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Abstract. In this paper, an epidemic model is investigated for infectious dis-

eases that can be transmitted through both the infectious individuals and the
asymptomatic carriers (i.e., infected individuals who are contagious but do

not show any disease symptoms). We propose a dose-structured vaccination

model with multiple transmission pathways. Based on the range of the explic-
itly computed basic reproduction number, we prove the global stability of the

disease-free when this threshold number is less or equal to the unity. Moreover,

whenever it is greater than one, the existence of the unique endemic equilibrium
is shown and its global stability is established for the case where the changes

of displaying the disease symptoms are independent of the vulnerable classes.

Further, the model is shown to exhibit a transcritical bifurcation with the unit
basic reproduction number being the bifurcation parameter. The impacts of

the asymptomatic carriers and the effectiveness of vaccination on the disease
transmission are discussed through through the local and the global sensitivity

analyses of the basic reproduction number. Finally, a case study of hepatitis

B virus disease (HBV) is considered, with the numerical simulations presented
to support the analytical results. They further suggest that, in high HBV

prevalence countries, the combination of effective vaccination (i.e. ≥ 3 doses

of HepB vaccine), the diagnosis of asymptomatic carriers and the treatment of
symptomatic carriers may have a much greater positive impact on the disease

control.

1. Introduction. Besides the greatest disasters to human populations like tsunami
and earthquakes, are the infectious diseases. It is well documented that the infec-
tious diseases outbreaks cause mortality of millions of people as well as expenditure
of enormous amount of money in health care and disease control [29]. It is therefore
important that adequate attention is paid to stop the spread of such diseases by
using effective control measures. Vaccination of people at risk of contamination is
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commonly used to prevent and control the epidemic spread. For the majority of dis-
eases, to be efficient, the vaccine need to be administrated in many doses. This has
been totally successful for some diseases such as Smallpox, polio, measles, etc... [3].
Mathematical models that incorporate vaccination as a control measure have been
used to drive some strategies, and to determine changes in qualitative behavior
that could result from such a control measure [3, 22, 26, 27]. A vaccine may fail to
confer any protection in a proportion of vaccinees. In this case, the vaccine is not
totally effective and vaccinated individuals can be directly infected [7]. When these
aspect are included in the model, a rich dynamical behavior may arise including
bi-stability, backward and forward bifurcation [3,13,22].

For many infectious diseases, the transmission occurs in a heterogeneous popu-
lation. So, the epidemiological model must divide the population into groups, in
which the members have similar characteristics. This division into groups can be
based on the mode of transmission, contacts patterns, infectious period, genetic
susceptibility and amount/strategies of vaccination. For some infectious diseases,
there are asymptomatic carriers (i.e. infected individuals who are able to transmit
their illness but do not exhibit any symptoms). Asymptomatic carriers play an
important role in the transmission of diseases. They can be regarded as “lost sight
of” because they are likely unaware of their conditions, and therefore are more likely
to infect others. An infectious disease that produces asymptomatic carriers is the
Typhoid fever caused by the bacteria salmonella Typhi. Typhoid fever infects 21
millions people and kills 200, 000 worldwide every year. Asymptomatic carriers play
an essential role in the transmission of Typhi, and their presence greatly hinders the
eradication of Typhoid fever using treatment and vaccination [24]. Another major
infectious disease that causes long-term asymptomatic carriers is hepatitis B, a liver
disease caused by the HBV virus of the Hepadnavirus family. It is a major global
health problem, and the most serious type of viral hepatitis [29]. Several people
living with the disease do not show any symptoms, these are chronic HBV carri-
ers. There is no widely available effective treatment for chronic HBV carrier and
immunization with hepatitis B vaccine (HepB) is the most important prevention
measure. Several vaccines have been developed for the prevention of HBV infection
and the main vaccinations include the 3-dose HepB vaccination [27,28]. The efficacy
of available vaccinations for infectious diseases such as hepatitis B is not perfect.
Vaccinated individuals may still contract the disease and the susceptibility varies
from individual to individual [8]. Infections of other pathogens are also know to
produce asymptomatic carriers (e.g. Epstein-Barr Virus, Clostridium Difficile) [23].

Mathematical models have been used to study the effects of carriers on the trans-
mission dynamics of the disease. One of the earlier attempt is the work in [17].
Later, the authors in [2] proposed a simple compartmental model to investigate
the effects of carriers on the transmission of HBV. Several studies used the math-
ematical models for hepatitis B with carriers to discuss the effects of vaccination
on HBV transmission [11,21,26,27]. Others studies using large-scale computational
models with carriers are aimed at other diseases [9, 22, 23]. More recently, a model
in [16] was proposed to analyze the effects of carriers on the transmission dynamics
of diseases. In their work [16], the authors considered an efficacy vaccine, i.e the
recovered and vaccinated subgroups are not distinguished, and did not take into
account of the effect of ineffectiveness of vaccination. In fact, for certain diseases
(e.g. Cholera, Hepatitis B,...), vaccination process is divide into several stages upon
a given period and vaccine can be effective only if all the stages during which many
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doses of the vaccine are administrated. For instance, for Hepatitis B infection, the
vaccination schedule recommends three doses given over 6 to 18 months depending
on vaccine type [27,28] and three doses must be taken for efficiency.

Therefore, the objective of this work is threefold: (1) - to propose a more general
mathematical model extending the works in [14–16] by the incorporation of the
effectiveness of vaccination and multiple doses/stages of vaccines; (2) - to rigorously
analyze the resulting model by addressing the global stability of the model; (3) -
to perform local and global sensitivity analyses of the basic reproduction and the
numerical simulations through which, the impacts of the effectiveness of both the
vaccination and the presence asymptomatic carriers on the transmission of some
infectious diseases (e.g. HBV infection).

The model is constructed based on the model proposed in [16]. We make a
more realistic assumption that the vaccine is not totally effective, and extend this
model by incorporating three vaccinated classes, Vi (i = 1, 2, 3), and three important
factors : (1) vaccine coverage, (2) effectiveness of vaccination and (3) susceptibilities
of susceptible individuals. We derive the basic reproduction number R0, and show,
using the method of global Lyapunov functions, that the global dynamics of the
model is completely determined by the range of R0. Through a sensitivity analysis
of R0, we are able to discuss the impact of parameters that significantly affect R0.
We have also carried out numerical simulations to illustrate our theoretical results.
The Lyapunov functions used in this paper to prove the global stability of endemic
equilibrium have the same form as those used in [14–16,18].

The manuscript is organized as follows: In the next section, we formulate the
model and derive its basic properties. In section 3, The reproduction number is
derived, and the global stability of disease-free equilibrium is established. Existence,
uniqueness and global stability of an endemic equilibrium are shown in section 4.
While section 5 is devoted to the numerical simulations for the case study of HBV
disease to support our analytical results. Section 6 concludes the paper and provides
a discussion for future and ongoing works.

2. The model.

2.1. Model formulation. We formulate a S − Vi − Ic − I − R, i = 1, 2, 3, com-
partmental model where S, Vi, Ic, I and R stand for the susceptible, vaccinated,
asymptomatic carrier, symptomatic carrier, and removed class, respectively. A
fraction of the susceptible population is vaccinated and θi > 0, i = 1, 2, 3, repre-
sents the transition vaccination rate of vaccinated individuals from stage Vi to Vi+1.
Since the vaccine may fail to confer any protection in a proportion of vaccinees,
the vaccinated individuals on whom vaccine fails can be infected but with different
susceptibilities than that of S-compartment individuals. Here, the susceptible in-
dividuals in each group have homogeneous susceptibility but the susceptibilities of
individuals from different groups are distinct. The vaccinated individuals on whom
the vaccine is successful, are immunized and fully protected by the vaccine. Sus-
ceptible individuals can be infected through direct contact with an asymptomatic
carrier or a symptomatic carrier. A newly infected susceptible from group S (respec-
tively from groups Vi) can become an asymptomatic carrier with probability π11
(respectively, πi1, i = 2, 3, 4) or a symptomatic carrier with probability π12 (respec-
tively, πi2, i = 2, 3, 4), and πi1 + πi2 = 1, i = 1, 2, 3, 4. We assume that the average
number of contacts per individual is proportional to the population size. Hence,
the rate of infection for susceptibles in compartments S and Vi, i = 1, 2, 3 is given
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by λi = αi(β1Ic + β2I), i = 1, 2, 3, 4, where α1, α2, α3, α4 (α1 > α2 > α3 > α4) denote
the susceptibilities of susceptible individuals of compartments S and Vi, respec-
tively. β1, β2 are the infectiousness of infected individuals of compartments Ic and I
respectively. Note that βi j = αiβ j, i = 1, 2, 3, 4, j = 1, 2. We assume that, the suscep-
tibilities α2, α3, α4 of vaccinated individuals are proportional to the susceptibility
α1 of S-compartment individuals, with αi = (1 − ε)i−1α1, i = 2, 3, 4, where ε ∈ [0, 1]
is effectiveness of the vaccine. An asymptomatic carrier can become symptomatic
at a rate α. For infections such as HBV for which carriage can remain life-long, α
can be regarded as the rate of diagnosis. α can also represents the rate at which
people carrying the disease became aware of their infection, either through testing
or through appearance of symptoms. We assume a constant influx b of suscepti-
bles, and let di, i = 1, · · · , 7, denote the death rates of those in the susceptible,
vaccinated, asymptomatic carriers, symptomatic carrier, and removed classes, re-
spectively. Different parameters d1, d2, d3, d4 and d7 are used for natural death
rate (though these rates are epidemiologically equal, we distinguish them just for
mathematical elegance). The death rates d5 and d6 may include both natural and
disease-related death. Symptomatic carriers recover with rate π, and we assume
that recovered individuals are permanently immune.

The parameters in the model are summarized and epidemiologically explained
in Table 1. They are assumed non-negative. The model flowchart is depicted
in Figure1 from which we derive the system of ordinary differential equations in
system (1) governing the dynamics of the constructed model.

Figure 1. Transfer diagram S − Vi − Ic − I − R, i = 1, 2, 3 model:
λ j = α j(β1Ic + β2I), j = 1, 2, 3, 4.



GLOBAL DYNAMICS OF A VACCINATION MODEL WITH CARRIERS 817

Table 1. Variables and parameter values.

Symbols Definitions Estimate Source
for HBV

S Susceptible human individuals ind.∗

Vi Vaccinated human individuals ind.
Ic Carrier human individuals ind.
I Infected human individuals ind.
R Recovered human individuals ind.
b Recruitment of susceptible 20 ind.day−1 As.∗∗

human individuals
α1 Susceptibilities of susceptible individuals 0.65 As.
β2 Contact rate of symptomatically infected (I) 0.05 ind−1.day−1 As.
β1 = 1.5β2 Contact rate of carriers (Ic) ind−1.day−1 [16]
d1, d7 Natural death rate of human individuals 0.0125 day−1 [16]
d2, d3, d4 Natural death rate of human individuals 0.0125 day−1 [16]
d5, d6 Death rates for Ic and I compartments, 0.0165 day−1 [16]

including both natural and disease-caused
death

α Rate at which carriers develop symptoms 0 − 1 day−1

π Recovered rate of human individuals 0.75 day−1 [16]
ε Effectiveness of the vaccine 0 − 100%
πi1, Probabilities of becoming an asymptomatic 0.885 [27]
i = 1, 2, 3, 4 carrier
πi2, Probabilities of becoming a symptomatic 0.115 [27]
i = 1, 2, 3, 4 carrier
θi Transition vaccination rate 0 − 100%

of vaccinated individuals
∗individuals ∗∗Assumed



Ṡ = b − (d1 + θ1)S − α1(β1Ic + β2I)S,

V̇1 = θ1S − (d2 + θ2)V1 − α2(β1Ic + β2I)V1,

V̇2 = θ2V1 − (d3 + θ3)V2 − α3(β1Ic + β2I)V2,

V̇3 = θ3V2 − (d4 + ε)V3 − α4(β1Ic + β2I)V3,

İc = π11α1(β1Ic + β2I)S +
4∑

i=2
πi1αi(β1Ic + β2I)Vi−1 − (d5 + α)Ic,

İ = π12α1(β1Ic + β2I)S +
4∑

i=2
πi2αi(β1Ic + β2I)Vi−1 + αIc − (d6 + π)I,

Ṙ = πI + εV3 − d7R.

(1)

Our model (1) extend the existing works in [14–16] by incorporating the:

• vaccinated classes and taking account the ineffectiveness of vaccination 1 − ε.
In the case where ε = 1, the vaccine is completely effective. When ε = 0,
the vaccine has no effect and is completely useless. This leads to the model
without vaccination;

• vaccination transition rates since the vaccination campaign is divided into
three different doses;
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• different susceptibilities and infectivities, since the vaccinated individuals can
be infected with certain susceptibility and new infections from Ic or I may
enter either compartment with certain probability. This yields a differential
susceptibility and infectivity epidemic model with staged progression.

The system (1) can be written in the following compact form :
Ẋ = Λ −DX − CXBTY + AXX,
Ẏ = PTCXBTY + AYY + EY,
ẋ7 = ZX + QY − d7x7,

(2)

where X = (x1, x2, x3, x4)T = (S,V1,V2,V3)T, Y = (x5, x6)T = (Ic, I)T, x7 = R,

B = (β1, β2)T, Q = (0 π), Λ = (b, 0, 0, 0)T, Z = (0 0 0 ε), D = diag(d1, d2, d3, d4),

C = diag(α1, α2, α3, α4), AY = diag (−d5 − α,−d6 − π), E =

(
0 0
α 0

)
,

PT =

(
π11 π21 π31 π41
π12 π22 π32 π42

)
and AX =


−θ1 0 0 0
θ1 −θ2 0 0
0 θ2 −θ3 0
0 0 θ3 −ε

.
2.2. Basic properties.

Proposition 1. Let the initial data be S(0) > 0, Vi(0) > 0, i = 1, 2, 3, Ic(0) ≥ 0,
I(0) ≥ 0 and R(0) ≥ 0. Then, the solutions (S,V1,V2,V3, Ic, I,R) of model (1) are
positive for all t > 0, whenever they exist.

Proof. Set λ1 = α1(β1Ic + β2I), then the first equation of model (1), can be written
as

dS
dt

= b − (d1 + θ1 + λ1)S, where.

Assume the solution of (1) exists in a certain interval J ⊂ [0,+∞[, then ∀t ∈ J, the
above equation can be solved as,

d
dt

[
S(t) exp

{
(d1 + θ1)t +

∫ t

0
λ1(s)ds

}]
≥ b exp

{
(d1 + θ1)t +

∫ t

0
λ1(s)ds

}
.

Thus,

S(t) exp
{

(d1 + θ1)t +

∫ t

0
λ1(s)ds

}
− S(0) ≥

∫ t

0
b exp

{
(d1 + θ1)u +

∫ u

0
λ1(w)dw

}
du,

so that,

S(t) ≥ S(0) exp
{
−

(
(d1 + θ1)t +

∫ t

0
λ1(s)ds

)}
+ exp

{
−

(
(d1 + θ1)t +

∫ t

0
λ1(s)ds

)}
×∫ t

0
b exp

{
(d1 + θ1)u +

∫ u

0
λ1(w)dw

}
du > 0.
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Hence S(t) > 0, ∀t ∈ J. Next, using the fact S(t) > 0, we have from the second
equation of model (1), that

d
dt

[
V1(t) exp

{
(d2 + θ2)t +

∫ t

0
λ2(s)ds

}]
≥ θ1S exp

{
(d2 + θ2)t +

∫ t

0
λ2(s)ds

}
.

Thus,

V1(t) ≥ V1(0) exp
{
−

(
(d2 + θ2)t +

∫ t

0
λ2(s)ds

)}
+ exp

{
−

(
(d2 + θ2)t +

∫ t

0
λ2(s)ds

)}
×∫ t

0
θ1S(u) exp

{
(d2 + θ2)u +

∫ u

0
λ2(w)dw

}
du > 0.

Similarly, it can be shown that V2(t) > 0 and V3(t) > 0. Finally, from system (2),
we have

Ẏ = (PTCXBT + AY + E)Y.

Since X > 0, the matrix (PTCXBT +AY +E) is a Metzler matrix, and it is well known
that linear Metzler matrices let invariant the non-negative orthant. Thus, Ic(t) ≥ 0
and I(t) ≥ 0, for all t > 0, t ∈ J. �

Proposition 2. Whenever they exist, the solutions of the model (1) are bounded.

Proof. Let (S(t),V1(t),V2(t),V3(t), Ic(t), I(t),R(t)) be any solution of system. Let

N(t) = S(t) +

3∑
i=1

Vi(t) + Ic(t) + I(t) + R(t).

The derivative of N(t) along the positive solutions of system (1) is

Ṅ(t) = b − d1S(t) −
4∑

i=2

diVi−1(t) − d5Ic(t) − d6I(t) − d7R(t),

≤ b − dN(t), (3)

where d = min{d1, d2, d3, d4, d5, d6, d7}. It follows from (3) that,

lim
t→+∞

sup N(t) ≤
b
d
.

Also from (1), we have

Ṡ(t) ≤ b − c1S and V̇i(t) ≤
i∏

j=1

b θ j

c j
− ci+1Vi, i = 1, 2, 3,

where c j = d j + θ j, j = 1, 2, 3 and c4 = d4 + ε.
Thus,

lim
t→+∞

sup S(t) ≤
b
c1

and lim
t→+∞

sup Vi(t) ≤
i+1∏
j=1

b θ j−1

c j
, i = 1, 2, 3, with θ0 = 1.

This completes the proof. �
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Theorem 2.1. System (1) is a dynamical system in the biological feasible region
given by

Ω =

(S,V1,V2,V3, Ic, I,R) ∈ R7
+ : S ≤

b
c1
, Vi ≤

i+1∏
j=1

b θ j−1

c j
, i = 1, 2, 3 , N ≤

b
d

 .
Proof. The differentiability of the right-hand side of the system (1) implies, thanks
to Cauchy-Lipschitz theorem, the existence of the unique maximal solution for any
associated Cauchy problem. Thus, the initial value problem for this system is
mathematically well posed and biologically reasonable since all variables remain
non-negative. Hence, it is sufficient to study the dynamics of the flow generated
by the model (1) in Ω. Moreover, since the solutions of the model (1) are positive
and bounded, it remains to show that the vector field defined by this system is
transversal to the boundary of Ω on all its faces. The face corresponding to S =
b
c1

has direction (1, 0, 0, 0, 0, 0, 0), and the inner product with the vector field is

b − c1S − α1WS ≤ b − c1S ≤ 0. Similarly, we can check for the faces Vi =
i+1∏
j=1

b θ j−1

c j
,

i = 1, 2, 3. Finally, the face corresponding to N =
b
d

has direction (1, 1, 1, 1, 1, 1, 1),

and the inner product with the vector field is b −
7∑

i=1
dixi ≤ b − dN ≤ 0. Thus, the

vector field on these faces point toward the region Ω. This completes the proof. �

The first six equations of (1) are independent of the state variable R. Thus, once
the dynamics of S, V1, V2, V3, Ic, and I are understood, that of R can then be easily
determined from the linear equation

Ṙ = πI + εV3 − d7R.

Consequently, after decoupling the equation for R from system (1), we devote the
analysis to the remaining equations of system (2) which becomes

ẋ1 = f1 = b − (d1 + θ1)x1 − α1(β1x5 + β2x6)x1,
ẋ2 = f2 = θ1x1 − (d2 + θ2)x2 − α2(β1x5 + β2x6)x2,
ẋ3 = f3 = θ2x2 − (d3 + θ3)x3 − α3(β1x5 + β2x6)x3,
ẋ4 = f4 = θ3x3 − (d4 + ε)x4 − α4(β1x5 + β2x6)x4,

ẋ5 = f5 =
4∑

i=1
πi1αi(β1x5 + β2x6)xi − (d5 + α)x5,

ẋ6 = f6 =
4∑

i=1
πi2αi(β1x5 + β2x6)xi + αx5 − (d6 + π)x6.

(4)

3. Basic reproduction number R0 and disease-free equilibrium.

3.1. Computation of R0. In the absence of infection, that is x5 = x6 = 0, the
model (4) has a disease-free equilibrium (DFE),

X0 =

(
b
c1
,
θ1b
c1c2

,
θ1θ2b
c1c2c3

,
θ1θ2θ3b
c1c2c3c4

, 0, 0
)T

,

which is obtained by setting the right-hand side of the system (4) to zero.
A key quantity in classic epidemiological models is the basic reproduction num-

ber, denoted by R0. It is a useful threshold in the study of a disease for predicting a
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disease outbreak and for evaluating the control strategies. Based on the work in [6],
the next generation operator approach can be used to derive an explicit formula
for R0, as the spectral radius of the next-generation matrix. From system (2), we
define

F (X,Y) =
(
0,PTCXBTY

)T
and V(X,Y) =

(
Λ −DX − CXBTY + AXX, (AY + E)Y

)T
.

Then,

DF (X,Y) =

(
0 0

PTCBTY PTCXBT

)
, DV(X,Y) =

(
−D − CBTY + AX −CXBT

0 AY + E

)
.

At the DFE X0,

DF (X0, 0) =

(
0 0
0 PTCX0BT

)
and DV(X0, 0) =

(
−D + AX −CX0BT

0 AY + E

)
.

Therefore, F = PTCX0BT and V = AY + E. But

F =



4∑
i=1
πi1βi1x0

i

4∑
i=1
πi1βi2x0

i

4∑
i=1
πi2βi1x0

i

4∑
i=1
πi2βi2x0

i


and − V−1 =


1

d5 + α
0

α
(d5 + α)(d6 + π)

1
d6 + π

 ,
where βi j = αiβ j, i = 1, 2, 3, 4, j = 1, 2. Hence,

−FV−1 =



4∑
i=1
πi1βi1x0

i

d5 + α
+

α
4∑

i=1
πi1βi2x0

i

(d5 + α)(d6 + π)

4∑
i=1
πi1βi2x0

i

d6 + π

4∑
i=1
πi2βi1x0

i

d5 + α
+

α
4∑

i=1
πi2βi2x0

i

(d5 + α)(d6 + π)

4∑
i=1
πi2βi2x0

i

d6 + π


.

Since det(−FV−1) = 0, one has

R0 = ρ(−FV−1) =

4∑
i=1

( πi1βi1

d5 + α
+

απi1βi2

(d5 + α)(d6 + π)
+
πi2βi2

d6 + π

)
x0

i . (5)

Remark 1. Rewrite R0 in (5) as

R0 =

4∑
i=1

[
πi2 · βi2 ·

1
d6 + π

+ πi1

(
βi1 ·

1
d5 + α

+
α

d5 + α
· βi2 ·

1
d6 + π

)]
x0

i . (6)

When a single infective is introduced into the susceptible population (in group
xi, i = 1, 2, 3, 4), with probability πi2 it is a symptomatic carrier, hence makes
βi2 effective contacts per unit time. This is multiplied by the average infectious

period
1

d6 + π
for symptomatic carriers ; with probability πi1 the infective is an

asymptomatic carrier, and hence makes βi1 effective contacts per unit time during

the average period
1

d5 + α
it remains a carrier. This number should be augmented

by the number of infections βi2 ·
1

d6 + π
caused by this infective after it becomes a
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symptomatic carrier, with probability
α

d5 + α
to survive the asymptomatic carrier

stage. Therefore, the expression in the big square brackets in (6) is the per capita
average number of secondary infections. This number multiplied by the number of
susceptibles at the disease-free equilibrium, x0

i , gives R0.

3.2. Sensitivity analysis of R0. Sensitivity analysis is used to determine the rel-
ative importance of model parameters to disease transmission and its prevalence.
We perform the analysis by calculating the sensitivity indices of the basic repro-
duction number, R0 to the parameters in the model using both local and global
methods. According to [1, 10, 20], sensitivity analysis is commonly used to deter-
mine the robustness of model predictions to parameter values, since there are usually
uncertainties in data collection and estimated values. We are thus interested in pa-
rameters that significantly affect the basic reproduction number, since these are the
parameters that should be taken into consideration when considering intervention
strategies. Sensitivity analysis also permits us to measure the relative change in a
state variable when a parameter changes.

3.2.1. Local sensitivity analysis. The local sensitivity analysis is based on the nor-
malised sensitivity index of R0. The normalized forward sensitivity index of a vari-
able to a parameter is the number of the relative change in the variable to the
relative change in the parameter. Since the basic reproduction number is a differen-
tiable function of the parameters, the sensitivity index may alternatively be defined
using partial derivatives [10].

To this aim, denoting by Ψ the generic parameter of system (4), we evaluate the
normalized sensitivity index

SΨ =
Ψ

R0

∂R0

∂Ψ
,

which indicates how sensitive R0 is to a change of parameter Ψ. A positive (resp.
negative) index indicates that an increase in the parameter value results in an
increase (resp. decrease) in the R0 value.

Here, for simplicity we assume that the changes of displaying the disease symp-
toms are independent of the vulnerable states variables, that is π11 = πi1 and
π12 = πi2, i = 2, 3, 4. We consider the parameter values in the Table 1 with θ1 = 0.8,
θ2 = θ3 = 0.9, α = 0.2 and ε = 0.5. We tabulate the indices of the remaining
parameters in Table 2.

Table 2. Sensitivity indices for R0 with respect to some chosen
parameters.

Parameter Sensitivity Value Parameter Sensitivity Value
index index

α1 Sα1 +1 d5 Sd5 −0.0772
α Sα −0.7864 d6 Sd6 −0.0037
ε Sε −0.8813 π Sπ −0.1677
θ1 Sθ1 −0.5268 β1 Sβ1 +0.8637
θ2 Sθ2 −0.2314 β2 Sβ2 +0.1713
θ3 Sθ3 −0.1142 π11 Sπ11 +0.8513

From Table 2, we can observe that the parameters α1, π11, β1 and β2 respectively
have a positive influence in the value of R0. This means that the increase or the
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decrease of these parameters say by 10%, then R0 will increase or decrease by 10%,
8.5%, 8.6% and 1.7% respectively. The index for parameters α, ε and π which
represent the diagnosis rate, the effectiveness of vaccination and recovered rate
respectively, show that increasing their values by 10% will decrease the value of
R0 by 7.8%, 8.8% and 1.7% respectively. Similarly, the index for the transition
vaccination rate show that increasing their values by 10% will decrease R0 almost
by 5.2%. When ε increases, θ1 has a higher sensitivity index. From these analysis,
it is worth noting that a higher diagnosis rate α, effectiveness of vaccination ε and
transition vaccination rate θ1 decreases R0. Using parameter values in Table 1 with
θ2 = θ3 = 0.9, the numerical results displayed in Figure 2 illustrate the role of
α, ε, θ1 and π on the basic reproduction number R0, from which we observe that
R0 decreases whenever the parameters α, θ1, ε, π increase. This suggest that, an
optimal control measure could be the combination of the effective vaccination of
susceptible individuals, the screening of asymptomatic carriers and the treatment
of symptomatic carriers.

(a) (b)

(c) (d)

Figure 2. The graphs of the basic reproduction number R0 versus
some parameters: (a) R0 versus α and π, (b) R0 versus α and θ1,
(c) R0 versus α and ε, and (d) R0 versus θ1 and ε.
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3.2.2. Uncertainty and global sensitivity analysis. Local sensitivity analysis assesses
the effects of individual parameters at particular points in parameter space with-
out taking into account of the combined variability resulting from considering all
input parameters simultaneously. Here, we perform a global sensitivity analysis to
examine the model responses to parameter variation within a wider range in the
parameter space. The mean values of parameters are listed in Table 1, and the
range values of these parameters are given in Table3.

Table 3. Parameter value ranges of model (1) used as input for
the LHS method.

Parameter Range Parameter Range Parameter Range

b [10 , 50] d6 [0.01 , 0.03] α1 [0.1 , 0.95]
d1 [0.01 , 0.02] d7 [0.01 , 0.02] θ1 [0.1 , 0.98]
d2 [0.01 , 0.02] α [0.05 , 0.85] θ2 [0.1 , 0.98]
d3 [0.01 , 0.02] ε [0.2 , 0.95] θ3 [0.1 , 0.98]
d4 [0.01 , 0.02] π [0.5 , 0.95] β1 [0.01 , 0.1]
d5 [0.01 , 0.03] π11 [0.2 , 0.95] β2 [0.01 , 0.1]

It is important to notice that, variations of these parameters in our deterministic
model lead to uncertainty to model predictions since the basic reproductive number
varies with parameters. Following the approach in [1, 20], partial rank correlation
coefficients (PRCC) between the basic reproduction number R0 and each parameter
for model (1) are derived. Due to the absence of data on the distribution function, a
uniform distribution is chosen for all parameters. The sets of input parameter values
sampled using the Latin Hypercube Sampling (LHS) method were used to run 1000
simulations. We compute the Partial Rank Correlation Coefficients between R0 and
each parameter of model (1). The results of the PRCC are displayed in Table 4.

Table 4. PRCC between R0 and each parameter

Parameter PRCCs P-values Parameter PRCCs P-values

b ∗∗0.7702 8.4837E − 194 ε ∗∗
− 0.6762 2.62E − 132

d1 −0.0389 0.2228 π −0.2691 9.04E − 18
d2 −0.0380 0.2334 π11 0.4550 2.21E − 51
d3 −0.0269 0.3994 α1

∗∗∗0.8262 9.56E − 247
d4 0.0546 0.0870 θ1

∗∗
− 0.6704 2.77E − 129

d5 −0.0217 0.4977 θ2 −0.3584 3.67E − 31
d6 −0.0375 0.2405 θ3 −0.1528 1.48E − 06
d7 −0.0156 0.6242 β2

∗0.5889 7.9203E − 93
α ∗∗

− 0.6426 1.32E − 115 β1
∗∗0.6235 5.3962E − 107

According to [12], the parameters with large PRCC values (> 0.5 or < −0.5)
as well as corresponding small p-values (< 0.05) are most influential in model (1).
Table 4 shows that the parameter α1 have the highest influence on the reproduction
number R0, followed in decreasing order by the parameters b, ε, θ1, α, β1 and β2. The
other parameters have not almost any effect on R0. We can observe that parameters
α, ε and θ1 allow us to considerably reduce the reproduction number. Hence, the



GLOBAL DYNAMICS OF A VACCINATION MODEL WITH CARRIERS 825

sensitivity analysis consistently reinforces our suggestion that the most effective
manner to reduce the infection is to increase both the screening of asymptomatic
carriers and the effectiveness vaccination rate of susceptible individuals.

We note that the order of the most important parameters for R0 from the local
sensitivity analysis not match those from the global sensitivity analysis, showing
that the local results are not enough robust.

3.3. Global stability of the disease-free equilibrium. Using Theorem 2 in [6],
the following result is straightforward.

Lemma 3.1. The disease-free equilibrium X0 of model system (4) is locally asymp-
totically stable whenever R0 < 1 and unstable otherwise.

Theorem 3.2. The disease-free equilibrium, X0 is globally asymptotically stable in
the feasible region Ω if R0 ≤ 1.

Proof. To prove the global asymptotic stability of X0, we use the Lyapunov function
approach. Define

L = L(x1, x2, x3, x4, x5, x6) =

(
β1

d5 + α
+

αβ2

(d5 + α)(d6 + π)

)
x5(t) +

β2

d6 + π
x6(t).

Then,

L̇ =

(
β1

d5 + α
+

αβ2

(d5 + α)(d6 + π)

) [ 4∑
i=1

πi1αi(β1x5 + β2x6)xi − (d5 + α)x5

]
+

β2

d6 + π

[ 4∑
i=1

πi2αi(β1x5 + β2x6)xi + αx5 − (d6 + π)x6

]
,

=

4∑
i=1

(πi1αiβ1

d5 + α
+

απi1αiβ2

(d5 + α)(d6 + π)
+
πi2αiβ2

d6 + π

)
(β1x5 + β2x6)xi − (β1x5 + β2x6),

=
[ 4∑

i=1

(πi1αiβ1

d5 + α
+

απi1αiβ2

(d5 + α)(d6 + π)
+
πi2αiβ2

d6 + π

)
xi − 1

]
(β1x5 + β2x6).

Since xi ≤ x0
i , i = 1, 2, 3, 4, we have

L̇ ≤ (R0 − 1)(β1x5 + β2x6) ≤ 0, whenever R0 ≤ 1.

Moreover, L̇ = 0⇔ x5 = x6 = 0 or xi = x0
i , i = 1, 2, 3, 4 and R0 = 1.

Thus, the largest invariant set H such as H ⊂ {(x1, x2, x3, x4, x5, x6) ∈ R6
+/L̇ = 0}

is the singleton {X0
}. By LaSalle’s Invariance Principle [19], X0 is globally asymp-

totically stable in Ω, completing the proof. �

4. Endemic equilibrium.

4.1. Existence and uniqueness. We have shown in Section 3 that if R0 > 1,
the infection-free equilibrium is unstable, and then the disease spreads if a small
infection is introduced into the population. Now we assume R0 > 1 and show that
there exists an endemic equilibrium all of whose components are positive.
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The endemic equilibrium of model (4) needs to satisfy the following equations

b − c1x1 − α1Wx1 = 0,
θ1x1 − c2x2 − α2Wx2 = 0,
θ2x2 − c3x3 − α3Wx3 = 0,
θ3x3 − c4x4 − α4Wx4 = 0,
4∑

i=1
πi1αiWxi − (d5 + α)x5 = 0,

4∑
i=1
πi2αiWxi + αx5 − (d6 + π)x6 = 0.

(7)

Solving (7) for xi yields

xi = b
i∏

j=1

θ j−1

c j + α jW
, i = 1, 2, 3, 4, x5 =

4∑
i=1

πi1αiWxi

d5 + α
,

x6 =

4∑
i=1

πi2αiWxi

d6 + π
+ α

4∑
i=1

πi1αiWxi

(d5 + α)(d6 + π)
=

4∑
i=1

( πi2

d6 + π
+

απi1

(d5 + α)(d6 + π)

)
αiWxi.

Hence

W = β1x5 + β2x6 =

4∑
i=1

πi1αiβ1Wxi

d5 + α
+

4∑
i=1

β2

( πi2

d6 + π
+

απi1

(d5 + α)(d6 + π)

)
αiWxi,

= W
4∑

i=1

(πi1αiβ1

d5 + α
+
πi2αiβ2

d6 + π
+

απi1αiβ2

(d5 + α)(d6 + π)

)
xi,

= Wb
4∑

i=1

ai

i∏
j=1

θ j−1

c j + α jW
,

where ai =
πi1αiβ1

d5 + α
+
πi2αiβ2

d6 + π
+

απi1αiβ2

(d5 + α)(d6 + π)
.

• If W = 0, then we obtain the disease-free equilibrium.

• If W , 0, then b
4∑

i=1

ai

i∏
j=1

θ j−1

c j + α jW
= 1.

Define

G(W) = b
4∑

i=1

ai

i∏
j=1

θ j−1

c j + α jW
− 1.

Then there exists an endemic equilibrium for system (4) if and only if there
exists a positive solution to G(W) = 0.

Since on the one hand, lim
W→∞

G(W) = −1 and

G′(W) = −

4∑
i=1

ai

i∏
j=1

bα jθ j−1

(c j + α jW)2 < 0,

the equation G(W) = 0 has a unique positive root if G(0) > 0. On the other
hand,

G(0) =

4∑
i=1

ai

i∏
j=1

b θ j−1

c j
− 1 = R0 − 1, and R0 > 1,
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we have G(0) > 0.

Hence, there exists a unique endemic equilibrium whenever R0 > 1. We have shown
the following result.

Theorem 4.1. The model (4) has a unique endemic equilibrium T∗, whenever R0 >
1.

4.2. Global stability. In epidemiology, the bifurcation theory is concerned with
how solutions of a differential equation depend on parameters, and it can explain
how the changes in dynamics take place from a resting state to oscillations. It
plays a relevant role in disease control and eradication. Theorem 4.1 establishes
that R0 = 1 is a bifurcation parameter. In fact, across R0 = 1 the disease-free
equilibrium, X0 changes its stability property from local stability to unstable (see
Theorem 3.2). In the result below, the Centre Manifold Theory [5] is used to
investigate the appearance of the transcritical bifurcation at R0 = 1 where the stable
disease-free equilibrium X0 becomes unstable when R0 crosses one from below and
gives rise to the stable endemic equilibrium T∗. We have the following theorem.

Theorem 4.2. The ODE system (4) has a forward bifurcation at R0 = 1.

Proof. R0 = 1 is equivalent to α1 = α1 =

1 −
4∑

i=2
αieix0

i

e1x0
1

, with ei =
πi1β1

d3 + α
+

απi1β2

(d3 + α)(d4 + π)
+
πi2β2

d4 + π
.

The Jacobian of system (4) calculated at the DFE X0 with α1 = α1 is

A(X0) =



−
b
x0

1

0 0 0 −α1β1x0
1 −α1β1x0

1

θ1 −
θ1x0

1

x0
2

0 0 −α2β1x0
1 −α2β2x0

2

0 θ2 −
θ2x0

2

x0
3

0 −α3β1x0
3 −α3β2x0

3

0 0 θ3 −
θ3x0

3

x0
4

−α4β1x0
4 −α4β2x0

4

0 0 0 0 A55 A56
0 0 0 0 A65 A66



,

where

A55 = β1

4∑
i=1

πi1αix0
i − (d5 + α); A56 = β2

4∑
i=1

πi1αix0
i ;

A65 = β1

4∑
i=1

πi2αix0
i + α; A66 = β2

4∑
i=1

πi2αix0
i − (d6 + π).

Since R0 = 1,

β1

4∑
i=1

πi1αi

d5 + α
x0

i + β2

4∑
i=1

πi2αi

d6 + π
x0

i = 1 −
4∑

i=1

πi1αiβ2

(d5 + α)(d6 + π)
x0

i < 1.
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This implies that

β1

4∑
i=1

πi1αi

d5 + α
x0

i < 1 and β2

4∑
i=1

πi2αi

d6 + π
x0

i < 1

or equivalently

A55 < 0 and A66 < 0.

The eigenvalues of the matrix A(X0) with α1 = α1 are:

λ1 = 0; λ2 = −
b
x0

1

; λ3 = −
θ1x0

1

x0
2

; λ4 = −
θ2x0

2

x0
3

; λ5 = −
θ3x0

3

x0
4

; λ6 = A55 + A66 < 0.

So, for α1 = α1, A(X0) has a zero eigenvalue, with all the other eigenvalues having
negative real parts. The centre manifold theory can be used to analyse dynamics of
system (4).

Eigenvectors of A(X0)|α1=α1 : The right eigenvector corresponding to the zero ei-
genvalue is

w = (w1,w2,w3,w4,w6)T

where

wi = −Aiw5, i = 1, 2, 3, 4; w5 > 0 and w6 =

(
−
β1

β2
+ A0

)
w5,

with A0 =
d5 + α

A56
; A1 =

α1β2A0(x0
1)2

b
; Ai =

Ai−1x0
i−1

x0
i−2

+
β2αi−1(x0

i−1)2

θi−1x0
i−2

, i = 2, 3, 4.

The left eigenvector corresponding to the zero eigenvalue is given by

v = (v1, v2, v3, v4, v5, v6)T

where

v1 = v2 = v3 = v4 = 0, v5 > 0 and v6 = −
A55

A65
v5.

Calculation of a: For the system (4), the corresponding non-zero partial deriva-
tives of fi (i = 1, 2, 3, 4, 5, 6) calculated at the disease free equilibrium are given
by

∂2 f5
∂xi∂x6

= πi1αiβ2;
∂2 f5
∂xi∂x5

= πi1αiβ1;
∂2 f6
∂xi∂x5

= πi2αiβ1;
∂2 f6
∂xi∂x6

= πi2αiβ2, i = 1, 2, 3, 4,

∂2 f5
∂x5∂α1

= π11β1x0
1 ;

∂2 f5
∂x6∂α1

= π11β2x0
1 ;

∂2 f6
∂x5∂α1

= π12β1x0
1 ;

∂2 f6
∂x6∂α1

= π12β2x0
1.

Consequently, we calculate the associated bifurcation coefficient a

a =

6∑
k,i, j=1

vkwiw j
∂2 fk
∂xi∂x j

(X0),

= −A0β2v5w2
5

4∑
i=1

Aiπi1αi +
A55

A65
β2A0v5w2

5

4∑
i=1

Aiπi2αi,

= −A0β2v5w2
5

 4∑
i=1

Aiπi1αi −
A55

A65

4∑
i=1

Aiπi2αi

 < 0.
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Calculation of b: We compute the associated bifurcation coefficient b

b =

6∑
k,i=1

vkwi
∂2 fk
∂xi∂α1

(X0),

= v5w5π11β1x0
1 + v5w6π11β2x0

1 + v6w5π12β1x0
1 + v6w6π12β2x0

1,

= A0β2x0
1v5w5

(
π11 − π12

A55

A65

)
> 0.

Thus, the bifurcation coefficient a is always negative. Furthermore, the bifurcation
coefficient b is always positive. Hence, it follows from Theorem 4.1 in [5], that model
(4) does undergo the forward or transcritical bifurcation. �

The application of Theorem 4.1 in [5] to prove Theorem 4.2, also establish the
local asymptotic stability of T∗, but this result applies only for small values of R0 >
1. The following theorem extend Theorem 4.2 by showing the global asymptotic
stability of T∗ for all values of R0 above one.

When the changes of displaying the disease symptoms are independent of the
vulnerable classes S,V1,V2 and V3, we are able to establish the following global
result regarding the stability of the unique endemic equilibrium.

Theorem 4.3. The endemic equilibrium of system (4), T∗ is globally asymptotically
stable in the interior of Ω whenever R0 > 1, π11 = πi1 and π12 = πi2, i = 2, 3, 4.

Proof. Suppose that R0 > 1, π11 = πi1 and π12 = πi2, i = 2, 3, 4. To study the global
stability of the endemic equilibrium, we make use of a Lyapunov function V of the
form

V(x1, · · · , x6) = b1

4∑
i=1

(xi − x∗i ln xi) + b2(x5 − x∗5 ln x5) + b3(x6 − x∗6 ln x6), (8)

where b1, b2, b3 > 0 are constants to be specified shortly. The function V has a
global minimum at T∗ and V(x1, · · · , x6) − V(T∗) is positive definite. We show that
suitable constants b1, b2, b3 can be chosen such that the Lyapunov derivative of V
is negative with respect T∗. Differentiating this function with respect to time yields

dV
dt

= b1

4∑
i=1

(
ẋi −

x∗i
xi

ẋi

)
+ b2

(
ẋ5 −

x∗5
x5

ẋ5

)
+ b3

(
ẋ6 −

x∗6
x6

ẋ6

)
,

= b1

[
b − d1x1 − θ1x1 − α1Wx1 − b

x∗1
x1

+ d1x∗1 + θ1x∗1 + α1Wx∗1

]
+ b1 [θ1x1 − d2x2

−θ2x2 − α2Wx2 − θ1x∗1
x1x∗2
x∗1x2

+ d2x∗2 + θ2x∗2 + α2Wx∗2

]
+ b1 [θ2x2 − d3x3

−θ3x3 − α3Wx3 − θ2x∗2
x2x∗3
x∗2x3

+ d3x∗3 + θ3x∗3 + α3Wx∗3

]
+ b1 [θ3x3 − (d4 + ε)x4

−α4Wx4 − θ3x∗3
x3x∗4
x∗3x4

+ (d4 + ε)x∗4 + α4Wx∗4
]

+ b2

π11W
4∑

i=1

αixi − (d5 + α)x5

−π11

4∑
i=1

αixi

(
β1x∗5 + β2

x∗5x6

x5

)
+ (d5 + α)x∗5

]
+ b3

π12W
4∑

i=1

αixi + αx5
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−(d6 + π)x6 − π12

4∑
i=1

αixi

(
β1

x5x∗6
x6

+ β2x∗6

)
− α

x5x∗6
x6

+ (d6 + π)x∗6
]
,

where W = β1x5 + β2x6 and W∗ = β1x∗5 + β2x∗6. Considering (7), we have the
following equilibrium relations

b =

3∑
i=1

dix∗i + (d4 + ε)x∗4 +

4∑
i=1

αix∗i W
∗ ; θ2x∗2 = d3x∗3 + (d4 + ε)x∗4 +

4∑
i=3

αix∗i W
∗

(9)

θ1x∗1 =

3∑
i=2

dix∗i + (d4 + ε)x∗4 +

4∑
i=2

αix∗i W
∗ ; θ3x∗3 = (d4 + ε)x∗4 + α4x∗4W∗

4∑
i=1

αix∗i =
(d5 + α)(d6 + π)

π11β1(d6 + π) + β2[π12(d5 + α) + π11α]
, (10)

π11(d6 + π)x∗6 = [π12(d5 + α) + π11α]x∗5. (11)

Using the relations (9) in dV
dt , one has

dV
dt

= b1

d1x∗1 + d2x∗2 + d3x∗3 + (d4 + ε)x∗4 +

4∑
i=1

αix∗i W
∗
− d1x1 − θ1x1 − α1Wx1

−d1x∗1
x∗1
x1
− d2x∗2

x∗1
x1
− d3x∗3

x∗1
x1
− (d4 + ε)x∗4

x∗1
x1
−

4∑
i=1

αix∗i W
∗
x∗1
x1

+ d1x∗1 + d2x∗2

+d3x∗3 + (d4 + ε)x∗4 +

4∑
i=2

αix∗i W
∗ + α1Wx∗1

]
+ b1 [θ1x1 − d2x2 − θ2x2 − α2Wx2

+d2x∗2 + α2Wx∗2 + d3x∗3 + (d4 + ε)x∗4 +

4∑
i=3

αix∗i W
∗
−

(
d2x∗2 + d3x∗3 + (d4 + ε)x∗4

+

4∑
i=2

αix∗i W
∗

 x1x∗2
x∗1x2

 + b1

[
θ2x2 − d3x3 − θ3x3 − α3Wx3 + d3x∗3 + (d4 + ε)x∗4

+α4x∗4W∗ + α3Wx∗3 −

d3x∗3 + (d4 + ε)x∗4 +

4∑
i=3

αix∗i W
∗

 x2x∗3
x∗2x3

 + b1

[
θ3x3

−(d4 + ε)x4 − α4Wx4 −
(
(d4 + ε)x∗4 + α4x∗4W∗

)x3x∗4
x∗3x4

+ (d4 + ε)x∗4 + α4Wx∗4
]

+b2

π11W
4∑

i=1

αixi − (d5 + α)x5 − π11

4∑
i=1

αixi

(
β1x∗5 + β2

x∗5x6

x5

)
+ (d5 + α)x∗5


+b3

π12W
4∑

i=1

αixi + αx5 − (d6 + π)x6 − π12

4∑
i=1

αixi

(
β1

x5x∗6
x6

+ β2x∗6

)
−α

x5x∗6
x6

+ (d6 + π)x∗6
]
,

= b1d1x∗1

(
2 −

x∗1
x1
−

x1

x∗1

)
+ b1d2x∗2

(
3 −

x∗1
x1
−

x2

x∗2
−

x1x∗2
x∗1x2

)
+ b1d3x∗3

(
4 −

x∗1
x1
−

x3

x∗3
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−
x1x∗2
x∗1x2

−
x2x∗3
x∗2x3

)
+ b1(d4 + ε)x∗4

(
5 −

x∗1
x1
−

x4

x∗4
−

x1x∗2
x∗1x2

−
x2x∗3
x∗2x3

−
x3x∗4
x∗3x4

)
+b1

(
α1x∗1 + 2α2x∗2 + 3α3x∗3 + 4α4x∗4

)
(β1x∗5 + β2x∗6) + b2(d5 + α)x∗5 + b3(d6

+π)x∗6 +

4∑
i=1

αixiW (−b1 + b2π11 + b3π12) +

4∑
i=1

xi

(
−b2π11βi1x∗5 − b3π12βi2x∗6

)
+x5

b1

4∑
i=1

βi1x∗i − b2(d5 + α) + b3α

 + x6

b1

4∑
i=1

βi2x∗i − b3(d6 + π)


+

x∗1
x1

−b1

4∑
i=1

αix∗i W
∗

 +
x1x∗2
x∗1x2

−b1

4∑
i=2

αix∗i W
∗

 +
x2x∗3
x∗2x3

−b1

4∑
i=3

αix∗i W
∗


+

x3x∗4
x∗3x4

[
−b1α4x∗4W∗

]
+

4∑
i=1

xix5x∗6
x∗i x
∗

5x6

[
−b3π12βi1x∗5x∗i

]
+

x5x∗6
x∗5x6

[
−b3αx∗5

]
+

4∑
i=1

xix∗5x6

x∗i x5x∗6

[
−b2π11βi2x∗6x∗i

]
.

We choose the positive constants b1, b2, b3 such as the expressions of x5 and x6
vanish ; we obtain

b1 = 1; b2 = b1

(
β1

d5 + α
+

αβ2

(d5 + α)(d6 + π)

)
·

 4∑
i=1

αix∗i

 ; b3 = b1
β2

d6 + π
·

 4∑
i=1

αix∗i

 . (12)

Using relations (12) and (10), it follows that

(β1x∗5 + β2x∗6) ·

 4∑
i=1

αix∗i

 = b2(d5 + α)x∗5 + b3(d6 + π)x∗6 − b3αx∗5, (13)

−b1 + b2π11 + b3π12 = 0. (14)

Using the relations (13) and (14), we have

V1 =b1

(
α1x∗1 + 2α2x∗2 + 3α3x∗3 + 4α4x∗4

)
(β1x∗5 + β2x∗6) + b2(d5 + α)x∗5 + b3(d6 + π)x∗6,

=(b2π11 + b3π12)
(
2α1x∗1 + 3α2x∗2 + 4α3x∗3 + 5α4x∗4

)
(β1x∗5 + β2x∗6) + b3αx∗5, (15)

Replacing the relations (14) and (15) in dV
dt , one obtains

dV
dt

= b1d1x∗1

(
2 −

x∗1
x1
−

x1

x∗1

)
+ b1d3x∗3

(
4 −

x∗1
x1
−

x3

x∗3
−

x1x∗2
x∗1x2

−
x2x∗3
x∗2x3

)
+ b1d2x∗2

(
3 −

x∗1
x1

−
x2

x∗2
−

x1x∗2
x∗1x2

)
+ b1(d4 + ε)x∗4

(
5 −

x∗1
x1
−

x4

x∗4
−

x1x∗2
x∗1x2

−
x2x∗3
x∗2x3

−
x3x∗4
x∗3x4

)
+(b2π11 + b3π12)

(
2α1x∗1 + 3α2x∗2 + 4α3x∗3 + 5α4x∗4

)
(β1x∗5 + β2x∗6) + b3αx∗5, (16)

+

4∑
i=1

xi

x∗i

(
−b2π11βi1x∗5x∗i − b3π12βi2x∗6x∗i

)
+

x3x∗4
x∗3x4

[
−(b2π11 + b3π12)α4x∗4(β1x∗5
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+β2x∗6)
]

+
x∗1
x1

[
−(b2π11 + b3π12) ·

(
α1x∗1 + α2x∗2 + α3x∗3 + α4x∗4

)
(β1x∗5 + β2x∗6)

]
+

x1x∗2
x∗1x2

[
−(b2π11 + b3π12) ·

(
α2x∗2 + α3x∗3 + α4x∗4

)
(β1x∗5 + β2x∗6)

]
+

x5x∗6
x∗5x6

[
−b3αx∗5

]
+

x2x∗3
x∗2x3

[
−(b2π11 + b3π12) ·

(
α3x∗3 + α4x∗4

)
(β1x∗5 + β2x∗6)

]
+

4∑
i=1

xix∗5x6

x∗i x5x∗6

[
−b2π11βi2x∗6x∗i

]
+

4∑
i=1

xix5x∗6
x∗i x
∗

5x6

[
−b3π12βi1x∗5x∗i

]
.

We expanding (16), the coefficients in
x∗1
x1

,
x1x∗2
x∗1x2

,
x2x∗3
x∗2x3

,
x3x∗4
x∗3x4

and gathering some

terms, one has

dV
dt

=
(
b1d1x∗1 + b2π11β11x∗5x∗1 + b3π12β12x∗6x∗1

) (
2 −

x∗1
x1
−

x1

x∗1

)
+(b1d2x∗2 + b2π11β21x∗5x∗2 + b3π12β22x∗6x∗2)

(
3 −

x∗1
x1
−

x2

x∗2
−

x1x∗2
x∗1x2

)
+(b1d3x∗3 + b2π11β31x∗5x∗3 + b3π12β32x∗6x∗3)

(
4 −

x∗1
x1
−

x3

x∗3
−

x1x∗2
x∗1x2

−
x2x∗3
x∗2x3

)
+

(
b1(d4 + ε)x∗4 + b2π11β41x∗5x∗4 + b3π12β42x∗6x∗4

) (
5 −

x∗1
x1
−

x4

x∗4
−

x1x∗2
x∗1x2

−
x2x∗3
x∗2x3

−
x3x∗4
x∗3x4

)
+ 2b2π11β12x∗6x∗1 + 3b2π11β22x∗6x∗2 + 4b2π11β32x∗6x∗3 + 5b2π11β42x∗6x∗4

+2b3π12β11x∗5x∗1 + 3b3π12β21x∗5x∗2 + 4b3π12β31x∗5x∗3 + 5b3π12β41x∗5x∗4 + b3αx∗5

+
x∗1
x1

[
− b2π11β12x∗6x∗1 − b2π11β22x∗6x∗2 − b2π11β32x∗6x∗3 − b2π11β42x∗6x∗4

−b3π12β11x∗5x∗1 − b3π12β21x∗5x∗2 − b3π12β31x∗5x∗3 − b3π12β41x∗5x∗4
]

+
x1x∗2
x∗1x2

[
− b2π11β22x∗6x∗2 − b2π11β32x∗6x∗3 − b2π11β42x∗6x∗4 − b3π12β21x∗5x∗2

−b3π12β31x∗5x∗3 − b3π12β41x∗5x∗4
]

+
x2x∗3
x∗2x3

[
− b2π11β32x∗6x∗3 − b2π11β42x∗6x∗4

−b3π12β31x∗5x∗3 − b3π12β41x∗5x∗4
]

+
x3x∗4
x∗3x4

[
− b2π11β42x∗6x∗4 − b3π12β41x∗5x∗4

]
+

4∑
i=1

xix∗5x6

x∗i x5x∗6

[
−b2π11βi2x∗6x∗i

]
+

4∑
i=1

xix5x∗6
x∗i x
∗

5x6

[
−b3π12βi1x∗5x∗i

]
+

x5x∗6
x∗5x6

[
−b3αx∗5

]
.

Using the relations (11) and (12), it can be verified that

b2π11βi2x∗6x∗i = b3π12βi1x∗5x∗i + αb3ix∗5, i = 1, 2, 3, 4, (17)

where b3i =
αiβ2x∗i
d6 + π

, i = 1, 2, 3, 4, with b3 = b31 + b32 + b33 + b34.
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Thus, substituting the expressions (17) in dV
dt , we obtain

dV
dt

=
(
b1d1x∗1 + b2π11β11x∗5x∗1 + b3π12β12x∗6x∗1

) (
2 −

x∗1
x1
−

x1

x∗1

)
+(b1d2x∗2 + b2π11β21x∗5x∗2 + b3π12β22x∗6x∗2)

(
3 −

x∗1
x1
−

x2

x∗2
−

x1x∗2
x∗1x2

)
+(b1d3x∗3 + b2π11β31x∗5x∗3 + b3π12β32x∗6x∗3)

(
4 −

x∗1
x1
−

x3

x∗3
−

x1x∗2
x∗1x2

−
x2x∗3
x∗2x3

)
+

(
b1(d4 + ε)x∗4 + b2π11β41x∗5x∗4 + b3π12β42x∗6x∗4

) (
5 −

x∗1
x1
−

x4

x∗4
−

x1x∗2
x∗1x2

−
x2x∗3
x∗2x3

−
x3x∗4
x∗3x4

)
+ 4b3π12β11x∗5x∗1 + 6b3π12β21x∗5x∗2 + 8b3π12β31x∗5x∗3 + 10b3π12β41x∗5x∗4

+3b31αx∗5 + 4b32αx∗5 + 5b33αx∗5 + 6b34αx∗5 − yb2π11β12x∗6x∗1

(
x∗1
x1

+
x1x∗5x6

x∗1x5x∗6

)
−αb31x∗5

x5x∗6
x∗5x6

− (1 − y)b2π11β12x∗6x∗1

(
x∗1
x1

+
x1x∗5x6

x∗1x5x∗6

)
− b3π12β11x∗5x∗1

(
x∗1
x1

+
x1x5x∗6
x∗1x∗5x6

)
− yb2π11β22x∗6x∗2

(
x∗1
x1

+
x∗2x1

x2x∗1
+

x2x∗5x6

x∗2x5x∗6

)
− αb32x∗5

x5x∗6
x∗5x6

−(1 − y)b2π11β22x∗6x∗2

(
x∗1
x1

+
x∗2x1

x2x∗1
+

x2x∗5x6

x∗2x5x∗6

)
− b3π12β21x∗5x∗2

(
x∗1
x1

+
x1x∗2
x∗1x2

+
x2x5x∗6
x∗2x∗5x6

)
− yb2π11β32x∗6x∗3

(
x∗1
x1

+
x1x∗2
x∗1x2

+
x2x∗3
x∗2x3

+
x3x∗5x6

x∗3x5x∗6

)
− αb33x∗5

x5x∗6
x∗5x6

−(1 − y)b2π11β32x∗6x∗3

(
x∗1
x1

+
x1x∗2
x∗1x2

+
x2x∗3
x∗2x3

+
x3x∗5x6

x∗3x5x∗6

)
− b3π12β31x∗5x∗3

(
x∗1
x1

+
x1x∗2
x∗1x2

+
x2x∗3
x∗2x3

+
x3x5x∗6
x∗3x∗5x6

)
− yb2π11β42x∗6x∗4

(
x∗1
x1

+
x1x∗2
x∗1x2

+
x2x∗3
x∗2x3

+
x3x∗4
x∗3x4

+
x4x∗5x6

x∗4x5x∗6

)
− αb34x∗5

x5x∗6
x∗5x6

− (1 − y)b2π11β42x∗6x∗4

(
x∗1
x1

+
x1x∗2
x∗1x2

+
x2x∗3
x∗2x3

+
x3x∗4
x∗3x4

+
x4x∗5x6

x∗4x5x∗6

)
− b3π12β41x∗5x∗4

(
x∗1
x1

+
x1x∗2
x∗1x2

+
x2x∗3
x∗2x3

+
x3x∗4
x∗3x4

+
x4x5x∗6
x∗4x∗5x6

)
,

where

y =
απ11

[π12(d5 + α) + π11α]π11b2
, and 1 − y =

π12β1

4∑
i=1
αix∗i

[π12(d3 + α) + π11α]b2
. (18)

Further, using the relations (11) and (18), we have the following equalities

yb2π11βi2x∗6x∗i = αb3ix∗5 and (1 − y)b2π11βi2x∗6x∗i = b3π12βi1x∗5x∗i , i = 1, 2, 3, 4.

Thus,

dV
dt

=
(
b1d1x∗1 + b2π11β11x∗5x∗1 + b3π12β12x∗6x∗1

) (
2 −

x∗1
x1
−

x1

x∗1

)
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+(b1d2x∗2 + b2π11β21x∗5x∗2 + b3π12β22x∗6x∗2)
(
3 −

x∗1
x1
−

x2

x∗2
−

x1x∗2
x∗1x2

)
+(b1d3x∗3 + b2π11β31x∗5x∗3 + b3π12β32x∗6x∗3)

(
4 −

x∗1
x1
−

x3

x∗3
−

x1x∗2
x∗1x2

−
x2x∗3
x∗2x3

)
+

(
b1(d4 + ε)x∗4 + b2π11β41x∗5x∗4 + b3π12β42x∗6x∗4

) (
5 −

x∗1
x1
−

x4

x∗4
−

x1x∗2
x∗1x2

−
x2x∗3
x∗2x3

−
x3x∗4
x∗3x4

)
+ αb31x∗5

(
3 −

x∗1
x1
−

x5x∗6
x∗5x6

−
x1x∗5x6

x∗1x5x∗6

)
+ αb32x∗5

(
4 −

x∗1
x1
−

x∗2x1

x2x∗1
−

x5x∗6
x∗5x6

−
x2x∗5x6

x∗2x5x∗6

)
+ αb33x∗5

(
5 −

x∗1
x1
−

x1x∗2
x∗1x2

−
x2x∗3
x∗2x3

−
x5x∗6
x∗5x6

−
x3x∗5x6

x∗3x5x∗6

)
+αb34x∗5

(
6 −

x∗1
x1
−

x1x∗2
x∗1x2

−
x2x∗3
x∗2x3

−
x5x∗6
x∗5x6

−
x3x∗4
x∗3x4

−
x4x∗5x6

x∗4x5x∗6

)
+b3π12β11x∗5x∗1

(
4 − 2

x∗1
x1
−

x1x∗5x6

x∗1x5x∗6
−

x1x5x∗6
x∗1x∗5x6

)
+b3π12β21x∗5x∗2

(
6 − 2

x∗1
x1
− 2

x1x∗2
x∗1x2

−
x2x5x∗6
x∗2x∗5x6

−
x2x∗5x6

x∗2x5x∗6

)
+b3π12β31x∗5x∗3

(
8 − 2

x∗1
x1
− 2

x1x∗2
x∗1x2

− 2
x2x∗3
x∗2x3

−
x3x5x∗6
x∗3x∗5x6

−
x3x∗5x6

x∗3x5x∗6

)
+b3π12β41x∗5x∗4

(
10 − 2

x∗1
x1
− 2

x1x∗2
x∗1x2

− 2
x2x∗3
x∗2x3

− 2
x3x∗4
x∗3x4

−
x4x∗5x6

x∗4x5x∗6
−

x4x5x∗6
x∗4x∗5x6

)
.

Finally, using the arithmetic-geometric means inequality, n− (y1 + y2 + · · ·+ yn) ≤ 0,

where y1y2 · · · yn = 1 and y1, y2, · · · , yn > 0, it follows that dV
dt ≤ 0. Furthermore,

dV
dt = 0⇔ (x1, · · · , x6) = (x∗1, · · · , x

∗

6). The global stability of the endemic equilibrium
follows from the classical stability theorem of Lyapunov and the LaSalle’s Invariance
Principle. �

5. Numerical simulations: Case study of Hepatitis B (HBV). In this sec-
tion, we use model (4) to further investigate the impact of some control strategies
on the spread of chronic Hepatitis B infection among an adult population. Based
on the sensitivity analysis of the basic reproduction number on parameters, we seek
optimal measures to control the transmission of disease using parameter values in
Table 1 related to Hepatitis B, which have been found into literature. Hepatitis
B is a disease that is characterised by inflammation of the liver and the risk of
developing the disease is primarily related to sexual, household or perinatal expo-
sure to infected individuals. According WHO statistics, more than a billion people
around the world have serological indicators of past or present infection with HBV.
Over 240 millions people are chronic carriers of the virus. An estimated 780, 000
persons die each year due to the acute or chronic consequence of Hepatitis B. Safe
and effective vaccines have been available to prevent HBV infection since 1981. The
efficacy of a complete Hepatitis B vaccination series (i.e. ≥ 3 doses of Hepatitis B
vaccine) in preventing perinatal, early childhood and late infection was estimated
to provide protection for 85−90% of individuals [27]. A complete vaccination series
was assumed to provide lifelong protection from clinical acute and chronic HBV
infection [11]. In many countries, vaccination has reduced the rate of chronic infec-
tion to less than 1% among immunised children [28, 29]. For all simulations below,
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we use parameters values in Table 1 related to Hepatitis B virus disease. We fix
θ2 = θ3 = 90% and vary θ1 since his sensitivity index is the highest. We will also
vary some parameters to investigate their impacts.

5.1. Simulations of stability results. To illustrate the stability results contained
in this paper, the model (4) is simulated using the parameter values in Table 1 with
θ1 = 0.8, θ2 = θ3 = 0.9, ε = 0.85, and α = 0.2.

Figure 3 presents the trajectories of model (4) for different initial conditions when
b = 2 and R0 ≤ 1. From this figure, we can see that there are always susceptibles
in the population while the infected individuals disappear. Thus, the trajectories
converge to the disease-free equilibrium. This means that the disease disappears in
the host population as shown in Theorem 3.2.
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Figure 3. Simulation results showing the global stability of
disease-free equilibrium.

Figure 4 gives the trajectory plot when b = 9 and R0 > 1. From this figure,
we can observe that the infected individuals are always present in the population.
This means that the trajectories converge to the endemic equilibrium point. Thus,
whenever R0 > 1, the disease persists in the host population as established in
Theorem 4.3.

0 20 40 60 80 100
0

5

10

15

20

S

0 20 40 60 80 100
0

5

10

15

20

V
1

0 20 40 60 80 100
0

5

10

15

20

V
2

0 20 40 60 80 100
0

5

10

15

20

V
3

Time
0 20 40 60 80 100

0

10

20

30

40

50

Time

I c

0 20 40 60 80 100
0

5

10

15

20

25

30

Time

I

Figure 4. Simulation results showing the global stability of en-
demic equilibrium.
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5.2. Impact of effectiveness of vaccination. Firstly, we fix α = 0.2, ε = 0.5,
π = 0.65 and vary θ1 to observe the effect of increasing the vaccination rate with a
low effectiveness.
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Figure 5. Simulation results showing the impact of vaccination
with low effectiveness.

We see from Figure 5 that, the variation of θ1 from 10% to 80% has almost no
effect on infected population since the difference between both curves is very small
for cases (a) and (b). When we vary ε from 0.5 to 0.9 by fixing θ1 = 80%, α = 0.2
and π = 0.65, we see now in Figure 6 that the impact of vaccination is a bit larger,
especially for the symptomatic carriers. This shows the close link that exists between
vaccination and its effectiveness. Thus, vaccination with a high effectiveness can be
a control measure against HBV infection in high HBV prevalence countries. Despite
that the impact is a bit larger in this case, the number of infected individuals always
remains high, especially for the asymptomatic carriers that are infected individuals
taking no treatment because they are unaware of their condition. This implies that
vaccination alone is not sufficient to control the disease effectively.
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Figure 6. Simulation results showing the impact of vaccination
with high effectiveness.
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5.3. Impact of asymptomatic carriers on the transmission dynamics. Sec-
ondly, for study the impact of diagnosis rate at which asymptomatic carriers move
into symptomatic class either through testing or through appearance of symptoms,
we fix θ1 = 80%, ε = 0.9 and π = 0.65. From Figure 7 that, if only 20% of asymp-
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Figure 7. Simulation results showing the impact of testing and
diagnosis of asymptomatic carriers.

tomatic carriers become aware of their condition, the number of infected individuals
decreases, but the number of asymptomatic carriers is still high. This is not a de-
sirable result because asymptomatic carriers are responsible for most of the new
infections since they are unaware of their illness. When we increase α from 20% to
50%, the number of asymptomatic carriers shows a much greater decline while the
number of symptomatic infected remains low. This shows that testing and diagnosis
can be an effective control measure.

Finally, we fix θ1 = 80%, ε = 0.9 and α = 0.5. If we consider the recovered rate
as a treatment rate, then we can see in Figure 8 that increasing π from 10%, the
number of asymptomatic does almost not vary while the number of symptomatic
carriers is lower.
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Figure 8. Simulation results showing the impact of treatment of
symptomatic carriers.

These numerical simulations of the model (1) show that effective vaccination is a
good control strategy for HBV infection, however, a combination with the diagnosis
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and treatment is a better control measure for the disease. We conclude that in high
HBV prevalence countries, combination of effective vaccination (i.e. ≥ 3 doses of
Hepatitis B vaccine), testing and increasing awareness of asymptomatic carriers, and
treatment of symptomatic carriers will have a much greater impact on the disease
burden.

6. Conclusion-discussion. This paper have studied the impact of control strate-
gies on the transmission of infectious diseases that can be transmitted through
infected individuals who are contagious but do not show any disease symptoms.
The model formulated in Section 2 incorporates vaccination for carriers depen-
dent diseases, with clear distinction between vaccinated individuals class and the
recovered/removed individuals compartment. This more realistic distinction have
contrasted with some models (e.g. [16]) where these two classes are combined and
constitutes an improvement. We investigated the effects of the efficacy of the vaccine
and asymptomatic carriers (or “lost of sight”) on the spread of infectious diseases.
The susceptibles and infectives were divided into 4 and 2 subgroups based on their
susceptibilities and infectivities, respectively. Using the next generation operator
approach, we have derived an explicit formula for the basic reproductive number,
R0, which has been the key parameter in our model. Important parameters in the
expression for R0 are the efficacy of the vaccine and the diagnosis rates (or rates
at which asymptomatic carriers become aware of their illness). Using the method
of global Lyapunov functions, we have established the global stability results of
equilibrium points. Precisely, we have shown that the disease-free equilibrium is
globally asymptotically stable if R0 < 1 and unstable otherwise. For the case where
R0 > 1, we have proven that there exists a unique endemic equilibrium, who is
globally asymptotically stable. Furthermore, using the Centre Manifold Theory,
we have shown that a forward bifurcation occurs at the critical value R0 = 1. Our
model simulations have suggested the challenges of chronic HBV infection: the exis-
tence of a large number of asymptomatic carriers, because they are unaware of their
illness and will not be part of any treatment program. Comparing our simulation
results in Figures 5, 6, 7 and 8, we have concluded that in high HBV prevalence
countries, combination of effective vaccination (i.e. ≥ 3 doses of HepB vaccine),
diagnosis of asymptomatic carriers and treatment of symptomatic carriers will have
a much greater impact on the disease burden.

In this work, we have considered vaccination and diagnosis as continuous states.
In many countries, the control strategies such that vaccination or screening, used
to large-scale against infectious diseases are discontinuous or seasonal. It will be
interesting to consider an epidemic model with a double impulsion, where after a
time T (fixed or variable), one vaccinates and detects. This case can be modelled
by impulsive differential equations, which is one of our future works. Due to the
fact that most of the vaccination campaigns are age-dependent and that for some
diseases with long-term asymptomatic carriers disease such as HBV, the vaccines
are recommended for infants and children under the age of 18 and young adults, a
more complicated age-structured- dose-structured model will be more appropriate
for this setting. This is one of the modelling aspect and extension of the present
paper we are actively working on.
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