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Abstract. This paper deals with the spatial, temporal and spatiotemporal
dynamics of a spatial plant-wrack model. The parameter regions for the sta-

bility and instability of the unique positive constant steady state solution are

derived, and the existence of time-periodic orbits and non-constant steady
state solutions are proved by bifurcation method. The nonexistence of positive

nonconstant steady state solutions are studied by energy method and Implicit

Function Theorem. Numerical simulations are presented to verify and illustrate
the theoretical results.

1. Introduction. More recently, many ecologists have paid more and more atten-
tion to the experimental investigation of regular spatial patterning in Carex stricta.
Carex stricta, the tussock sedge, is a species with widespread distribution in fresh-
water marshes of North America. Spatial dispersals of vegetation (through tillers)
and wrack (resulting from dead plant leaves dropping to the soil surface and move-
ment by the tides) are modeled using a diffusion approximation. The model, which
describes the interaction of the plant and wrack, is as follows [20]:

∂P̃

∂t
− d1∆P̃ = P̃ (1− P̃ )F (P̃ )− sP̃ − I(P̃ , W̃ ), x ∈ Ω, t > 0,

∂W̃

∂t
− d2∆W̃ = sP̃ − bW̃ , x ∈ Ω, t > 0,

(1)

where Ω ⊂ RN is a bounded domain, P̃ is the plant biomass, W̃ is the wrack

biomass, F (P̃ ) is a function describing the positive effect of plant biomass on its

own growth, s is the specific rate of plant senescence, I(P̃ , W̃ ) is a function describ-
ing the inhibiting effect of wrack on plant growth as a function of plant and the
wrack biomass, b is the decay rate of wrack, and d1 and d2 are diffusion constants

describing lateral movement of plants and wrack. Here, ∆ = ∂2

∂x2
1

+ · · · ∂2

∂x2
N

is the

usual Laplacian operator in N -dimension space.
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In this paper, we focus on the following specific type with an indirect facilitation
of growth by the root mound by lowering of inhibition by the wrack, which leads to

F (P̃ ) = 1, I(P̃ , W̃ ) = ãP̃ W̃
K

P̃ +K
,

where K

P̃+K
is added to the inhibition term, lowering inhibition as P̃ increases, K

is the level of plant biomass where inhibition is lowered by half, and ã is an inhibi-
tion coefficient [20]. As a result, model (1) with homogeneous Neumann boundary
condition has the following from:

∂P̃

∂t
− d1∆P̃ = P̃ (1− P̃ )− sP̃ − ãP̃ W̃ K

P̃ +K
, x ∈ Ω, t > 0,

∂W̃

∂t
− d2∆W̃ = sP̃ − bW̃ , x ∈ Ω, t > 0,

∂P̃

∂ν
=
∂W̃

∂ν
= 0, x ∈ ∂Ω, t > 0,

P̃ (x, 0) = P̃0(x), W̃ (x, 0) = W̃0(x), x ∈ Ω,

(2)

where Ω ⊂ RN is a bounded domain with smooth boundary ∂Ω, ν is the unit out-
ward normal on ∂Ω, and the homogeneous Neumann boundary conditions indicate
that the system is self-contained with zero population flux across the boundary

∂Ω. The constant ã, b, s,K, d1, d2 are assumed to be positive. P̃0(x) and W̃0(x) are
nonnegative nontrivial continuous functions.

For the sake of simplicity, we let P = P̃ , W = bW̃ , a = ã/b, then problem (2)
becomes

∂P

∂t
− d1∆P = P (1− P )− sP − aPW K

P +K
, x ∈ Ω, t > 0,

∂W

∂t
− d2∆W = b(sP −W ), x ∈ Ω, t > 0,

∂P

∂ν
=
∂W

∂ν
= 0, x ∈ ∂Ω, t > 0,

P̃ (x, 0) = P0(x) = P̃0(x), W (x, 0) = W0(x) = bW̃0(x), x ∈ Ω.

(3)

In order to provide guidelines on the dynamics of the full reaction-diffusion sys-
tem, it is important to consider the steady states corresponding to (3), which sat-
isfies the following elliptic system:

− d1∆P = P (1− P )− sP − aPW K

p+K
, x ∈ Ω,

− d2∆W = b(sP −W ), x ∈ Ω,

∂P

∂ν
=
∂W

∂ν
= 0, x ∈ ∂Ω.

(4)

It is, naturally, the dynamics in the biologically meaningful region {(P,W ) :
P,W ≥ 0} are of interest. Furthermore, we want to find the positive steady state of
the non-spatial model, (P∗,W∗), which is corresponding to the coexistence of plant
and wrack. By direct calculation, we find that if s ≥ 1, problem (4) admits no
positive constant solution. On the other hand, if

0 < s < 1, (5)
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problem (4) admits a unique positive constant solution (P∗,W∗), where

P∗ =
−M +

√
M2 + 4(1− s)K

2
, W∗ = sP∗. (6)

Here,

M := (1 + as)K − (1− s) (7)

Spatial, temporal and spatiotemporal patterns could occur in the reaction-diffu-
sion model (3) via three possible mechanisms: Turing instability, Hopf bifurcation,
and positive non-constant steady states. There are a great deal of research have
been devoted to the study of spatial, temporal and spatiotemporal patterns in
chemical and biology contexts (see [1, 3, 9, 10, 11, 13, 19, 27, 32, 37, 53, 58, 59]
for Brusselator model; [4, 6, 14, 23, 24, 30, 44, 54, 55, 57] for Gray-Scott model;
[7, 17, 18, 25, 26, 50, 52] for Lengyel-Epstein model; [31, 48, 56] for Oregonator
model, [12, 16, 34, 43, 45, 46, 49] for Schnakenberg model, [5, 8, 21, 28, 29, 33, 39]
for Sel’klov model).

The goal of this article is to show that the diffusive plant-wrack model (2) exhibits
various spatial, temporal and spatiotemporal patterns via the aforementioned three
mechanisms. The organization of the remaining part of this paper is as follows.
In Section 2, we investigate the asymptotic behavior of the positive equilibrium
(P∗,W∗) and occurrence of Hopf bifurcation of the local system of (3). In section
3, we firstly consider the asymptotic behavior and Turing instability of the posi-
tive equilibrium (P∗,W∗) for the reaction-diffusion system (3), then we study the
existence of Hopf bifurcation. In Section 4, we consider the existence and non-
existence of nonconstant positive solutions for problem (4) by bifurcation theory,
energy method and Implicit Function Theorem. We end our study with numerical
simulations in Section 5. Throughout this paper, N is the set of natural numbers
and N0 = N ∪ {0}. The eigenvalues of the operator −∆ with homogeneous Neu-
mann boundary condition in Ω are denoted by 0 = µ0 < µ1 ≤ µ2 ≤ · · · ≤ µn ≤ · · · ,
and the eigenfunction corresponding to µn is φn(x).

2. Analysis of the local system. In this section, we mainly consider the following
local system corresponding to problem (3): Ṗ = P (1− P )− sP − aPW K

P +K
, t > 0,

Ẇ = b(sP −W ), t > 0.

(8)

The dynamical behavior of the solutions near the positive constant equilibrium
(P∗,W∗) can be studied by computing the eigenvalues of the Jacobin matrix L0(b)
of the system (8), namely,

L0(b) =

(
P∗

P∗+K (1− s−K − 2P∗) − aKP∗
P∗+K

bs −b

)
=

(
P∗

P∗+K

(
asK −

√
M2 + 4(1− s)K

)
− aKP∗
P∗+K

bs −b

)
.

(9)

The characteristic equation of L0(b) is

ξ2 − T (b)ξ +D(b) = 0, (10)
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where

T (b) =
P∗

P∗ +K

(
asK −

√
M2 + 4(1− s)K

)
− b, (11)

D(b) =
bP∗

P∗ +K

√
M2 + 4(1− s)K > 0. (12)

Then (u∗, v∗) is locally asymptotically stable if T (b) < 0 and it is unstable if T (b) >
0.

A series of calculations shows that

1. If s+K ≥ 1 or s+K < 1 and

a ≤ (K + 1− s)2

2sK(1− s−K)
, (13)

then asK −
√
M2 + 4(1− s)K ≤ 0, which implies T (b) < 0 for all b > 0;

2. If

s+K < 1 and a >
(K + 1− s)2

2sK(1− s−K)
, (14)

then asK −
√
M2 + 4(1− s)K > 0, which implies T (b) < 0 if b > b0 and

T (b) > 0 if b < b0, where

b0 :=
P∗

P∗ +K

(
asK −

√
M2 + 4(1− s)K

)
> 0. (15)

Theorem 2.1. Assume (5) holds. Let b0 be the constant defined as (15). Then the
positive equilibrium (P∗,W∗) of the local system (8) given as (6) is locally asymp-
totically stable if

(i): s+K ≥ 1; or
(ii): s+K < 1 and (13) holds; or
(iii): (14) holds and b > b0.

While the positive equilibrium (P∗,W∗) is unstable with respect to (8) if (14) holds
and b < b0. System (8) undergoes a Hopf bifurcation at (P∗,W∗) as b passes through
b0.

Proof. (i), (ii), (iii) have been proved in the previous paragraphs. We only focus on
the Hopf bifurcation occurring at (P∗,W∗) by using b as the bifurcation parameter.
According to Poincaré-Andronov-Hopf Bifurcation Theorem [47, Theorem 3.1.3],
system (8) has a small amplitude non-constant periodic solution bifurcating from
(P∗,W∗) when b crosses through b0 if the transversal condition is satisfied.

Let ξ(b) = A(b)± iB(b) be the roots of (10). Then

A(b) =
1

2
T (b) =

1

2
(b0 − b) , B(b) =

1

2

√
4D(b)− [T (b)]2.

Hence A(b0) = 0, A′(b0) = −1/2 and B(b0) = 2
√
D(b0) > 0 (see (12)). This shows

that the transversal condition holds, and thus (8) undergoes a Hopf bifurcation at
(P∗,W∗) as b passes through b0.

To illustrate the above result. We give an numerical example.
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Example 2.2. Consider problem (8) with s = K = 0.25 and a = 25.6 such that
(5) and (14) hold. Then we get the following system Ṗ = P (1− P )− 0.25P − 6.4PW

P + 0.25
, t > 0,

Ẇ = b(0.25P −W ), t > 0,

(16)

and the positive constant equilibrium is (P∗,W∗) = (0.15, 0.0375), the constant
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Figure 1. When b = 0.085 > b0 = 0.075, the solution trajectories
spiral toward the positive equilibrium (0.15, 0.0375) (left). When
b = 0.05 < b0 = 0.075, there is a limit cycle surrounding the
positive equilibrium (0.15, 0.0375) (right).

b0 = 0.075. It follows from Theorem 2.1 that (0.15, 0.0375) is locally asymptoti-
cally stable when b > 0.075 and it is unstable when b < 0.075. Moreover when b
passes through 0.075 from the right side of 0.075, (0.15, 0.0375) will lose its stability
and Hopf bifurcation occurs, that is, a family of periodic solutions bifurcate from
(0.15, 0.0375). Numerical simulations are presented in Fig. 1. The left of Fig. 1
shows the stable behavior when b > b0. The right of Fig. 1 is the phase portrait
of the problem (16) which depicts the limit cycle arising out of Hopf bifurcation
around (0.15, 0.0375).

3. Analysis of the PDE model (3). In this section, we mainly consider the model
(3), and the studies include the parameter regions for the stability and instability of
the unique positive constant equilibrium (P∗,W∗), the occurrence Turing instability
and the existence of time periodic orbits.

3.1. Stability analysis. The local stability of (u∗, v∗) with respect to (3) is deter-
mined by the following eigenvalue problem which is got by linearizing the system
(4) about the positive constant equilibrium (P∗,W∗)

(
d1∆φ
d2∆ψ

)
+ L0(b)

(
φ
ψ

)
= µ

(
φ
ψ

)
, x ∈ Ω,

∂φ

∂ν
=
∂ψ

∂ν
= 0, x ∈ ∂Ω,

(17)

where L0(b) is defined as (9). Denote

L(b) =

(
d1∆ 0

0 d2∆

)
+ L0(b)
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=

(
d1∆ + P∗

P∗+K

(
asK −

√
M2 + 4(1− s)K

)
− aKP∗
P∗+K

bs d2∆− b

)
. (18)

For each n ∈ N0, we define a 2× 2 matrix

Ln(b) =

(
−d1µn + P∗

P∗+K

(
asK −

√
M2 + 4(1− s)K

)
− aKP∗
P∗+K

bs −d2µn − b

)
. (19)

The following statements hold true by using Fourier decomposition:

1. If µ is an eigenvalue of (17), then there exists n ∈ N0 such that µ is an
eigenvalue of Ln(b).

2. The constant equilibrium (P∗,W∗) is locally asymptotically stable with respect
to (3) if and only if for every n ∈ N0, all eigenvalues of Ln(b) have negative
real part.

3. The constant equilibrium (u∗, v∗) is unstable with respect to (3) if there exists
an n ∈ N0 such that Ln(b) has at least one eigenvalue with positive real part.

The characteristic equation of Ln(b) is

µ2 − Tn(b)µ+Dn(b) = 0, (20)

where

Tn(b) = −(d1 + d2)µn + T (b), (21)

Dn(b) = d1d2µ
2
n + [d1b− d2(T (b) + b)]µn +D(b). (22)

Here, T (b) and D(b) are defined as (11) and (12) respectively. Then (P∗,W∗) is
locally asymptotically stable if Tn(b) < 0 and Dn(b) > 0 for all n ∈ N0, and
(P∗,W∗) is unstable if there exists n ∈ N0 such that Tn(b) > 0 or Dn(b) < 0.

Since D(b) > 0 and µn ≥ 0 for all n ∈ N0, a sufficient condition to ensure Tn(b) <

0 and Dn(b) > 0 is T (b) ≤ −b, which is equivalent to asK ≤
√
M2 + 4(1− s)K,

i.e., s+K ≥ 1 or s+K < 1 and (13) holds (see the analysis in Section 2).
In the following we consider the case that (14) holds, which implies b0, defined

as (15), is positive. Then we have T (b) = b0 − b, and then it follows from (12) that

Tn(b) = −(d1 + d2)µn + b0 − b, (23)

Dn(b) = d1d2µ
2
n + (d1b− d2b0)µn + χb, (24)

where

χ :=
P∗

P∗ +K

√
M2 + 4(1− s)K > 0. (25)

We define

T (b, µ) = −(d1 + d2)µ+ b0 − b, (26)

D(b, µ) = d1d2µ
2 + (d1b− d2b0)µ+ χb, (27)

and

H = {(b, µ) ∈ (0,∞)× [0,∞) : T (b, µ) = 0} , (28)

S = {(b, µ) ∈ (0,∞)× [0,∞) : D(b, µ) = 0} . (29)

Then H is the Hopf bifurcation curve and S is the steady state bifurcation curve.
Furthermore, the sets H and S are graphs of functions defined as follows

bH(µ) = −(d1 + d2)µ+ b0, (30)

bS(µ) =
−d1d2µ

2 + d2b0µ

d1µ+ χ
. (31)



BIFURCATION ANALYSIS OF A DIFFUSIVE PLANT-WRACK MODEL 863
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Figure 2. Illusion of Lemma 3.1. The curves are the graphs of
bS(µ) and the lines are graphs of bH(µ). (a) is the case of d1

d2
< 1;

(b) is the case d1
d2

= 1; (c) is the case d1
d2
> 1; (d) is the case d1

d2
= D1;

(e) is the case d1
d2
< D1. For all, the curves (1) represents b∗S < b0;

the curves (2) represent b∗S = b0; the curves (3) represent b∗S > b0

Lemma 3.1. (see Fig. 2) Assume (5) and (14) hold. Let b0 and χ be the two
positive constants defined as (15) and (25) respectively. Let bH(µ) and bS(µ) be the
two functions defined as (30) and (31) respectively.

(i): The function bH(µ) is strictly decreasing for µ ∈ (0,∞) such that

bH(0) = bH(µ∗2) = 0, bH(µ) > 0 for µ ∈ [0, µ∗2),

bH(µ) < 0 for µ > µ∗2, lim
µ→∞

bH(µ) = −∞,

where

µ∗2 =
b0

d1 + d2
. (32)

(ii): Let

µ∗1 :=

√
χ2 + b0χ− χ

d1
< µ∗3 :=

b0
d1
. (33)

Then µ = µ∗1 is the unique critical value of bS(µ), the function bS(µ) is strictly
increasing for µ ∈ (0, µ∗1), and it is strictly decreasing for µ > µ∗1. bS(µ) > 0
for µ ∈ (0, µ∗3), bS(µ) < 0 for µ > µ∗3, bS(0) = bS(µ∗3) = 0, and

max
µ∈[0,∞)

bS(µ) = bS(µ∗1) =
d2

d1

(√
b0 + χ−√χ

)2

=: b∗S (34)
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(iii): bH(µ) and bS(µ) cross at the point (µH , λH(µH)) and bH(µ) > bS(µ) for
0 ≤ µ < µH , bH(µ) < bS(µ) for µ > µH , where

µH :=
−[(d2 − d1)b0 + (d1 + d2)χ]+

√
[(d2 − d1)b0 + (d1 + d2)χ]2 + 4d2

1b0χ

2d2
1

. (35)

(iv): µ∗1 < µ∗2 if d1
d2
> D1, µ∗1 = µ∗2 if d1

d2
= D1 and µ∗1 > µ∗2 if d1

d2
< D1, where

D1 :=

√
χ

b0 + χ
. (36)

(v): µH < µ∗1 if and only if b∗H < b∗S if and only if d1
d2
< 1; µH = µ∗1 if and only

if b∗H = b∗S if and only if d1
d2

= 1; µH > µ∗1 if and only if b∗H > b∗S if and only

if d1
d2
> 1, where

b∗H := bH(µ∗1) = b0 −
(

1 +
d2

d1

)(√
χ2 + b0χ− χ

)
. (37)

(vi): Let

D2 :=

(√
b0 + χ−√χ

)2
b0

< 1. (38)

Then b∗S < b0 if d1
d2

> D2, b∗S = b0 if d1
d2

= D2, and b∗S > b0 if d1
d2

< D2.

Moreover, if d1
d2
< D2, we have

1. there exist two positive constant µL and µR such that 0 < µL < µ∗1 < µR
and bS(µL) = bS(µR) = b0, where

µL :=

(
1− d1

d2

)
b0 −

√(
1− d1

d2

)2

b20 − 4b0
d1
d2

2d1
,

µR :=

(
1− d1

d2

)
b0 +

√(
1− d1

d2

)2

b20 − 4b0
d1
d2

2d1
.

(39)

2. λS(µ) > b0 for µL < µ < µR and 0 < λS(µ) < b0 for µ ∈ (0, µL) ∪
(µR, µ

∗
3).

Now we can give a stability result regarding the constant equilibrium (P∗,W∗)
by the analysis above. To this end, we define

b = max
n∈N

bS(µn) ≤ b∗S . (40)

Theorem 3.2. Assume (5) holds. Then the constant equilibrium (P∗,W∗) of the
system (3) given as (6) is locally asymptotically stable if

(i): s+K ≥ 1; or
(ii): s+K < 1 and (13) holds; or
(iii): (14) holds and b > max{b0, b}. In particular, b > max{b0, b} holds if

b > max{b0, b∗S} =

{
b0, if d1

d2
≥ D2;

b∗S , if d1
d2
< D2,

where b0, b, b∗S and D2 are positive constants defined as (15), (40), (34) and
(38) respectively.

The constant equilibrium (P∗,W∗) is unstable with respect to (3) if (14) holds and
b < max{b0, b}.
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Next we consider the occurrence of Turing instability, which means the constant
equilibrium (P∗,W∗) is stable with respect to the ODE model (8) while it is unstable
with respect to the PDE model (3). Combining the Theorems 2.1 and 3.2, this can
happen only if b0 < b < b.

Theorem 3.3. Assume (5) and (14) hold. Then Turing instability happens if

(i): d1
d2
< D2; and

(ii): there exists j, k ∈ N such that µj−1 ≤ µL < µj ≤ µk < µR ≤ µk+1 and

b0 < b < b =

{
bS(µj), if j = k;

max
i∈[j,k]∩N

bS(µi), if j < k,

where D2, µL, µR, b0 and b are positive constants defined as (38), (39), (15) and
(40) respectively, bS(µ) is the function given in (31).

3.2. Hopf bifurcation. In this part, we study the existence of periodic solutions
of (3) by analyze the Hopf bifurcation from the constant equilibrium (P∗,W∗) under
the assumption (5) and (14) since there is no change of stability for other cases.
We assume that all eigenvalues µi are simple, and denote the corresponding eigen-
function by φi(x), i ∈ N0. Note that this assumption always holds when N = 1 for
Ω = (0, `π), as for i ∈ N0, µi = i2/`2 and φi(x) = cos(ix/`), where ` is a positive
constant. We use b as the main bifurcation parameter. To identify possible Hopf
bifurcation value bH , we recall the following necessary and sufficient condition from
[15, 50, 51].

(HS) There exists i ∈ N0 such that

Ti(bH) = 0, Di(bH) > 0 and Tj(bH) 6= 0, Dj(bH) 6= 0 for j ∈ N0 \ {i}, (41)

where Ti(b) and Di(b) are given in (23) and (24) respectively, and for the unique
pair of complex eigenvalues A(b)± iB(b) near the imaginary axis,

A′(bH) 6= 0 and B(bH) > 0. (42)

For i ∈ N0, we define

bi,H = bH(µi), (43)

where the function bH(µ) is given in (30). Then Ti(bi,H) = 0 and Tj(bi,H) 6= 0 for
j 6= i. By (41), we need Di(bi,H) > 0 to make bi,H as a possible bifurcation value,
which means µi < µH by Lemma 3.1, where µH is given in (35). Let n0 ∈ N0

such that µn0
< µH ≤ µn0+1, then we can see (41) holds with λH = λi,H for

i ∈ {0, · · · , n0} (see Fig. 2). Finally, we consider the conditions in (42). Let the
eigenvalues close to the pure imaginary one at b = bi,H be A(b)± iB(b). Then

A′(bi,H) =
T ′i (bi,H)

2
= −1

2
< 0 and B(bi,H) =

√
Di(bi,H) > 0 for i = 0, · · · , n0.

Then all conditions in (HS) are satisfied if i ∈ {0, · · · , n0}. Now by using the Hopf
bifurcation theorem in [51], we have

Theorem 3.4. Assume (5) and (14) hold. Let Ω be a smooth domain so that
all eigenvalues µi, i ∈ N0, are simple. Then there exists a n0 ∈ N0 such that
µn0

< µH ≤ µn0+1, and bi,H , defined as (43), is a Hopf bifurcation value for
i ∈ {0, · · · , n0}, where µH is given in (35). At each bi,H , the system (3) undergoes
a Hopf bifurcation, and the bifurcation periodic orbits near (b, P,W ) = (bi,H , P∗,W∗)
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can be parameterized as (bi(τ), Pi(τ),Wi(τ)), so that bi(τ) is the form of bi(τ) =
bi,H + o(τ) for τ ∈ (0, ρ) for some constant ρ > 0, and

Pi(τ)(x, t) = P∗ + τai cos(ω(bi,H)t)φi(x) + o(τ),

Wi(τ)(x, t) = W∗ + τbi cos(ω(bi,H)t)φi(x) + o(τ),

where ω(bi,H) =
√
Di(bi,H) with Di(b) given in (24) is the corresponding time

frequency, φi(x) is the corresponding spatial eigenfunction, and (ai, bi) is the corre-
sponding eigenvector, i.e.,

(L(bi,H)− iω(bi,H)I)

(
aiφi(x)
biφi(x)

)
=

(
0
0

)
,

where L(b) is given in (18). Moreover,

1. The bifurcation periodic orbit from b0,H = b0 are spatially homogeneous, where
b0 is given in (15);

2. The bifurcation periodic orbit from bi,H , i ∈ {1, · · · , n0}, are spatially nonho-
mogeneous.

Next we calculate the direction of Hopf bifurcation and the stability of the bifur-
cating periodic orbits bifurcating from b = b0. We use the normal form method and
center manifold theorem in [15] to study it. Let L∗(b) be the conjugate operator of
L(b) defined as (18) i.e.,

L∗(b) =

(
d1∆ + b0 bs
− aKP∗
P∗+K d2∆− b

)
, (44)

with domain

D(L∗(b)) = D(L(b)) = X⊕ iX = {x1 + ix2 : x1, x2 ∈ X},

where b0 is given in (15) and

X :=

{
(P,W ) ∈ H2(Ω)×H2(Ω) :

∂P

∂ν
=
∂W

∂ν
= 0 on ∂Ω

}
.

Let

q =

(
q1

q2

)
=

(
1

P∗+K
aKP∗

(
b0 − i

√
χb0
) ) ,

q∗ =

(
q∗1
q∗2

)
=

1

2|Ω|

(
1 + i

√
b0
χ

−i aKP∗
(P∗+K)

√
χb0

)
,

and χ be the constants given in (25). It holds

1. 〈L∗(b)ξ, η〉 = 〈ξ, L(b)η〉 for ξ ∈ D(L∗(b)) and η ∈ D(L(b)),
2. L∗(b0)q∗ = −i

√
χb0q

∗ and L(b0)q = i
√
χb0q,

3. 〈q∗, q〉 = 1 and 〈q∗, q〉 = 0,

where

〈ξ, η〉 =

∫
Ω

ξ
T
ηdx

denotes the inner product in L2(Ω)× L2(Ω).
According to [15], we decompose X = XC ⊕XS with

XC = {zq + zq : z ∈ C} , XS = {ω ∈ X : 〈q∗, ω〉 = 0} .
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For any (P,W ) ∈ X, there exists z =
〈
q∗, (P,W )T

〉
∈ C and ω = (ω1, ω2) ∈ XS

such that

(P,W )T = zq + zq + (ω1, ω2)T .

Thus,

P = z + z + ω1,

W =
z(P∗ +K)

aKP∗

(
b0 − i

√
χb0

)
+
z(P∗ +K)

aKP∗

(
b0 + i

√
χb0

)
+ ω2.

Then system (3) in (z, ω) coordinates become{
ż = i

√
χb0z + 〈q∗,F〉,

ω̇ = L(b)ω +H(z, z, ω),
(45)

where H(z, z, ω) = F − 〈q∗,F〉q − 〈q∗,F〉q, F = (f, g)T and f = P (1 − P ) − sP −
aPW K

P+K , g = b(sP −W ) and so

〈q∗,F〉 =
1

2

[(
1− i

√
b0
χ

)
f + i

aKP∗

(P∗ +K)
√
χb0

g

]
,

〈q∗,F〉 =
1

2

[(
1 + i

√
b0
χ

)
f − i aKP∗

(P∗ +K)
√
χb0

g

]
,

〈q∗,F〉q =
1

2

 f + i
(√

b0
χ f −

aKP∗
(P∗+K)

√
χb0

g
)

g − i
[
P∗+K
aKP∗

(√
χb0 + b0

√
b0
χ

)
f −

√
b0
χ g
]  ,

〈q∗,F〉q ==
1

2

 f − i
(√

b0
χ f −

aKP∗
(P∗+K)

√
χb0

g
)

g + i
[
P∗+K
aKP∗

(√
χb0 + b0

√
b0
χ

)
f −

√
b0
χ g
]  .

A direct calculation shows that H(z, z, ω) = (0, 0)T .
Let

H(z, z, ω) =
1

2
H20z

2 +H11zz +
1

2
H02z

2 +O(|z|3).

It follows [15, Appendix A] that the system (45) possesses a center manifold, then
we can write ω in the form

ω =
1

2
ω20z

2 + ω11zz +
1

2
ω02z

2 +O(|z|3).

Thus we have

ω02 = ω20 =
(

2i
√
χb0I − L

)−1

H20 = 0, ω11 = (−L)−1H11 = 0.

For later uses, we denote

c0 = fPP q
2
1 + 2fPW q1q2 + fWW q

2
2 = −2 + 2

asK2P∗
(P∗ +K)3

− 2
aK2

(P∗ +K)2
q2,

= −2 +
2asK2P∗
(P∗ +K)3

− 2Kb0
P∗(P∗ +K)

+ i
2K
√
χb0

P∗(P∗ +K)
,

d0 = gPP q
2
1 + 2gPW q1q2 + gWW q

2
2 = 0,
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e0 = fPP |q1|2 + fPW (q1q2 + q1q2) + fWW |q2|2

= −2 + 2
asK2P∗

(P∗ +K)3
− aK2

(P∗ +K)2
(q2 + q2),

= −2 +
2asK2P∗
(P∗ +K)3

− 2Kb0
P∗(P∗ +K)

,

f0 = gPP |q1|2 + gPW (q1q2 + q1q2) + gWW |q2|2 = 0,

g0 = fPPP |q1|2q1 + fPPW (2|q1|2q2 + q2
1q2)

+fPWW (2q1|q2|2 + q1q
2
2) + fWWW |q2|2q2

= −6
asK2P∗

(P∗ +K)4
+ 2

aK2

(P∗ +K)3
(2q2 + q2) ,

= − 6asK2P∗
(P∗ +K)4

+
6Kb0

P∗(P∗ +K)2
− i 2K

√
χb0

P∗(P∗ +K)2
,

h0 = gPPP |q1|2q1 + gPPW (2|q1|2q2

+q2
1q2) + gPWW (2q1|q2|2 + q1q

2
2) + gWWW |q2|2q2

= 0,

with all the partial derivatives evaluated at the point (P,W ) = (P∗,W∗). Therefore,
the model (3) restricted to the center manifold in z, z coordinates is given by

dz

dt
= i
√
χb0z +

1

2
φ20z

2 + φ11zz +
1

2
φ02z

2 +
1

2
φ21z

2z +O(|z|4),

where

φ20 =
〈
q∗, (c0, d0)T

〉
= −1 +

asK2P∗
(P∗ +K)3

+i

[
K
√
χb0

P∗(P∗ +K)
+

√
b0
χ

(
1− asK2P∗

(P∗ +K)3
+

Kb0
P∗(P∗ +K)

)]
,

φ11 =
〈
q∗, (e0, f0)T

〉
= −1 +

asK2P∗
(P∗ +K)3

− Kb0
P∗(P∗ +K)

+i

√
b0
χ

[
1− asK2P∗

(P∗ +K)3
+

Kb0
P∗(P∗ +K)

]
,

φ21 =
〈
q∗, (g0, h0)T

〉
= − 3asK2P∗

(P∗ +K)4
+

2Kb0
P∗(P∗ +K)2

+i

[√
b0
χ

(
3asK2P∗
(P∗ +K)4

− 3Kb0
P∗(P∗ +K)2

)
− K

√
χb0

P∗(P∗ +K)2

]
.

According to [15], we have

Re(c1(b0)) =Re

{
i

2
√
χb0

(
φ20φ11 − 2|φ11|2 −

1

3
|φ02|2

)
+

1

2
φ21

}
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=− 1

2
√
χb0

[Re(φ20)Im(φ11) + Im(φ20)Re(φ11)] +
1

2
Re(φ21). (46)

Based on the above analysis, we give our results in the following theorem.

Theorem 3.5. Suppose the assumptions in Theorem 3.4 hold. Let Re(c1(b0)) be
the constant defined as (46). Then

1. if Re(c1(b0)) < 0, the Hopf bifurcation at b = b0 is subcritical and the bifur-
cating periodic solutions are orbitally asymptotical stable;

2. if Re(c1(b0)) > 0, the Hopf bifurcation at b = b0 is supercritical and the
bifurcating periodic solutions are unstable.

4. Analysis of the PDE model (4). In this section, we study the model (4) by
analyzing the existence and nonexistence of nonconstant positive solutions. We ob-
tain existence/nonexistence results for by using energy estimates, Implicit Function
Theorem and bifurcation methods.

4.1. A priori estimates. Firstly, we give some estimates for the positive solutions
of (4), which will be used later. The following lemma is given in [22].

Lemma 4.1. Suppose that g ∈ C(Ω× R).

(i): Assume that w ∈ C2(Ω) ∩ C1(Ω) and satisfies

∆w(x) + g(x,w(x)) ≥ 0 in Ω,
∂w

∂ν
≤ 0 on ∂Ω. (47)

If w(x0) = maxx∈Ω w(x), then g(x0, w(x0)) ≥ 0.

(ii): Assume that w ∈ C2(Ω) ∩ C1(Ω) and satisfies

∆w(x) + g(x,w(x)) ≤ 0 in Ω,
∂w

∂ν
≥ 0 on ∂Ω. (48)

If w(x0) = minx∈Ω w(x), then g(x0, w(x0)) ≤ 0.

Theorem 4.2. Assume

(i): K ≥ 1, 0 < s < min
{

1, 1
a

}
; or

(ii): 0 < K < 1, a(1−K) < 1 and 1−K ≤ s < min
{

1, 1
a

}
; or

(iii): 0 < K < 1, a(1−K) > 1 and 1
a ≤ s < 1−K.

Then any positive solution (P,W ) of problem (4) satisfies

B < P (x) < A, sB < W (x) < sA, x ∈ Ω, (49)

where

B :=
1− s−K +

√
(1− s−K)2 + 4(1− s)(1− as)K

2
∈ (0, 1− s), (50)

A :=
1− s−K +

√
(1− s−K)2 + 4(1− s− asB)K

2
∈ (B, 1− s). (51)

Proof. Assume (P,W ) is a positive solution of (4), and let

P (x1) = max
x∈Ω

P (x), W (x2) = max
x∈Ω

W (x), P (y1) = min
x∈Ω

P (x), W (y2) = min
x∈Ω

W (x).

Then it follows from Lemma 4.1 that

1− s− P (x1)− aKW (x1)

P (x1) +K
≥ 0, 1− s− P (y1)− aKW (y1)

P (y1) +K
≤ 0, (52)

sP (x2)−W (x2) ≥ 0, sP (y2)−W (y2) ≤ 0. (53)
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In view of the definitions of xi and yi, i = 1, 2, by (52) and (53), we get P (x1) <
1− s and

P 2(x1)− (1− s−K)P (x1) + asKP (y1)− (1− s)K ≤ 0, (54)

P 2(y1)− (1− s−K)P (y1) + asKP (x1)− (1− s)K ≥ 0, (55)

W (x2) ≤ sP (x1), W (y2) ≥ sP (y1). (56)

It follows from P (x1) < 1− s and (55) that

P 2(y1)− (1− s−K)P (y1)− (1− s)(1− as)K > 0,

which implies P (y1) > B if (i) or (ii) or (iii) holds, where B is defied as (50). Then,
by (54), we get

P 2(x1)− (1− s−K)P (x1) + asKB − (1− s)K < 0,

which implies P (x1) < A. So B < P (x) < A, x ∈ Ω. By (56), we get sB < W (x) <
sA, x ∈ Ω.

Remark 4.3. Assume (P (x),W (x)) is the positive of problem (4).

(1): For fixing K ≥ 1 and 0 < s < 1, the condition (i) holds when a is small
enough. Similarly, for fixing 0 < K < 1 and 1−K < s < 1, the condition (ii)
holds when a is small enough. Furthermore, we have

lim
a→0

A = lim
a→0

B = 1− s = P∗

∣∣∣
a=0

,

where P∗ is given in (6). Then it follows from Theorem 4.2 that (P (x),W (x))
→ (1 − s, s(1 − s)) uniformly on Ω as a → 0, where (1 − s, s(1 − s)) is the
unique solution of (4) with a = 0. These facts intrigue us to consider the
nonexistence of nonconstant positive solutions of (4) if

1. K ≥ 1 and 0 < s < 1 are fixed and a is small enough; or
2. 0 < K < 1 and 1−K < s < 1 are fixed and a is small enough

(see (III) of Remark 4.8).
(2): For fixing K ≥ 1 and a > 0, the condition (i) holds when s is small enough.

Furthermore, we have

lim
s→0

A = lim
s→0

B = 1 = P∗

∣∣∣
s=0

.

Then it follows from Theorem 4.2 that (P (x),W (x))→ (1, 0) uniformly on Ω
as s → 0, where (1, 0) is the unique solution of (4) with s = 0. These facts
intrigue us to consider the nonexistence of nonconstant positive solutions of
(4) if K ≥ 1 and a > 0 are fixed and s is small enough (see (IV) of Remark
4.8).

(3): For fixing a > 1 and 1
a ≤ s < 1, the condition (iii) holds when K is small

enough. Furthermore, we have

lim
K→0

A = lim
K→0

B = 1− s = P∗

∣∣∣
K=0

.

Then it follows from Theorem 4.2 that (P (x),W (x))→ (1− s, s(1− s)) uni-
formly on Ω as a→ 0, where (1−s, s(1−s)) is the unique solution of (4) with
K = 0. These facts intrigue us to consider the nonexistence of nonconstant
positive solutions of (4) if a > 1 and 1

a ≤ s < 1 are fixed and K is small
enough (see (V) of Remark 4.8).
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Remark 4.4. Let ρ(t) := −t2 + (1− s−K)t+ (1− s)K. Then we can rewrite (55)
as asKP (x1) ≥ ρ(P (y1)). Since 0 ≤ P (y1) ≤ P (x1), we get

asKP (x1) ≥ min{ρ(0), ρ(P (x1))} = min{(1− s)K, ρ(P (x1))}. (57)

If (1 − s)K ≤ ρ(P (x1)), then we get from (57) that P (x1) ≥ 1−s
as . On the other

hand, if (1− s)K > ρ(P (x1)), it follows from (57) that

−P 2(x1) + (1− s−K − asK)P (x1) + (1− s)K ≤ 0,

which means

P (x1) ≥
1− s−K − asK +

√
(1− s−K − asK)2 + 4(1− s)K

2
> 0.

In all, without the assumptions in Theorem 49, there exists a positive constant C1

depending on s ∈ (0, 1) and a,K ∈ (0,∞) such that the positive solution (P,W ) of
problem (4) satisfies

max
x∈Ω

P (x) ≥ C1. (58)

Now we introduce a Harnack inequality derived in [36].

Lemma 4.5. Let w ∈ C2(Ω) ∩ C1(Ω) be a positive solution to

∆w(x) + c(x)w(x) = 0 in Ω,
∂w

∂ν
= 0 on ∂Ω,

where c(x) is a continuous function on Ω. Then there exists a positive constant C,
depending only on ‖c‖∞ := max

x∈Ω
|c(x)| and Ω, such that max

x∈Ω
w(x) ≤ C min

x∈Ω
w(x).

Upon (58) and above lemma, we can discard the assumptions in Theorem 4.2
and get the following results.

Theorem 4.6. Suppose (5) holds. Let d be any positive constant. Then there exists
a positive constant θ depending only on a, s,K, d and Ω such that when d1 ≥ d and
d2 > 0, the positive solution (P,W ) of problem (4) satisfies

θ ≤ P (x) < 1− s, θ ≤W (x) < s(1− s), x ∈ Ω.

Proof. By the proof of Theorem 4.2, we get

P (x) < 1− s, W (x) < s(1− s), x ∈ Ω, (59)

smin
x∈Ω

P (x) ≤ min
x∈Ω

W (x). (60)

Let’s rewrite the first equation of (4) as ∆P (x) + c(x)P (x) = 0 with

c(x) :=
1

d1

(
1− s− P − aKW

P +K

)
.

Furthermore,

‖c‖∞ ≤
1

d
(1− s+ ‖P‖∞ + a‖W‖∞) ≤ 1

d
(1− s)(2 + as).

Then it follows from Lemma 4.5 and Remark 4.4 that there exists a positive constant
C, depending only on a, s, d and Ω such that

C1 ≤ max
x∈Ω

P (x) ≤ C min
x∈Ω

P (x),

which combining with (60) implies

P (x) ≥ C1

C
, W (x) ≥ sC1

C
, x ∈ Ω.
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Since 0 < s < 1, the conclusion holds for θ = sC1/C.

4.2. Nonexistence of positive nonconstant steady state solutions.

Theorem 4.7. Let assumptions in Theorem 4.2 hold. Let A and B be the two
positive constants given in (51) and (50) respectively. If µ1 is large enough such
that

µ1 > M :=
1− s−B

d1
+

abAKs

d1(A+K)(d2µ1 + b)
, (61)

then (4) admits no positive nonconstant solutions.

Before giving the proof, we firstly make some remarks on above theorem.

Remark 4.8. (I): It is clear that (61) holds if µ1 is large enough. Note that
large µ1 is reflected by small “size”of the domain Ω (see [2, 40] for precise
explanation of “size”).

(II): Obviously, (61) holds if d1 is large enough.
(III): For fixing K ≥ 1 and 0 < s < 1, the condition (i) of Theorem 4.2 holds

when a is small enough. Similarly, for fixing 0 < K < 1 and 1 −K < s < 1,
the condition (ii) of Theorem 4.2 holds when a is small enough. Furthermore,
since lima→0M = 0, (61) holds for a is small enough. So problem (4) admits
no positive nonconstant solutions if

1. K ≥ 1 and 0 < s < 1 are fixed and a is small enough; or
2. 0 < K < 1 and 1−K < s < 1 are fixed and a is small enough.

(IV ): For fixing K ≥ 1 and a > 0, the condition (i) of Theorem 4.2 holds when
s is small enough. Furthermore, since lims→0M = 0, (61) holds for s is small
enough. So problem (4) admits no positive nonconstant solutions if K ≥ 1
and a > 0 are fixed and s is small enough.

(V ): For fixing a > 1 and 1
a ≤ s < 1, the condition (iii) of Theorem 4.2 holds

when K is small enough. Furthermore, since limK→0M = 0, (61) holds for
K is small enough. So problem (4) admits no positive nonconstant solutions
if a > 1 and 1

a ≤ s < 1 are fixed and K is small enough.

Proof of Theorem 4.7. In the proof we denote |Ω|−1
∫

Ω
ξ(x)dx by ξ for ξ ∈ L1(Ω).

Let (P,W ) be a positive solution of (4), then it is obvious that
∫

Ω
(P − P )dx =∫

Ω
(W −W )dx = 0.

Multiplying the first equation of (4) by P − P , by (49), we obtain

d1

∫
Ω

∣∣∇ (P − P )∣∣2 dx =

∫
Ω

(
(1− s)P − P 2 − aKPW

P +K

)(
P − P

)
dx

=

∫
Ω

[
(1−s)

(
P−P

)
−
(
P 2−P 2

)
−aK

(
PW

P+K
− PW

P+K

)] (
P−P

)
dx

=

∫
Ω

[
(1− s)−

(
P + P

)
− aK2W

(P +K)(P +K)

] (
P − P

)2
dx

−
∫

Ω

aKP

(P +K)

(
P − P

) (
W −W

)
dx

≤ (1− s−B)

∫
Ω

(
P − P

)2
dx+

aAK

A+K

∫
Ω

∣∣P − P ∣∣ ∣∣W −W ∣∣ dx.

(62)
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Similarly, multiplying the first equation of (4) by W −W , by (49), we obtain

d2

∫
Ω

∣∣∇ (W −W )∣∣2 dx ≤ bs∫
Ω

∣∣P − P ∣∣ ∣∣W −W ∣∣ dx− b∫
Ω

(
W −W

)2
dx. (63)

Thus, thanks to the well-known Poincaré’s inequality,

µ1

∫
Ω

(
ξ − ξ

)2
dx ≤

∫
Ω

∣∣∇ (ξ − ξ)∣∣2 dx, ξ ∈ H1(Ω),

we find from (63) that

(d2µ1 + b)

∫
Ω

(
W −W

)2
dx ≤ bs

∫
Ω

∣∣P − P ∣∣ ∣∣W −W ∣∣ dx
≤ bs

[∫
Ω

∣∣P − P ∣∣2 dx] 1
2
[∫

Ω

∣∣W −W ∣∣2 dx] 1
2

.

(64)

If W = W on Ω, the second equation of (4) shows P = W/s, so P and W are
both constants. Next we assume that W 6≡W . Then (64) leads to

(d2µ1 + b)

[∫
Ω

∣∣W −W ∣∣2 dx] 1
2

≤ bs
[∫

Ω

∣∣P − P ∣∣2 dx] 1
2

,

which together with (64), infers∫
Ω

∣∣P − P ∣∣ ∣∣W −W ∣∣ dx ≤ bs

d2µ1 + b

∫
Ω

∣∣P − P ∣∣2 dx. (65)

By virtue of (62), (65) and Poincaré’s inequality, we get

d1µ1

∫
Ω

∣∣P − P ∣∣2 dx ≤ (1− s−B +
abAKs

(A+K)(d2µ1 + b)

)∫
Ω

∣∣P − P ∣∣2 dx,
which combining with (61) implies P ≡ P , and then it follows from the second
equation of (4) that W ≡ sP .

Next we will discard the assumptions in Theorem 4.7 and study the nonexistence
of positive nonconstant solutions of (4) as d1 → ∞ or d2 → ∞. To this end, we
firstly introduce the following lemma.

Lemma 4.9. Let a, b,K > 0, 0 < s < 1 be fixed and (P∗,W∗) be the unique constant
equilibrium defined as (6), then the following statements hold.

(i): Let d2 > 0 be fixed. Assume (Pi,Wi) is the positive solution of (4) with
(d1, d2) = (d1,i, d2), where d1,i → ∞ as i → ∞, then (Pi,Wi) → (P∗,W∗) in

C2(Ω)× C2(Ω) as i→∞.
(ii): Let d1 > 0 be fixed. Assume (Pi,Wi) is the positive solution of (4) with

(d1, d2) = (d1, d2,i), where d2,i → ∞ as i → ∞, then (Pi,Wi) → (P∗,W∗) in

C2(Ω)× C2(Ω) as i→∞.
(iii): Assume (Pi,Wi) is the positive solution of (4) with (d1, d2) = (d1,i, d2,i),

where d1,i → ∞ and d1,i → ∞ as i → ∞, then (Pi,Wi) → (P∗,W∗) in

C2(Ω)× C2(Ω) as i→∞.

Proof. (i) Without losing generality, we assume d1,i ≥ 1 for i = 1, 2, · · · . By
Theorem 4.6, there exists a positive constant θ depending only on a, s,K and Ω
such that

θ ≤ Pi(x) < 1− s, θ ≤Wi(x) < s(1− s), x ∈ Ω, i = 1, 2, · · · .
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By Sobolev embedding theory and standard regularity theory of elliptic equations,
there exists a subsequence of (Pi,Wi), relabeled as itself, and (P,W ) ∈ C2(Ω) ×
C2(Ω) such that (Pi,Wi) → (P,W ) in C2(Ω) × C2(Ω) as i → ∞. Furthermore,
(P,W ) satisfies the following relations

−∆P = 0, x ∈ Ω,

− d2∆W = b(sP −W ), x ∈ Ω,

∂P

∂ν
=
∂W

∂ν
= 0, x ∈ ∂Ω,∫

Ω

[
P (1− P )− sP − aPW K

p+K

]
dx = 0.

(66)

From the first and the third relations in (66), we know that P ≡ c ≥ θ > 0, where
c is constant. Then W satisfies

− d2∆W + bW = bsc, x ∈ Ω,

∂W

∂ν
= 0, x ∈ ∂Ω,

(67)

and the unique solution of (67) is W = sc. Then it follows the forth relation of (66)
that c > 0 satisfies

1− c− s− asKc

c+ k
= 0, (68)

i.e., c = P∗, where P∗ is given in (6), which in turn implies P = P∗ and W = W∗.
Then (i) holds. The proof of (ii) is similar to the proof of (i).

(iii) Similar arguments as above imply that there exists a subsequence of (Pi,Wi),
relabeled as itself, and (P,W ) ∈ C2(Ω) × C2(Ω) such that (Pi,Wi) → (P,W ) in
C2(Ω)× C2(Ω) as i→∞. Furthermore, (P,W ) satisfies the following relations

−∆P = 0, x ∈ Ω,

−∆W = 0, x ∈ Ω,

∂P

∂ν
=
∂W

∂ν
= 0, x ∈ ∂Ω,∫

Ω

[
P (1− P )− sP − aPW K

p+K

]
dx = 0,∫

Ω

sP −Wdx = 0.

(69)

Then P ≡ c > 0 and W ≡ c̃ > 0, where c and c̃ are constants. By the fifth relation
of (69), we get c̃ = sc, and then c satisfies (68). So as above we get P = P∗ and
W = W∗.

Based on Lemma 4.9, we can obtain the following result by using Implicit Func-
tion Theorem.

Theorem 4.10. Let a, b,K > 0, 0 < s < 1 be fixed , then the following statements
hold.

(i): Let d2 > 0 be fixed, then there exists a positive constant d∗1 depending on
a, b, s,K, d2 and Ω such that (4) admits no positive nonconstant solution when
d1 > d∗1.

(ii): Let d1 > 0 be fixed, then there exists a positive constant d∗2 depending on
a, b, s,K, d1 and Ω such that (4) admits no positive nonconstant solution when
d1 > d∗2.
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(iii): There exists a positive constant d∗ depending on a, b, s,K and Ω such that
(4) admits no positive nonconstant solution when d1 > d∗ and d2 > d∗.

Proof. (i) We write P as P = U + ξ with ξ = |Ω|−1
∫

Ω
Pdx such that

∫
Ω
Udx = 0.

Then we observe that finding solutions of (4) is equivalent to solving the following
problem 

∆U + σ(U + ξ)

[
1− s− (U + ξ)− aKW

U + ξ +K

]
= 0, x ∈ Ω,

d2∆W + b [s(U + ξ)−W ] = 0, x ∈ Ω,

∂U

∂ν
=
∂W

∂ν
= 0, x ∈ ∂Ω,∫

Ω

(U + ξ)

[
1− s− (U + ξ)− aKW

U + ξ +K

]
dx = 0,

(70)

where σ = 1/d1. Clearly, (U,W, ξ) = (0,W∗, P∗) is a solution of (70).
From above analysis, to verify our assertion, we only need to prove there exists a

positive constant σ0 which depends only on a, b, s,K, d2 and Ω such that (U,W, ξ) =
(0,W∗, P∗) is the unique solution of (70) when σ < σ0. For this, we define

W 2,2
ν =

{
ω ∈W 2,2(Ω) :

∂ω

∂ν

∣∣∣∣
∂Ω

= 0

}
, (71)

L2
0 =

{
ω ∈ L2(Ω) :

∫
Ω

ωdx = 0

}
, (72)

F (σ, U,W, ξ) = (f1, f2, f3)(σ, U,W, ξ),

where

f1(σ, U,W, ξ) = ∆U + σ(U + ξ)

[
1− s− (U + ξ)− aKW

U + ξ +K

]
,

f2(σ, U,W, ξ) = d2∆W + b [s(U + ξ)−W ] ,

f3(σ, U,W, ξ) =

∫
Ω

(U + ξ)

[
1− s− (U + ξ)− aKW

U + ξ +K

]
dx.

Then

F : R1
+ ×

(
L2

0 ∩W 2,2
ν

)
×W 2,2

ν × R1
+ → L2

0 × L2 × R1,

and (70) is equivalent to solving F (σ, U,W, ξ) = 0. Moreover, similar to the proof
of Lemma 4.9, (70) admits a unique solution (U,W, ξ) = (0,W∗, P∗) when σ = 0.
By simple computations, we have

Φ(y, z, τ) :=D(U,W,ξ)F (0, 0,W∗, P∗, )(y, z, τ)

=

 ∆y
d2∆z + b(sy − z + sτ)∫

Ω

[(
1− s− 2P∗ − aK2W∗

(P∗+K)2

)
(y + τ)− aKP∗

P∗+K z
]
dx

 ,

then

Φ :
(
L2

0 ∩W 2,2
ν

)
×W 2,2

ν × R1
+ → L2

0 × L2 × R1.

In order to use Implicit Function Theorem, we need to prove Φ is invertible, that is
Φ one-to one and onto. It is easy to see that Φ is a surjection. So we only need to
prove the homogeneous equation Φ(y, z, τ) = 0 has unique solution y = z = τ = 0.
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Firstly, it follows from Φ(y, z, τ) = 0 that y satisfies
∆y = 0, x ∈ Ω,

∂y

∂ν
= 0, x ∈ ∂Ω,∫

Ω

ydx = 0.

Then y ≡ 0.
Secondly, it follows from Φ(y, z, τ) = 0 and y ≡ 0 that z satisfies

− d2∆z + bz = bsτ, x ∈ Ω,

∂z

∂ν
= 0, x ∈ ∂Ω.

Since b > 0, the above equation admits a unique constant solution z = sτ .
Finally, since (P∗,W∗) satisfies

1− 2− P∗ −
aKW∗
P∗ +K

= 0, W∗ = sP∗, (73)

it follows from y = 0 and z = sτ that

0 =

∫
Ω

[(
1− s− 2P∗ −

aK2W∗
(P∗ +K)2

)
(y + τ)− aKP∗

P∗ +K
z

]
dx

= −
(
P∗ +

aK2W∗
(P∗ +K)2

)
|Ω|τ,

i.e., τ = 0, and then z = sτ = 0.
By the Implicit function Theorem, there exists positive constants σ0 and ε0 such

that for each σ ∈ (0, σ0), (0,W∗, P∗) is the unique solution of F (σ, U,W, ξ) = 0 in
Bε0(0,W∗, P∗), where Bε0(0,W∗, P∗) is the ball in

(
L2

0 ∩W 2,2
ν

)
×W 2,2

ν ×R1 centered
at (0,W∗, P∗) with radius ε0. Taking smaller σ0 and ε0 smaller if necessary, we can
conclude the proof by using the first conclusion of Lemma 4.9. Then (i) holds. The
proof of (ii) is similar to the proof of (i).

(iii) We write P and W as P = U + ξ and W = V + η with ξ = |Ω|−1
∫

Ω
Pdx

and η = |Ω|−1
∫

Ω
Wdx such that

∫
Ω
Udx = 0 and

∫
Ω
V dx = 0. Then we observe

that finding solutions of (4) is equivalent to solving the following problem

∆U + σ1(U + ξ)

[
1− s− (U + ξ)− aK(V + η)

U + ξ +K

]
= 0, x ∈ Ω,

∆V + σ2b [s(U + ξ)− (V + η)] = 0, x ∈ Ω,

∂U

∂ν
=
∂V

∂ν
= 0, x ∈ ∂Ω,∫

Ω

(U + ξ)

[
1− s− (U + ξ)− aK(V + η)

U + ξ +K

]
dx = 0,∫

Ω

[s(U + ξ)− (V + η)] = 0

(74)

where σ1 = 1/d1 and σ2 = 1/d2. Clearly, (U, V, ξ, η) = (0, 0, P∗,W∗) is a solution of
(74).

From above analysis, to verify our assertion, we only need to prove there exists a
positive constant σ0 which depends only on a, b, s,K and Ω such that (U,W, ξ, η) =
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(0, 0, P∗,W∗) in the unique solution of (74) when σ1 < σ0 and σ2 < σ0. For this,
we define

F (σ1, σ2, U, V, ξ, η) = (f1, f2, f3, f4)(σ1, σ2, U, V, ξ, η),

where

f1(σ1, σ2, U, V, ξ, η) = ∆U + σ1(U + ξ)

[
1− s− (U + ξ)− aK(V + η)

U + ξ +K

]
,

f2(σ1, σ2, U, V, ξ, η) = ∆V + σ2b [s(U + ξ)− (V + η)] ,

f3(σ1, σ2, U, V, ξ, η) =

∫
Ω

(U + ξ)

[
1− s− (U + ξ)− aK(V + η)

U + ξ +K

]
,

f4(σ1, σ2, U, V, ξ, η) =

∫
Ω

[s(U + ξ)− (V + η)] .

Then

F : R1
+ × R1

+ ×
(
L2

0 ∩W 2,2
ν

)
×
(
L2

0 ∩W 2,2
ν

)
× R1

+ × R1
+ → L2

0 × L2
0 × R1 × R1,

and (74) is equivalent to solving F (σ1, σ2, U, V, ξ, η) = 0. Moreover, similar to the
proof of Lemma 4.9, (74) admits a unique solution (U,W, ξ, η) = (0, 0, P∗,W∗) when
σ1 = σ2 = 0. By simple computations, we have

Φ(y, z, τ, %) :=D(U,V,ξ,η)F (0, 0, 0, 0, P∗,W∗, )(y, z, τ, %)

=


∆y
∆z∫

Ω

[(
1− s− 2P∗ − aK2W∗

(P∗+K)2

)
(y + τ)− aKP∗

P∗+K (z + %)
]
dx∫

Ω
[s(y + τ)− (z + %)]dx

 ,

then

Φ :
(
L2

0 ∩W 2,2
ν

)
×
(
L2

0 ∩W 2,2
ν

)
× R1

+ × R1
+ → L2

0 × L2
0 × R1 × R1.

In order to use Implicit Function Theorem, we need to prove Φ is invertible, that is Φ
one-to one and onto. It is easy to see that Φ is a surjection. So we only need to prove
the homogeneous equation Φ(y, z, τ, %) = 0 has unique solution y = z = τ = % = 0.

It follows from Φ(y, z, τ, %) = 0 that y and z satisfy
∆y = 0, x ∈ Ω,

∂y

∂ν
= 0, x ∈ ∂Ω,∫

Ω

ydx = 0,


∆z = 0, x ∈ Ω,

∂z

∂ν
= 0, x ∈ ∂Ω,∫

Ω

zdx = 0.

Then y ≡ z ≡ 0, and so

0 =

∫
Ω

[s(y + τ)− (z + %)] = (sτ − %)|Ω|

i.e., % = sτ . Furthermore, since (P∗,W∗) satisfies (73), we get

0 =

∫
Ω

[(
1− s− 2P∗ −

aK2W∗
(P∗ +K)2

)
(y + τ)− aKP∗

P∗ +K
(z + %)

]
dx

= −
(
P∗ +

aK2W∗
(P∗ +K)2

)
|Ω|τ,

i.e., τ = 0, and then % = sτ = 0.
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By the Implicit function Theorem, there exists positive constants σ0 and ε0 such
that for each σ1, σ2 ∈ (0, σ0), (0, 0, P∗,W∗) is the unique solution of

F (σ1, σ2, U, V, ξ, η) = 0

in Bε0(0, 0, P∗,W∗), where Bε0(0, 0, P∗,W∗) is the ball in
(
L2

0 ∩W 2,2
ν

)
×
(
L2

0 ∩W 2,2
ν

)
×R1×R1 centered at (0, 0, P∗,W∗) with radius ε0. Taking smaller σ0 and ε0 smaller
if necessary, we can conclude the proof by using the third conclusion of Lemma
4.9.

Note the relationship between b and d2 in the second equation (4), we get d2 →∞
is equivalent to b→ 0. Then we get the following corollary from (ii) of Lemma 4.9
and (ii) of Theorem 4.10.

Corollary 4.11. Let a, b, d1, d2,K > 0, 0 < s < 1 be fixed , then there exists a
positive constant b∗ depending on a, b, s, d1, d2,K and Ω such that (4) admits no
positive nonconstant solution when b < b∗.

4.3. Existence of positive nonconstant steady state solutions. In this part,
we analyze model (4) by bifurcation theory with b as the bifurcation parameter.
As in Section 3, we assume (5) and (14) hold, and all eigenvalues µi are simple,
and denote the corresponding eigenfunction by φi(x), i ∈ N0. We identify state
bifurcation value bS of (4), which satisfies the following conditions [51].

(SS) There exists i ∈ N0 such that

Di(bS) = 0, D′i(bS) 6= 0, Ti(bS) 6= 0, Dj(bS) 6= 0 and Tj(bS) 6= 0 for j ∈ N0 \ {i},
where Di(b) and Ti(b) are given in (24) and (23) respectively.

Since D0(b) = χb > 0, where χ is defined as (25), we only consider i ∈ N .
In the following, we determine b-values satisfying (SS). We notice that Di(b) = 0
is equivalent to b = bS(µi), where bS(µ) is defined as (31). Hence we make the
following additional assumption on the spectral set {µn}n∈N0 .

(SP) There exist p ∈ N such that µp < µ∗3 ≤ µp+1 and µH 6= µi for i = 1, · · · , p,
where µ∗3 and µH are given in (33) and (35) respectively.

In the following, for p satisfy (SP), we denote

bi,S = bS(µi) for i = 1, · · · , p. (75)

The points bi,S defined above are potential steady state bifurcation points. In follows
from Lemma 3.1 that for each i = 1, · · · , p, Di(bi,S) = 0, D′i(bi,S) = d1µi + χ > 0

and Ti(bi,S) 6= 0. On the other hand, it is possible that for some b̃ ∈ (0, b∗S) with b∗S
defined as (34) such that

(SQ) bi,S = bj,S = b̃ for some i, j ∈ {1, · · · , p} and i 6= j, i.e, Di(̃b) = Dj (̃b).
(SS) is not satisfied if (SQ) holds, and we shall not consider bifurcations at such

a point. On the other hand, it is also possible that
(SR) bi,S = bj,H for some i, j ∈ {1, · · · , p} and i 6= j, where bj,H is a Hopf

bifurcation value defined as (43).
However, from an argument in [51], for N = 1 and Ω = (`π), there are only

countably many `, such that (SQ) or (SP) occurs. One also can show that (SQ) or
(SP) does not occur for generic domains in RN (see [42]).

Summarizing the above discussion, we obtain the main result of this part on
bifurcation of steady state solutions.

Theorem 4.12. Assume (5) and (14) hold. Let Ω be a bounded smooth domain
so that all eigenvalues µi, i ∈ N0, are simple, and satisfy (SP). Then for any
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i ∈ {1, · · · , p}, there exists a unique bi,S defined as (75) such that Di(bi,S) = 0,
D′i(bi,S) 6= 0 and Ti(bi,S) 6= 0. If in addition, we assume that

bi,S 6= bj,S , bi,S 6= bj,H for any j ∈ {1, · · · , p} and i 6= j, (76)

where bj,H is defined as (43). Then the following conclusions hold.

(i): There is a smooth curve Γi of positive solutions of (4) bifurcating from
(b, P,W ) = (bi,S , P∗,W∗), where (P∗,W∗) is the positive constant solution of
(4) defined as (6). Near (b, P,W ) = (bi,S , P∗,W∗), Γi = {(bi(τ)), Pi(τ),Wi(τ) :
|τ | < ε}, where ε is a small positive constant and{

Pi(τ)(x) = P∗ + τ liφi(x) + τψ1,i(τ),

Wi(τ)(x) = W∗ + τmiφi(x) + τψ2,i(τ),

for some smooth functions bi, ψ1,i and ψ2,i such that bi(0) = bi,S and ψ1,i(0) =
ψ2,i(0) = 0, and (li,mi) satisfies

L(bi,S)
[
(li,mi)

Tφi(x)
]

= (0, 0)T ,

here L is the operator defined in (18).
(ii): Γi is contained a global branch Σi of positive nontrivial solution of problem

(4) and
1. Σi connects another bifurcation point (bj,S , P∗,W∗) for some j ∈ {1, · · · ,

p} and j 6= i; or
2. the projection of Σi on to b-axis contains the interval (bi,S ,∞), and then

for b ∈ (bi,S ,∞) \ (∪pk=1bk,S), problem (4) admits at least one positive
nonconstant solution.

Remark 4.13. If p = 1, i.e., µ1 < µ∗3 ≤ µ2, then the first conclusion of (ii) can
not happen, and then for b ∈ (b1,S ,∞), problem (4) admits at least one positive
nonconstant solution.

Proof. The condition (SS) has been proved in the previous paragraphs, and the
bifurcation of solutions to (4) occur at b = bi,S . Note that we assume (SQ) and
(SR) hold, so b = bi,S ia always a bifurcating from simple eigenvalue point, then
by using the general bifurcation theorem in [51], we know the conclusion (i) holds.
Moreover, similar to the proof of Theorem 4.6, there exists a positive constant θ
independent of bi(τ) such that

θ ≤ Pi(τ)(x) < 1− s, θ ≤ Qi(τ)(x) < s(1− s), x ∈ Ω. (77)

From the global bifurcation in [35] and (77), Γi is contained in a global branch
Σi of positive solutions. Furthermore, Σi must satisfy

(1): Σi connects to another bifurcation point (bj,S , P∗,W∗) for some j ∈ {1, · · · ,
p} and j 6= i; or

(2): Σi in not compact in R+ × E, where E = W 2,2
ν ×W 2,2

ν with W 2,2
ν given in

(71).

Assume (1) does not happen, then (2) occurs. By (77), we know the projection of
Σi on to b-axis is not compact. Furthermore, by Corollary 4.11, we know that the
projection of Σi on to b-axis can not extend to −∞, and so the projection of Σi on
to b-axis contains the interval (bi,S ,∞). The conclusion (ii) holds.
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5. Numerical simulations. To visualize the cascade of Turing instability, Hopf
bifurcation and steady state bifurcation described in Theorems 3.3, 3.4 and 4.12,
we consider two numerical examples.

Example 5.1. We consider problem (3) with Ω = (0, 3π), s = K = 0.25 and
a = 25.6 such that (5) and (14) hold, i.e.,

Pt − d1∆P = P (1− P )− 0.25P − 6.4PW

P + 0.25
, x ∈ (0, 3π), t > 0,

Wt − d2∆W = b(0.25P −W ), x ∈ (0, 3π), t > 0,

∂P

∂ν
=
∂W

∂ν
= 0, x = 0, 3π, t > 0,

P (x, 0) = P0(x), W (x, 0) = W0(x), x ∈ (0, 3π).

(78)
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Figure 3. Graphs of Hopf bifurcation curve ΓH : b = bH(µ) =
−1.01µ+0.075 and steady state bifurcation curve ΓH : b = bH(µ) =
−0.01µ2+0.075µ

0.01µ+0.525 when (a, s,K, d1, d2) = (25.6, 0.25, 0.25, 0.01, 1).

Then µi = i2/9, i ∈ N0, and the positive constant equilibrium is (P∗,W∗) =
(0.15, 0.0375). Let b0, χ and D2 be the constants defined as (15), (25) and (38)
respectively, then b0 = 0.075, χ = 0.525, D2 ≈ 0.03337. We choose d1 = 0.01 and
d2 = 1 such that d1

d2
= 0.01 < D2. Then we can compute µ∗3 = 7.5 and find that

µ1 =
1

9
< µ2 =

4

9
< µ3 = 1 < µ4 =

16

9
< µ5 =

25

9

< µ6 = 4 < µ7 =
49

9
< µ8 =

64

9
< µ∗3 < µ9 = 9.

This gives possible steady state bifurcation values

b6,S ≈ 0.28866 > b5,S ≈ 0.23730 > b7,S ≈ 0.19314 > b4,S ≈ 0.18742

> b3,S ≈ 0.12150 > b2,S ≈ 0.05923 > b8,S ≈ 0.04639 > b1,S ≈ 0.015605,

while the largest Hopf bifurcation value b0,H defined as (43) is b0 = 0.075, which is
much smaller than bi,S , i = 3, 4, 5, 6, 7. Hence for this parameter set (a, s,K, d1, d2)
= (25.6, 0.25, 0.25, 0.01, 1), when b decreases, the first bifurcation point encountered
is b6,S ≈ 0.28866, and a steady state bifurcation occurs there. Fig. 3 show the curves

ΓH and ΓS in the case. Let b be the constant defined in (40), then b = bS(µ6) ≈
0.28866. Then for b0 < b < b all conditions in Theorem 3.3 are satisfied and Turing
instability happens.
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Figure 4. Numerical simulation of problem (78). When d1 =
d2 = 0, i.e., the ODE corresponding to (78), and b0 = 0.2,
the solution trajectories spiral toward the positive equilibrium
(0.15, 0.0375) (see(1)). When d1 = 0.01, d2 = 1, b = 0.2,
P0(x) = 0.15 + 0.05 cosx, W0(x) = 0.0375 + 0.05 cosx, then the
solution converges to a spatially nonhomogeneous steady state so-
lution (see (2) for P and (3) for W )

We choose b = 0.2, P0(x) = 0.15+0.05 cosx and W0(x) = 0.0375+0.05 cosx. The
solution trajectories of the corresponding ODE spiral toward the positive equilib-
rium (0.15, 0.0375) (see(1) of Fig. 4), while the solution of the PDE (78) converges
to a spatially nonhomogeneous steady state solution (see (2) for P and (3) for W
in Fig. 4).

Example 5.2. We consider problem (3) with Ω = (0, 9π), s = K = 0.25 and
a = 25.6 such that (5) and (14) hold, i.e.,

Pt − d1∆P = P (1− P )− 0.25P − 6.4PW

P + 0.25
, x ∈ (0, 9π), t > 0,

Wt − d2∆W = b(0.25P −W ), x ∈ (0, 9π), t > 0,

∂P

∂ν
=
∂W

∂ν
= 0, x = 0, 9π, t > 0,

P (x, 0) = P0(x), W (x, 0) = W0(x), x ∈ (0, 9π).

(79)
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Figure 5. Graphs of Hopf bifurcation curve ΓH : b = bH(µ) =
−1.1µ+ 0.075 and steady state bifurcation curve ΓS : b = bS(µ) =
−0.1µ2+0.075µ

0.1µ+0.525 when (a, s,K, d1, d2) = (25.6, 0.25, 0.25, 0.1, 1).

Figure 6. Numerical simulation of problem (79) with d1 = 0.1,
d2 = 1, b0 = 0.05, P0(x) = 0.15 + 0.1 cosx and W0(x) =
0.0375 + 0.1 cosx. The solution converges to a spatially homo-
geneous periodic orbit.

Then µi = i2/81, i ∈ N0, and the positive constant equilibrium is (P∗,W∗) =
(0.15, 0.0375). Let b0, χ and D2 be the constants defined as (15), (25) and (38)
respectively, then b0 = 0.075, χ = 0.525, D2 ≈ 0.03337. We choose d1 = 0.1 and
d2 = 1 such that d1

d2
= 0.1 > D2. Then we can compute µH = 0.06 and find that

µ0 = 0 < µ1 =
1

81
< µ2 =

4

81
< µH < µ3 =

1

9
.

This gives possible Hopf bifurcation values

b0,H = b0 = 0.075 > b1,H ≈ 0.06142 > b2,H ≈ 0.02068,

while the largest state bifurcation value b = max{b1,S , · · · , b7,S} = b5,S ≈ 0.02451
since µ7 ≈ 0.60494 < µ∗3 = 0.075 < µ8 ≈ 0.79012, which is much smaller than
bi,H , i = 0, 1. Hence for this parameter set (a, s,K, d1, d2) = (25.6, 0.25, 0.25, 0.1, 1),
when b decreases, the first bifurcation point encountered is b0,H = 0.075, and a Hopf
bifurcation occurs there. We compute Rec1(b0) ≈ −2.57812 < 0, which indicates
that the bifurcating temporal periodic solutions are orbitally asymptotically stable
(see Theorem 3.5). Fig. 5 show the curves ΓH and ΓS in the case.

We choose b = 0.05, P0(x) = 0.15 + 0.1 cosx and W0(x) = 0.0375 + 0.1 cosx, and
the solution converges to a spatially homogeneous periodic orbit. (see Fig. 6).



BIFURCATION ANALYSIS OF A DIFFUSIVE PLANT-WRACK MODEL 883

REFERENCES

[1] Q. Y. Bie, Pattern formation in a general two-cell Brusselator model, J. Math. Anal. Appl.,

376 (2011), 551–564.
[2] R. S. Cantrell and C. Cosner, Spatial Ecology via Reaction-Diffusion Equations, John Wiley

& Sons, 2003.
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[10] M. Ghergu and V. Rădulescu, Turing patterns in general reaction-diffusion systems of Brus-
selator type, Commun. Contemp. Math., 12 (2010), 661–679.

[11] M. Ghergu, Non-constant steady-state solutions for Brusselator type systems, Nonlinearity,

21 (2008), 2331–2345.
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