuals recover faster on average.

Figure 4. Mean and standard error (bars) of the infection prevalence
(fraction) versus variance of the recovery rates for different values of the
mean recovery rate and the transmission rate.

Discussion. In a world where socioeconomic inequalities are increasing, our un-
derstanding of the role of inequalities in epidemic outcomes is paramount. As a first
step to investigate this issue, we model a scenario where a homogeneously mixed
population is divided into two groups of people with different recovery rates (as a
proxy for healthcare access). With this modeling approach, we demonstrate that
increasing inequalities can have important effects on the spreading potential (i.e.,
epidemic risk and size) of certain pathogens, such as curable STDs. Specifically,
both R0 and the endemic prevalence are shown to always increase with the vari-
ance of recovery rates (i.e., inequalities) whenever the mean recovery rate is held
constant. Moreover, for large values of the mean recovery rate, the disease can still
persist when the variance is sufficiently large.
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From our analyses we can also infer that, for a fixed mean recovery rate, increas-
ing the fraction of the population that recovers faster, leads to an increase in the
transmission potential of the disease. This insight suggests that a public health in-
tervention that aims at increasing the fraction of individuals with better healthcare
access at the expense of those with less access could be worsening the epidemiologi-
cal situation. Put differently, interventions designed to quell the spread of infectious
diseases should aim to both decrease inequality and improve the overall access to
healthcare.

In Appendix A, these effects are analyzed in terms of the unweighted mean of
recovery rates and difference in recovery rates between the two groups. In contrast to
the results reported above, focusing on the unweighted mean and difference depicts
a more complex picture, with the dynamics of epidemic spread depending more
closely on the structure of the population. Importantly, the contrasting nature of the
conclusions derived from these two different approaches underscores the importance
of focusing on the right quantities. We consider that focusing on the mean and
variance, rather than the unweighted mean and difference of recovery rates, is the
appropriate way to study the effects of inequalities on epidemic outcomes.

Extending our analyses to the more general case where the population is com-
posed of K different groups with different recovery rates, we show that the repro-
duction number is always greater in the presence of a heterogeneous population than
in the case where there is no heterogeneity in recovery rates, if the mean recovery
rate is preserved. Through this analysis we can also conclude that if we were to
quantify the overall recovery rate of the population using the arithmetic mean, we
would be underestimating the reproduction number, underscoring the importance
of properly accounting for population heterogeneity.

Building upon this approach, we present a stochastic agent-based model in which
each individual in the population is assigned a recovery rate. In line with the results
reported thus far, this agent-based model reveals that the prevalence increases with
the variance of the distribution of recovery rates. In addition, as noted before based
on the two-group deterministic model, as the mean recovery rate increases, the
disease can only persist when the variance is also large. Moreover, the prevalence is
more sensitive to changes in recovery-rate variance for diseases with lower spreading
potential.

This study has a number of limitations. The socioeconomic context of individu-
als not only affects the speed of recovery, but it is also tied in to the likelihood of
becoming infected in the first place, which would be reflected in the transmission
rate β. However, for the sake of clarity, we have assumed that social inequalities
only result in heterogeneities of recovery rates. A more realistic version of the model
would add heterogeneity of transmission/susceptibility. To obtain a deeper under-
standing of the linkage between social inequality and public health outcomes, in
Appendix H we generalize model (1) to include a dichotomous susceptible popu-
lation by assuming that individuals in the group with better healthcare facilities
are also less susceptible to infection. The analyses of this extended model reveals
that increasing the variance in susceptibility diminishes the effects of increased vari-
ance in recovery. Put differently, the effects of having less-susceptible individuals
counterbalances the effects of a slow recovering infected population.

One key assumption of this deterministic approach, also present in the stochastic
model, is that recovery times are exponentially distributed. In fact, the stochastic
model gave us insight into a factor possibly contributing to the observation that
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higher prevalence of disease follows larger variance of recovery rates. Even though
the recovery rates were symmetrically distributed, the recovery times were skewed
to the right, as expected given the skewness of the exponential distribution. Fur-
thermore, as the variance of the recovery rates decreases so does the variance of the
recovery times, but also the mean of the recovery times decreases, with these faster
recovery times leading to lower disease prevalence. This could partly account for
the relation we observe between variance and prevalence. Consequently, we believe
this issue should be further explored by relaxing the exponentially distributed times
assumption.

Furthermore, we have assumed that immunity is fleeting after recovery, which
is not always realistic since many infections confer at least some temporal immu-
nity after recovery. To relax this model assumption, we could also consider an
susceptible-infected-removed-susceptible (SIRS) framework, instead of SIS, where
individuals remain immune to the disease for a certain period of time (more appro-
priate for diseases such as influenza). In this case we hypothesize that if the rate
at which individuals lose immunity (rate of transit from R to S) is the same for all
individuals, then the results we show here should hold at least qualitatively.

The SIS framework in this paper is a simple model of an endemic disease. Hence,
the conclusions derived with this model are not necessarily applicable for models of
single-wave outbreaks (e.g., susceptible-infected-removed (SIR) type models), due
in part to the absence of an endemic state in the latter models. We expect, however,
that health-care access inequalities may also play an important role in the growth
rate and final size of single epidemic outbreaks.

Finally, an important aspect that has been overlooked so far is the mixing be-
tween the two types of populations. We have assumed that both populations mix
homogeneously, but this is not likely to be the case in reality. In reality, we expect
that individuals interact only with certain others and, moreover, individuals are
more likely to interact with other of the same socioeconomic status (homophily)
[36, 5]. For example, in the case of patterns of sexual mixing, the evidence shows
that relationships are more common between persons of the same ethnicity [16, 17].
Thus a clear way to relax our model assumptions is to assume that the levels of
mixing with individuals of the other group is smaller than with individuals of the
same group. This new assumptions could change the conclusions reached in this
study, and hence we expect that this study will motivate further investigation of
the issue of inequalities and epidemic outcomes.

Overall, these insights shed light on the interplay between health-care access in-
equalities and the risk and endemic burden of epidemics. It shows that how the
population is structured in terms of its access to healthcare services plays a crucial
role in the pathogen’s spreading potential. In particular, increasing inequalities
often worsen epidemic outcomes. This conclusion is in agreement with the empir-
ical evidence suggesting that larger levels of socioeconomic inequalities are often
associated with worsened health outcomes; thus our model offers a mechanistic
explanation for these empirical patterns.

Acknowledgments. The authors would like to thank the reviewers for helpful
comments on the manuscript.
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Appendices.

Appendix A: Analysis in terms of unweighted mean and difference of
recovery rates. In this section we take a slightly different approach by focusing on
different quantities to study the role of inequalities in disease dynamics. Arguably,
the simplest setting in which to assess the epidemic impact of inequality in recovery
rates is by assuming the average of the rates to be constant and investigating the
role of the gap between the two groups in healthcare accessibilities.

Let the levels of inequality between the two populations be represented by two
parameters related to the recovery rates: the unweighted mean µγ = (γ1 + γ2)/2
and the difference ∆γ = γ1 − γ2 > 0. This formulation implies that the larger
the value of ∆γ is, the larger the extent of inequalities is, with ∆γ = 0 signifying
complete equality between the groups.

Since we intend to focus on the effect of inequality on disease outcome (i.e., R0

and prevalence), we fix the mean µγ and redefine recovery rates as follows

γ1 = µγ +
∆γ

2
, γ2 = µγ −

∆γ

2
(18)

where it is required that µγ ≥ ∆γ/2 such that γ2 ≥ 0. Thus, ∆γ ∈ [0, 2µγ).

Impact of recovery rate inequalities on the value of R0. The expression of R0 can
provide useful insights into the role of inequalities in recovery rates and the persis-
tence of disease. Using the new terms in (18), the reproduction number R0 can be
rewritten as

R0 = β

[
f

µγ + ∆γ/2
+

1− f
µγ −∆γ/2

]
(19)

For the rest of this section we will slightly change the nomenclature from ∆γ/2
to simply ∆. Let us first analyze the case f = 0.5, that is, when exactly half the
population recovers faster than the other half. It is easy to show thatR0(f = 0.5) =
βµγ/(µ

2
γ −∆2), and since µγ > ∆, increasing ∆ also increases the reproduction

number. In other words, when the population is divided equally between those
that recover faster and those that do so slowly, increasing the levels of recovery-rate
inequalities also increases the transmission potential of the pathogen, leading in
turn to larger endemic disease levels.

For the more general case when f ∈ [0, 1], we take partial derivatives of R0 with
respect to ∆. This derivative is positive if either of the following two conditions
holds (see Appendix D for details)

f ≤ 1

2
or (20)

f >
1

2
and ∆ > ∆2 (21)

where

∆2 =

√
f −
√

1− f√
f +
√

1− f
µγ . (22)

Condition (20) says that if the fraction of population that has proper access to
healthcare facilities is less than half, then the basic reproduction number increases
with the increase of the difference ∆. However, condition (21) says that if that
proportion is more than half then R0 decreases initially with ∆ until it reaches a
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minimum value R∗0 at ∆ = ∆2, and then it starts to increase until reaching its
possible maximum at ∆ = µγ , where

R∗0 = R0(∆2) =
β

2µγ

(√
f +

√
1− f

)2

≤ β

µγ
. (23)

We also investigated the space of parameters for which the infection persists
by studying the possible parameter values for which the inequality R0 > 1 holds
(see Appendix E for details). Figure 5 and Table 1 summarize the qualitative
behavior of the basic reproduction number in the different parameters’ domain
spaces. Interestingly, notice that when µγ > β (for which the reproduction number
would be less than one if we were to compute it using the unweighted mean µγ) the
infection can persist due to heterogeneities in healthcare accessibilities.
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Figure 5. Reproduction number as a function of recovery rate dif-
ference ∆, for transmission rate β = 0.3 and different values of f and
mean of recovery rates µγ . Part (a) shows the case of f = 0.1 and
µγ = 0.8β (broken curve), µγ = 1.1β (solid curve). Part (b) shows the
case of f = 0.9 and µγ = 0.9µ∗

γ (dotted curve); µγ = µ∗
γ + 0.05(β − µ∗

γ)
(dashed-dotted curve); µγ = 1.1β (solid curve). Here µ∗

γ =
β
2

(√
f +
√

1− f
)2

.

Through this simple approach, we would also like to understand the role of the
mean of the recovery rates, namely µγ , in the impact of inequalities on epidemic
persistence and size. In other words, we would like to know when do inequalities
matter most?

Expression (22) indicates that, when ∆2 > 0, as µγ increases so does ∆2, thus
enlarging the range (0,∆2) in which the reproduction number decreases with larger
inequalities. Figure 6 also shows that the smaller µγ is, the more the more sensitive
R0 is to changes in ∆. In other words, the slower individuals recover, on average, the
more variations in inequalities affect the transmission potential of the disease. As
noticed before, when the majority recovers slowly (f < 0.5) increasing inequalities
leads to higher reproduction numbers, whereas if the majority recovers at a larger
rate (f > 0.5), the effect of increasing inequalities depends on the magnitude of
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Table 1. Parameters’ domain space for which R0 > 1 and notes
on the qualitative behavior of R0, see Figure 5. See Appendix E
for the definitions of ∆̃1 and ∆̃2.

f µγ Domain of ∆ Notes on the qualitative
behavior of R0(∆)

µγ < β −− Increasing

f ≤ 1
2 ∆ < ∆̃2 less than 1 and the

infection dies out
µγ > β

∆ > ∆̃2 Increasing

∆ < ∆2 Decreasing

µγ <
β
2

(√
f +
√

1− f
)2

∆ > ∆2 Increasing

∆ < ∆̃1 Decreasing with

R0(∆ = ∆̃1) = 1

f > 1
2

β
2

(√
f +
√

1− f
)2
< µγ < β ∆̃1 < ∆ < ∆̃2 less than 1 and the

infection dies out

∆ > ∆̃2 Increasing with

R0(∆ = ∆̃2) = 1

µγ > β ∆ > ∆̃2 Increasing

the inequalities themselves: increasing inequalities when these are relatively low
will keep decreasing them, but if inequalities are relatively large, further increasing
them can in fact improve the transmission potential of the pathogen.
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Figure 6. Reproduction number as a function of recovery rate differ-
ence ∆ and mean of recovery rates µγ . Other parameters: β = 0.3 and
f = 0.1 (left) and f = 0.9 (right).
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Impact of recovery rate inequalities on the endemic prevalence of infection. In this
section we study the role of recovery rate inequality on prevalence levels. The total
fraction infected at the endemic equilibrium, given by I∗T = I∗1 + I∗2 , can be written
in terms of µγ and ∆ as

I∗T =
1

2β
{β − 2µγ +

√
(β + 2∆)2 − 8fβ∆}. (24)

In Appendix F we show that for certain parameter conditions, the prevalence I∗T
i) increases with ∆ until reaching a maximum at ∆ = µγ ; or ii) decreases initially
until reaching a minimum at some value of ∆ (say ∆∗) and then increases again
to reach its maximum at ∆ = µγ ; or iii) decreases initially until reaching zero at

∆ = ∆̃1, and if ∆ is further increased, then the infection starts to persist again at
∆ = ∆̃2 and continue to increase until reaching its maximum at ∆ = µγ .

Table 2 and Figure 7 summarize the qualitative behavior in these different cases.

0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35
0.0

0.2

0.4

0.6

0.8

1.0

∆

I T*

(a) f = 0.1

0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35
0.0

0.05

0.10

0.15

0.20

0.25

0.30
(b) f = 0.9

∆

I T*

Figure 7. Endemic levels as a function of recovery rate difference ∆,
for transmission rate β = 0.3 and different values of f and mean of
recovery rates µγ . Part (a) shows the case of f = 0.1 and µγ = 0.8β
(broken curve), µγ = 1.1β (solid curve). Part (b) shows the case of
f = 0.9 and µγ = 0.9µ∗

γ (dotted curve); µγ = µ∗
γ +0.05(β−µ∗

γ) (dashed-

dotted curve); µγ = 1.1β (solid curve). Here µ∗
γ = β

2

(√
f +
√

1− f
)2

.

Through this analysis we find, in contrast to the previous findings, that the effects
of inequalities can be complex and context (parameter) dependent when focusing
on the difference between recovery rates rather than the variance (see Appendix A
for detailed analyses). In fact, Figures 5 and 7 illustrate that when the minority of
individuals have proper access to healthcare services (f < 1/2), the reproduction
number R0 increases with recovery rates difference (i.e., inequalities) when the
average recovery rates are small (compared to the transmission rate), or when the
average recovery rates are relatively large and inequalities are also large. In contrast,
when the majority of them has proper access to healthcare services (f > 1/2), R0

decreases with inequalities when these and the average recovery rates are relatively
small, whereas it increases with inequalities when these are large. The analysis
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Table 2. Impact of changing the relevant parameters on the qual-
itative behavior of I∗T as a function of recovery rate difference ∆,
transmission rate β population structure f and mean of recovery
rates µγ .

f µγ Domain of ∆ Notes on the qualitative
behavior of I∗T (∆)

µγ < β −− Increasing,
where I∗T (∆ = 0) > 0

f ≤ 1
2 ∆ < ∆̃2 I∗T < 0 and the

infection dies out
µγ > β

∆ > ∆̃2 Increasing, where
I∗T (∆ = 0) < 0

and I∗T (∆ = ∆̃2) = 0

∆ < ∆2 Decreasing, with
I∗T (∆2) > 0

µγ <
β
2

(√
f +
√

1− f
)2

∆ > ∆2 Increasing

∆ < ∆̃1 Decreasing, with

I∗T (∆̃1) = 0

f > 1
2

β
2

(√
f +
√

1− f
)2
< µγ < β ∆̃1 < ∆ < ∆̃2 I∗T (∆) < 0 and the

infection dies out

∆ > ∆̃2 Increasing, with

I∗T (∆̃2) = 0

µγ > β ∆ > ∆̃2 Increasing, with

I∗T (∆̃2) = 0

shows that the total fraction of infected individuals at the endemic equilibrium, I∗T ,
follows a similar behavior, although it is important to notice that when average
recovery rates are relatively large, it has no biological significance, since I∗T is less
than zero in those cases.

We note that there is no clear biologically meaningful connection between the
unweighted mean (µγ) or difference (∆) and the population dynamics. Moreover,
the contrasting nature of the conclusions derived from the two different approaches
underscores the importance of focusing on the right quantities. We consider that in
this case, focusing on the mean and variance (as in the main text), rather than the
unweighted mean and difference, of recovery rates is the appropriate way to study
the effects of inequalities on epidemic outcomes. It is not only a more generalizable
approach, but it is also the most sound from a mathematical perspective as it
properly describes the inequalities in the population.
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Appendix B: Stability of the infection free equilibrium E0: The stability
of the IFE can be characterized by the trace and determinant of the matrix of the
linearized system at the IFE [41],

L =

(
βf − γ1 βf
β(1− f) β(1− f)− γ2

)
(25)

with trace and determinant given by

Tr(L) = β − γ1 − γ2 and Det(L) = −β(1− f)γ1 − βfγ2 + γ1γ2. (26)

For the IFE to be locally stable, the trace has to be negative and the determinant
has to be positive. These two conditions yield

Tr(L) < 0 =⇒ β

γ1 + γ2
< 1 Det(L) > 0 =⇒ R0 < 1. (27)

It can be shown that, if f ∈ [0, 1], then R0 >
β

γ1+γ2
. Thus, if R0 < 1 =⇒ Tr(L) <

0. Hence, we conclude that the IFE is locally asymptotically stable when R0 < 1.

Appendix C: Stability of the endemic equilibrium E∗: To establish the local
stability of the endemic equilibrium we find the Jacobian matrix

J =

(
β(f − I1)− (λ∗ + γ1) β(f − I1)

β[(1− f)− I2] β[(1− f)− I2]− (λ∗ + γ2)

)
. (28)

At equilibrium, we have

f − I1 =
fγ1

(λ∗ + γ1)
, (1− f)− I2 =

(1− f)γ2

(λ∗ + γ2)
(29)

and

(λ∗ + γ1)(λ∗ + γ2) = β[f(λ∗ + γ2) + (1− f)(λ∗ + γ1)] (30)

The relation (30) implies that

βf(λ∗ + γ2)

λ∗ + γ1
= λ∗+ γ2− (1− f)β, and

β(1− f)(λ∗ + γ1)

λ∗ + γ2
= λ∗+ γ1− fβ (31)

Using (29), (30), (31) in (28), we get

det(J) = (λ∗ + γ1)(λ∗ + γ2)− γ1(λ∗ + γ2)− γ2(λ∗ + γ1) + β[(1− f)γ1 + fγ2]

= λ∗2 − [γ1γ2 − β(fγ2 + (1− f)γ1)]

= λ∗[2λ∗ + (γ1 + γ2 − β)] = λ∗[2λ∗ − Tr(L)]

= λ∗
√

((Tr(L))2 + 4γ1γ2 (R0 − 1) > 0

and

Tr(J) = β − (γ1 + γ2)− 3λ∗ = Tr(L)− 3λ∗

= 2λ∗ −
√

((Tr(L))2 + 4γ1γ2 (R0 − 1)− 3λ∗

= −{λ∗ +
√

((Tr(L))2 + 4γ1γ2 (R0 − 1)} < 0.

Thus, the endemic equilibrium E∗ = (I∗1 , I
∗
2 )′ is locally asymptotically stable when-

ever it exists.
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Appendix D: Derivative of R0 with respect to ∆. We take partial derivatives
of R0 with respect to ∆, yielding

∂R0

∂∆
= β

(
1− f

(µγ −∆)2
− f

(µγ + ∆)2

)
. (32)

=
β

(µ2
γ −∆2)2

[(1− f)(µγ + ∆)2 − f(µγ −∆)2]

=
β
√
f [
√

1− f(µγ + ∆) +
√
f(µγ −∆)]

(µ2
γ −∆2)2

× (33)[(
−1 +

√
1

f
− 1

)
µγ +

(
1 +

√
1

f
− 1

)
∆

]
.

Thus, the sign of ∂R0/∂∆ depends mainly on the sign of the expression[(
−1 +

√
1

f
− 1

)
µγ +

(
1 +

√
1

f
− 1

)
∆

]
. (34)

The expression in (34) is positive if either of the following two conditions holds

f ≤ 1

2
or (35)

f >
1

2
and ∆ > ∆2 (36)

where

∆2 =
1−

√
1
f − 1

1 +
√

1
f − 1

µγ =

√
f −
√

1− f√
f +
√

1− f
µγ . (37)

Appendix E: Parameter space for disease persistence. We investigated the
space of parameters for which the infection persists by studying the possible pa-
rameter values for which the inequality R0 > 1 holds. This is equivalent to having

∆2 + (1− 2f)β∆ + µγ(β − µγ) > 0. (38)

It is clear that the values of f and µγ play a crucial role in determining the sign of
the expression in the left hand side of (38). On performing some analysis, we get
that the inequality (38) holds if

1. f < 1
2 and

µγ < β or (39)

µγ > β&∆ > ∆̃2 (40)

2. f > 1
2 and

µγ <
β

2

(√
f +

√
1− f

)2

:= µ∗γ or (41)

β

2

(√
f +

√
1− f

)2

< µγ < β

& (∆ < ∆̃1 or ∆ > ∆̃2) or (42)

µγ > β & ∆ > ∆̃2 (43)



HEALTHCARE ACCESS INEQUALITIES IN EPIDEMIC OUTCOMES 1031

where

∆̃1 =
1

2

[
(2f − 1)β −

√
(2f − 1)2β2 − 4µγ(β − µγ)

]
, (44)

∆̃2 =
1

2

[
(2f − 1)β +

√
(2f − 1)2β2 − 4µγ(β − µγ)

]
. (45)

It should be noted that if f > 1/2 and β
2

(√
f +
√

1− f
)2
< µγ < β, then both ∆̃1

and ∆̃2 are well defined and therefore

∆̃1 < ∆2 < ∆̃2.

Combining conditions (35), (36), (39), (40), (41), (42) and (43) we get Table 1
in which the domain space of parameters (for which the infection persists) and
the qualitative behavior of the basic reproduction number are described. Graph
examples for the different cases are shown in Figure 5.

Appendix F: Impact of recovery rate inequalities on the prevalence of
infection. This section aims to answer: What is the role of recovery rates inequality
on prevalence levels? The total fraction infected at the endemic equilibrium, given
by I∗T = I∗1 + I∗2 , can be written in terms of µγ and ∆ as

I∗T =
1

2β
{β − 2µγ +

√
(β + 2∆)2 − 8fβ∆}. (46)

To study the impact of varying ∆ and µγ on the qualitative behavior of I∗T , we
first evaluate the limit

lim
∆→0+

I∗T = 1− µγ
β

= 1− 1

R0|∆=0
(47)

which is positive for R0(∆ = 0) > 1. Hence, there are two cases, where each one is
going to be studied solely.

• Case 1: µγ < β
In this case, we have I∗T (∆ = 0) > 0. Also, we compute the derivative

∂I∗T
∂∆

=
(1− 2f)β + 2∆

β
√

(β + 2∆)2 − 8fβ∆
(48)

where

lim
∆→0+

∂I∗T
∂∆

=
1− 2f

β
. (49)

The expression in the right hand side of (49) is positive if and only if f < 1
2 ,

while otherwise it is negative. This implies that the prevalence of infection
I∗T initially increases in ∆ if f < 1

2 and it reaches its maximum at ∆ = µγ .

However, if we assume that f > 1
2 , then I∗T decreases initially in ∆. It has an

absolute minimum at ∆ = ∆∗, where

∆∗ =

(
f − 1

2

)
β (50)

and is given by

I∗T (∆∗) =
1

2
(
√
f +

√
1− f)2 − µγ

β
. (51)
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This absolute minimum is feasible (in the sense that I∗T (∆∗) > 0) if and only
if

µγ <
β

2
(
√
f +

√
1− f)2 := µ∗γ . (52)

Hence, if (52) holds, then I∗T decreases initially till reaching its minimum at
∆ = ∆∗ and then increases to reach its maximum at ∆ = µγ . However, if the
inequality (52) is reversed, i.e., µ∗γ < µγ < β, then I∗T (∆∗) < 0 and therefore,
there are two non-connected phases for the domain of definition of I∗T , which

correspond to those for which R0(∆) > 1 and are given by ∆ ∈ [0, ∆̃1] and

∆ ∈ [∆̃2, µγ ]. On the first phase, I∗T is decreases till vanishing at ∆ = ∆̃1,

while on the second one I∗T increases in till reaching its maximum at ∆ = ∆̃2.
• Case 2: µγ > β

In this case I∗T (∆ = 0) < 0. Thus, I∗T is well defined only if ∆ ∈ [∆̃2, µγ ]. It
is easy to check that

lim
∆→∆̃+

2

∂I∗T
∂∆

=

√
(β − 2µγ)2 − 4f(1− f)β2

β(2µγ − β)
> 0. (53)

This implies that I∗T is increasing on its domain of definition.

Table 2 and figure 7 summarize the qualitative behavior in these different cases.

Appendix G: Impact of increasing ν on the qualitative behavior of R0.
What is the effect of increasing the variance ν on R0? To find that out, we compute
∂R0

∂ν
3. Thus,

∂R0

∂ν
=
β

2

√
f(1− f)

ν

(µ−√ fν

1− f

)−2

−

(
µ+

√
(1− f)ν

f

)−2
 . (54)

Now, since √
(1− f)ν

f
+

√
fν

1− f
> 0

then

µ+

√
(1− f)ν

f
> µ−

√
fν

1− f
.

I.e., (
µ−

√
fν

1− f

)−2

>

(
µ+

√
(1− f)ν

f

)−2

Hence, for ν > 0, the expression in the right hand side of (54) is always positive.
Moreover, it can be easily checked that

lim
ν→0+

∂R0

∂ν
=

β

µ3
. (55)

Thus,
∂R0

∂ν
> 0

3It is prudent to remark that the change in ν(γ1, γ2, f) in this partial derivative can only be

due to changes in γ1 and γ2, not in f , given that f is held constant in the rest of the expression
for R0.
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irrespective of the value of both µ and f .

Figure 8. The basic reproduction number RDich0 for the dichotomous
susceptible population model (56) as a function of the variance in recov-
ery rates ν and the variance in susceptibility νs. Simulations have been
done for β̄ = 3, while the value of the parameters f, µs and µ are as
shown on the subfigures.

Figure 9. The endemic prevalence of infection IDichT for the dichoto-
mous susceptible population model (56) as a function of the variance in
recovery rates ν and the variance in susceptibility νs. Simulations have
been done for β̄ = 3, while the value of the parameters f, µs and µ are
as shown on the subfigures.

Appendix H: Model for two dichotomous susceptible populations. Model
(1) in the main manuscript could be generalised to include dichotomous susceptible
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populations by assuming that the susceptibility of individuals in the group with
higher healthcare facilities to be g1 and that of the other group to be g2, with
g2 > g1. We further assume that β̄ is the average number of contacts per unit time.
Thus, the modified version of model (1) in the main manuscript reads

dI1
dt

= g1β̄(f − I1)(I1 + I2)− γ1I1,

dI2
dt

= g2β̄[(1− f)− I2](I1 + I2)− γ2I2. (56)

The connection between both models (1) in the main manuscript and (56) is that
if we assume both susceptibilities to be equal (i.e., g1 = g2 = g (say), then gβ̄ = β
is the successful contact rate and, hence, we get model (1) again. Moreover, the
analysis of model (56) is similar to that of (1), where the results could be obtained
by replacing each β, γ1 and γ2 with β̄, γ1/g1 and γ2/g2 respectively. Hence, the new
basic reproduction number reads

RDich0 = β̄

(
g1f

γ1
+
g2(1− f)

γ2

)
. (57)

On considering the weighted mean (µs) and variance (νs) in susceptibility, then we
get

µs = fg1 + (1− f)g2, νs = f(g1 − µs)2 + (1− f)(g2 − µs)2

Solving for g1 and g2 from these two expressions yields:

g1 = µs +

√
(1− f)νs

f
, g2 = µs −

√
fνs

(1− f)
. (58)

Since g2 ≥ 0 , the variance must satisfy νs ≤ µ2
s(1 − f)/f := νmaxs . Now, we

use (6) and (58) in (59) to get the basic reproduction number for the dichotomous
susceptible population model as

RDich0 = β̄

(
µs
√
f +

√
(1− f)νs

µ
√
f +

√
(1− f)ν

f +
µs
√

1− f −
√
fνs

µ
√

1− f −
√
fν

(1− f)

)
. (59)

Extensive simulations have been performed to study the dependence of RDich0

on the variances in recovery rates ν and in susceptibilities νs. Figure 8 shows that
the basic reproduction number for the model with two dichotomous susceptible
population increases with the increase in the recovery rates variance ν, while it
decreases with the increase in the susceptibility variance νs. The figure is drawn
for fixed value of the average contact rate β̄ and different values of the means µ, µs
and the proportion f of the population who have higher healthcare access.

The equilibrium analysis shows that endemic prevalence I∗T for the dichotomous
susceptible population model (56) reads

IDichT =
1

2β̄

[
β̄ −

(
γ1

g1
+
γ2

g2

)]
+

1

2β̄

√[
β̄ −

(
γ1

g1
+
γ2

g2

)]2

+ 4β̄

[
(1− f)

γ1

g1
+ f

γ2

g2

]
− 4

γ1

g1

γ2

g2
. (60)
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On using (6) and (58) in (60), we get

IDichT =
1

2β̄

[
β̄ −

(
µ
√
f +

√
(1− f)ν

µs
√
f +

√
(1− f)νs

+
µ
√

1− f −
√
fν

µs
√

1− f −
√
fνs

)]

+
1

2β̄

√
Discriminant (61)

where

Discriminant =

[
β̄ −

(
µ
√
f +

√
(1− f)ν

µs
√
f +

√
(1− f)νs

+
µ
√

1− f −
√
fν

µs
√

1− f −
√
fνs

)]2

+ 4β̄

[
µ
√
f +

√
(1− f)ν

µs
√
f +

√
(1− f)νs

(1− f) +
µ
√

1− f −
√
fν

µs
√

1− f −
√
fνs

f

]

− 4

[
µ
√
f +

√
(1− f)ν

µs
√
f +

√
(1− f)νs

][
µ
√

1− f −
√
fν

µs
√

1− f −
√
fνs

]
. (62)

The impact of increasing the variance in susceptibility is investigated numerically
and the simulations are shown in figure 9. It shows that the increase in the variance
νs implies a decrease in the endemic prevalence IDichT . In summary, the analyses
of the model with the inclusion of dichotomous susceptible population reveals that
the increase in the variance in susceptibility diminishes the effects of increased
variance in recovery. In other words, the effects of having less-susceptible individuals
counterbalances the effects of a slow recovering infected population.

Appendix I: Effects of increasing recovery rate heterogeneity via agent-
based model simulations. To address the question of how increasing of recovery
rate heterogeneity translates to the levels of disease prevalence in the population,
in this section we take an individual-based approach, where instead of having two
groups of individuals characterized by two different recovery rates, each individual
is assigned a recovery rate. The recovery rates of each individual are sampled from
distributions with different properties (e.g., variance), allowing us to assess how
these properties affect disease outcome. More specifically, we focus on symmetric
recovery rate distributions (with fixed means), and test wether larger variance (i.e.,
inequality) yields larger levels of disease.

In this model, a susceptible individual becomes infected at a rate proportional
to the frequency of interactions with infected individuals, and the transmission rate
β.

By assuming that the transition processes from one class to another is a homo-
geneous Poisson process, the probability a susceptible individual becomes infected
between time t and t+ dt, namely PI(t) is given by

PI(t) = 1− exp(−βI(t)dt/N), (63)

where the other parameters in the transition rate are I(t), the number of infected
at time t, and N , the size of the population.

When infected, individuals recover at different rates, moving back to the suscep-
tible class. We model the recovery rate as a random variable (r.v.) Γ, measured in
1/days. Let ΓM and Γm be the maximum and minimum recovery rates possible, re-
spectively. Thus the interval [Γm,ΓM ] is the support of Γ. Let also ∆Γ = ΓM −Γm.
Finally, let Γ = g(X) = ∆ΓX + Γm. Here X is a Beta distributed r.v. with
probability density function given by fB(x, a, b) with parameters a and b. Since
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the function g is monotonic, then the density function for the r.v. Γ, with random
realization γ, is given by

fΓ(γ) =

∣∣∣∣ ddγ (g−1(γ))

∣∣∣∣ · fB(g−1(γ)) =
1

∆Γ
fB

(
γ − Γm

∆Γ
, a, b

)
, (64)

where g−1 denotes the inverse function.
Using the Beta distribution as a kernel for the recovery rates Γ, allows for the

shape of this distribution to be considered a descriptive proxy for the structure of
inequalities in the population. Different inequality profiles– that is, distribution
profiles– can be easily obtained by calibrating the parameters in the distribution,
making this theoretical framework quite flexible to test the effects of different in-
equality profiles on epidemic outcomes.

In the simulations, once a recovery rate, namely γi, has been assigned to the ith
agent, its corresponding time of infection is computed as 1/γi, that is, the expected
infectious period given that its infectious period is exponentially distributed with
rate γi. In other words, the ith agent, once infected, spends 1/γi days in the infec-
tious class. Noteworthy, the distribution of infectious periods does not necessarily
share the same symmetry properties as that of the recovery rates. In fact, when the
recovery rates are symmetrically distributed, the distribution of infectious periods
tend to be skewed to the right.

The Beta distribution and Inequalities. Let the random variable X follow a Beta
distribution, with 0 ≤ X ≤ 1, and shape parameters a > 0 and b > 0. Its mean and
variance are given, respectively, by

µB =
a

a+ b
, σB =

ab

(a+ b)2(a+ b+ 1)
. (65)

Suppose µB is fixed at a constant value m. Then its variance can be calibrated
with only one of the parameters, say a. Deriving b(µB) = a(1 − µB)/µB from the
expression of the mean in (65), and substituting in the expression for the variance,
we get

σB(a|µB = m) =
(m− 1)m2

a+m
(66)

and it can be shown that increasing the parameter a when the mean is fixed de-
creases the variance of the distribution. Figure 10 shows the conduciveness of this
distribution for testing different inequalities scenarios, from large inequality where
most individuals either recover rapidly or very slowly(top left panel), to relatively
small inequality (bottom right panel).

Simulations. The simulations were set up as follows. The variance of the re-
covery period distribution is controlled by parameter a, which took the values
0.1,0.2,0.5,1,2,5,10,20 and 50. To explore the role of mean of the recovery rates,
four combinations of maximum and minimum recovery rates were used, with the
corresponding values of Γm = {1/60, 1/60 + 0.01, 1/60 + 0.03, 1/60 + 0.05} and
ΓM = {1/5, 1/5 + 0.01, 1/5 + 0.03, 1/5 + 0.05}. These rendered, respectively, mean
recovery rates of 0.11, 0.12, 0.14 and 0.16.

To investigate the role of pathogen transmissibility, the transmission rate β is
also varied, taking up values 0.11, 0.13 and 0.15. The population size was N = 105.

For each parameter combination, 20 simulations were run for 100 days, with a
time step of dt = 0.1 (1000 time iterations). At the beginning of each run, 5 in-
dividuals were infected. The recovery rate of each agent was assigned at the start
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Figure 10. Sampling 10000 r.v. from fΓ with maximum recovery rate
of ΓM = 1/5 and minimum of Γm = 1/60, and µB = 0.5. Each panel
depicts the interquantile and variance of each distribution.

of each simulation run (even for those individuals that never got infected). These
rates were sampled from the corresponding distributions determined by parameters
a,ΓM , Γm, and µB = 0.5 (the mean was fixed in order to yield symmetric distribu-
tions). The infectious period of each agent is given by the inverse of their respective
recovery rates.

For each run (1000 iterations), the prevalence is computed as the mean of the
prevalence values over the last 100 iterations conditional on non extinction. That
is, we take averages over those iterations that led to endemic levels of the disease,
discarding the epidemic dies-out. Since population size does not change, we report
prevalence as fractions of the population infected. Finally for each parameter value,
we plot the mean of prevalences over the 20 simulations, along with the standard
errors, versus the variance of the corresponding recovery rates distributions. In ad-
dition, as suggested by the reviewer, we reported the results in terms of the median
and the interquartile range (IQR), a nonparametric equivalent of the variance.

Results. Figures 11 and 12 show that the prevalence increases along with the vari-
ance and the IQR of the recovery rates. However, the rate of increase is different
for different transmission rates and different mean recovery rates. To form an idea
regarding the effect of these two quantities on the relation between variance and
prevalence, for each pair of values of these two quantities, we divide the mean preva-
lence at the highest variance by the mean prevalence at the lowest variance. This
ratio gives us an estimate of the rate at which prevalence increases with respect to
the variance, that is, the partial derivative rν = ∂I(t)/∂ν.
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These calculations suggest that as the transmission rate increases, the estimates
of rν decrease. Put differently, the effect of the variance of the recovery rates on
the prevalence is larger for less transmissible diseases. Additionally, we find that as
the mean recovery rate increases, the estimates of rν also increase. In other words,
the effect of the variance on the prevalence is larger when individuals recover faster
on average.

Noting that the reproduction number for a simple SIS model as the one studied
herein is given by β/µ, with 1/µ being the (mean) recovery rate, these two obser-
vations can be synthesized as: the effect of the variance of the recovery rates on
disease prevalence increase as the spreading potential of the disease decreases.

Finally, we must note that one key limitation is that recovery times are exponen-
tially distributed, an assumption that is known not to hold empirically. Moreover,
this stochastic model gave us some insight into a factor contributing to the obser-
vation that larger disease prevalence follows larger variance of recovery rates. Even
though the recovery rates were symmetrically distributed, the recovery times were
skewed to the right, as noted before. Furthermore, as the variance of the recov-
ery rates decreases so does the variance of the recovery times, but also the mean
of the recovery times decreases, with these faster recovery times leading to lower
disease prevalence. This could be partly accountable for the relation we observe
between variance and prevalence. Consequently, we believe this issue should be
further explored relaxing the exponentially distributed times assumption.

Figure 11. Mean and standard error (bars) infection prevalence versus
Variance for different values of the mean recovery rate and the transmis-
sion rate.
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Figure 12. Mean and standard error (bars) of infection prevalence
versus IQR for different values of the mean recovery rate and the trans-
mission rate.
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