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Abstract. We propose a model of two-species competition in the chemostat

for a single growth-limiting, nonreproducing resource that extends that of Roy

[38]. The response functions are specified to be Michaelis-Menten, and there
is no predation in Roy’s work. Our model generalizes Roy’s model to general

uptake functions. The competition is exploitative so that species compete by

decreasing the common pool of resources. The model also allows allelopathic
effects of one toxin-producing species, both on itself (autotoxicity) and on its

nontoxic competitor (phytotoxicity). We show that a stable coexistence equi-

librium exists as long as (a) there are allelopathic effects and (b) the input
nutrient concentration is above a critical value. The model is reconsidered un-

der instantaneous nutrient recycling. We further extend this work to include a
zooplankton species as a fourth interacting component to study the impact of

predation on the ecosystem. The zooplankton species is allowed to feed only on

the two phytoplankton species which are its perfectly substitutable resources.
Each of the models is analyzed for boundedness, equilibria, stability, and uni-

form persistence (or permanence). Each model structure fits very well with

some harmful algal bloom observations where the phytoplankton assemblage
can be envisioned in two compartments, toxin producing and non-toxic. The

Prymnesium parvum literature, where the suppressing effects of allelochemi-

cals are quite pronounced, is a classic example. This work advances knowledge
in an area of research becoming ever more important, which is understanding

the functioning of allelopathy in food webs.

1. Introduction. The term “plankton” is used to describe freely-floating and
weakly-swimming marine and freshwater organisms. It was coined by the Ger-
man scientist Victor Hensen in 1887 (Thurman [46]). Plankton are divided into
broad functional groups, among them phytoplankton that live near the surface of
the water where there is sufficient light to support photosynthesis, and zooplankton
that feed on other plankton. The microscopic and unicellular plants, phytoplank-
ton, are consumed by zooplankton, the animals, which in turn are eaten by larger
organisms. Plankton are at the base of the food chain in the aquatic environment,
and are responsible for much of the oxygen present in the Earth’s atmosphere: half
of the total amount produced by all plant life. They also absorb carbon dioxide
from their surrounding environment. The highly diverse nature of phytoplankton
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communities seems to contradict the competitive exclusion principle, which states
that when two species compete for the same resource, only one will survive. The
modeling of plankton populations is an essential tool in improving our understand-
ing of the physical and biological processes that contribute to the complexity of
these systems.

The term allelopathy was first coined by the Austrian plant physiologist Molisch
[29] to explain the effect of ethylene on fruit ripening. Rice [36] defines allelopathy as
the effects of one plant (including micro-organisms) on the growth of another plant
through the release of chemical compounds (called allelochemicals by Whittaker
and Feeny [47]) into the environment. At the 1996 meeting of the International
Allelopathy Society (IAS), allelopathy was redefined as any process involving sec-
ondary metabolites produced by plants, algae, bacteria, and fungi that influences
the growth and development of agricultural and biological systems.

Mathematical modeling of plankton populations goes back to Riley [37] and Hal-
lam [14, 15, 16]. The first mathematical model to represent allelopathic interactions
between competing species was introduced by Maynard-Smith [27]. Improvements
and refinements of Maynard-Smith’s model have followed several directions (see for
examples Nakamaru and Iwasa [32], An et al. [1] and references therein).

The two functions of allelopathy are autotoxicity (where the toxin affects the
growth of the toxic species itself) and phytotoxicity (the effect of toxin on the
growth of another species). We assume that the phytotoxic term depends upon the
product of square of concentration of non-toxic species with square of concentration
of toxic species in accordance with Solé et al. [44]. In addition, we suppose that the
autotoxic term is a linear function of the concentration of the toxic species as per
Sinkkonen [42].

To better understand the dynamics of plankton, one should not neglect the inter-
actions of zooplankton. Many authors have worked in this direction. Edwards and
Brindley [11] investigated the bifurcational structure of a simple plankton model
with zooplankton mortality modeled by −cZm, 1 ≤ m ≤ 2. They showed explic-
itly how cycles can persist for 1 < m < 2. In addition, m = 2 does not pre-
clude the existence of cycles or chaos. Edwards [12] examined the behavior of two
nutrient-phytoplankton-zooplankton-detritus models to help understand the fac-
tors that most influence the dynamics of such models. He further showed that the
addition of a detritus compartment has little impact on the nature of the qual-
itative dynamics that were found for the corresponding nutrient-phytoplankton-
zooplankton model. Mukhopadhyay and Bhattacharryya [31] examined a model of
nutrient-phytoplankton-zooplankton interaction with spatial heterogeneity. They
proved that phytoplankton species with low diffusivity and zooplankton functional
response with half-saturation constant can control algal blooms. Ruan [41] studied
plankton nutrient models with both instantaneous and delayed nutrient recycling.
He successively chose the nutrient input concentration and the maximal zooplank-
ton ingestion rate as bifurcation parameters to show that the positive equilibrium
loses its stability via a Hopf bifurcation as these parameters are varied through
respective critical values. Jang and Baglama [22] explored nutrient-phytoplankton
interaction with both instantaneous and delayed nutrient recycling and zooplank-
ton mortality modeled by −cZ2. Unlike other ecological models for which delays
can destabilize the system (see Roy et al. [39] and Piotrowska et al. [34]), their nu-
merical simulations suggested that delayed nutrient recycling can actually stabilize
the nutrient-phytoplankton system. Chakraborty and Chattopadhyay [9] proposed
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and analyzed four models of nutrient-phytoplankton-zooplankton populations to
observe the dynamics of such models in the presence of additional food. Here the
phytoplankton are toxic to the zooplankton population. However, little has been
done in modeling competition, allelopathy, predation, and instantaneous nutrient
recycling in the same food chain. The model we propose incorporates competition,
allelopathy, predation, and instantaneous nutrient recycling.

With the use of mathematical models, Roy [38] demonstrates theoretically that
the stable coexistence of two species competing for a single nutrient in a homoge-
neous medium would be possible provided one of the two species has a sufficiently
strong allelopathic effect on the other. The uptake functions are specified to be
Michaelis-Menten in Roy’s model. The contents of this paper are largely devoted to
extending the results of Roy [38]. More specifically, we extend the nutrient-nontoxic
phytoplankton-toxic phytoplankton model of Roy [38] to general uptake functions
and include a zooplankton species as a fourth interacting component. We carefully
structure this work in a way that presents the incremental effects of adding the
increased complexity and realism to the model.

This paper is organized as follows. In the next section, we describe the main
model. We then present some preliminary results, and study existence and local
stability of steady states. Ecological interpretations of inequalities are followed
by some global results. We further extend this work to include a zooplankton
species to study the impact of predation on the competition-allelopathy model.
The zooplankton species predates only on the two phytoplankton species which are
its perfectly substitutable resources. We reconsider each of the models under the
effects of instantaneous nutrient recycling. We utilized Matlab and Mathematica
Version 10 to run extended simulations to support our analytical findings.

2. The Competition-Allelopathy model. We will consider population interac-
tions in a chemostat environment. For a detailed description of the chemostat and
its application in biology and ecology, the reader is referred to Hsu et al. [20], Smith
and Waltman [43].

Two-species compete exploitatively for a single nonreproducing resource. Our
model also incorporates allelopathic effects, and can be written

dN

dt
= (N0 −N)D − 1

γ1
f1(N)P1 −

1

γ2
f2(N)P2,

dP1

dt
= (f1(N)−m1)P1 − γP 2

1P
2
2 ,

dP2

dt
= (f2(N)−m2)P2,

N(0) > 0, P1(0) > 0, P2(0) > 0.

(1)

In these equations Pi(t) is the biomass of the ith population of phytoplankton
in the culture vessel at time t, i = 1, 2. Population P1 is assumed to be nontoxic,
while population P2 is assumed to be toxic. The concentration of the nonrepro-
ducing resource in the culture vessel at time t is denoted by N(t), while N0 is the
concentration of resource N in the feed vessel.

The removal rate m1 of nontoxic phytoplankton P1 is the sum of washout rate D
and the specific death rate ε1, so that, m1 = D + ε1. The removal rate m2 of toxic
phytoplankton P2 is the sum of washout rate D, the specific death rate ε2, and the
autotoxic coefficient a2, so that, m2 = D + ε2 + a2 as per Sinkkonen [42].



790 JEAN-JACQUES KENGWOUNG-KEUMO

As in Wolkowicz and Lu [48], it is interesting to note that the analysis of the
model requires no assumptions on the signs of the εi’s and a2, as long as the mi’s
all remain positive. This leaves the εi ’s and a2 open to other interpretations. For
instance, a negative εi describes an additional food source for the ith population
of phytoplankton while a positive εi accounts for further deleterious effects (such
as sinking and mixing) on the ith population of phytoplankton. Finally, a zero εi
means that there is no intrinsic death of the ith population of phytoplankton. A
negative, zero, and positive a2 indicate respectively stimulatory effects, no effects,
and inhibitory effects of toxins produced by P2 on the growth of conspecies.

As in Solé et al. [44], we express the phytotoxic interactions as γP 2
1P

2
2 , where

γ denotes the phytotoxic coefficient. In system (1) the response functions fi(N)
represent the per capita rate of conversion of nutrient to biomass of population Pi
per unit of population Pi as a function of the concentration of nutrient N . We
assume that the rate of conversion of nutrient to biomass is proportional to the
amount of nutrient consumed, so that the consumption rate of resource N per
unit of population Pi is of the form 1

γi
fi(N), where γi is the growth yield constant

(number of phytoplankton per unit of nutrient). We make the following assumptions
concerning the response functions fi:

fi : R+ −→ R+, fi is continuously differentiable , (2)

fi(0) = 0, f ′i(N) > 0 for all N ≥ 0. (3)

The break-even concentration for population Pi on nutrient N is obtained by setting
dPi

dt = 0 = fi(N) −mi and solving for N . By the monotonicity assumptions, the
solution λi is a uniquely defined positive extended real number provided we assume
λi = ∞ if fi(N) < mi for all N ≥ 0. Finally, let µi denote the maximal growth
rate of population Pi on resource N , so that

lim
N→∞

fi(N) = µi.

Lotka-Volterra kinetics (or Holling type I), Michaelis-Menten kinetics (or Holling
type II), and sigmoidal kinetics (Holling type III or multiple saturation dynamics)
are prototypes of response functions fi found in the literature (Aris and Humphrey
[3], Boon and Laudelout [6], Edwards [12], Jost et al. [23], Monod [30], Ruan [40],
Wolkowicz and Lu [48], Yang and Humphrey [49]).

The half-saturation constant Ki of the ith phytoplankton species for nutrient is
given by fi(Ki) = µi/2 and so represents the resource concentration supporting
growth at half the maximal growth rate. Half-saturation constants and maximal
growth rates can be measured experimentally (Hansen and Hubbell [17]). System
(1) was considered by Roy [38] under the assumption that the response functions
fi are Michaelis-Menten and the yield constants γi equal 1.

2.1. Preliminary results. The first lemma is a statement that solutions of (1)
are positive and bounded. These are minimal requirements for a reasonable model
of the chemostat.

Lemma 2.1. (a) Solutions of model (1) are positive and bounded.
(b) Given any δ > 0, for all solutions N(t) of (1) N(t) ≤ N0+δ, for all sufficiently

large t.
(c) If there exists a t0 ≥ 0 such that N(t0) ≤ N0, then N(t) < N0 for all t > t0.
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Proof of (a). Assume there is a first time t0 > 0 such that N(t0) = 0 and N(t) > 0
for all 0 < t < t0. Then dN

dt (t0) ≤ 0. However, by the first equation of model (1),
dN

dt
(t0) = N0D > 0, a contradiction.

We now show that Pi(t) > 0 for all t, i = 1, 2. For i = 1, let t1 = min{t > 0, P1(t)
= 0} and

A1 = min
{
f1(N(t))−m1 − γP1(t)P 2

2 (t), 0 ≤ t ≤ t1
}
.

Then for t ∈ [0, t1],
dP1(t)

dt
≥ A1P1(t), so that, P1(t) ≥ P1(0) exp(A1t) > 0. In

particular, P1(t1) ≥ P1(0) exp(A1t1), a contradiction.
To show that P2(t) > 0 for all t, replace t1 with t2 = min {t > 0 : P2(t) = 0} and

A1 with A2 = min {f2(N(t))−m2, 0 ≤ t ≤ t2}, in the proof of P1(t) > 0 for all t.
To prove boundedness of solutions of model (1), define T (t) = N(t) + 1

γ1
P1(t) +

1
γ2
P2(t). From (1) we have dT

dt ≤ N0D − D0T , where D0 = min(D,m1,m2). By

Gronwall’s lemma, T (t) ≤ dN0

D0
+ (T (0)− dN0

D0
) exp(−D0t), and so N(t) + 1

γ1
P1(t) +

1
γ2
P2(t) ≤ N0d

D0
if T (0) < N0D

D0
and N(t) + 1

γ1
P1(t) + 1

γ2
P2(t) ≤ T (0) otherwise.

Hence, by the positivity of solutions of model (1), all solutions of (1) are bounded.

Proof of (b). Let δ > 0 be given. From the first equation of (1) we have

dN

dt
= (N0 −N)D − 1

γ1
f1(N)P1 −

1

γ2
f2(N)P2 ≤ (N0 −N)D. (4)

Hence, N(t) ≤ N0 + [N(0) − N0] exp(−tD) for all t. Since [N(0) − N0] exp(−tD)
approaches 0 as t tends to infinity, N(t) ≤ N0 + δ for all sufficiently large t.

Proof of (c). Suppose there exists a first time t̂ > t0 such that N(t̂) = N0 and

N(t) < N0 for all t0 ≤ t < t̂. Then
dN

dt
(t̂) ≥ 0. However, by (1),

dN

dt
(t̂) ≤

−
∑2
i=1

Pi(t̂)
γi

fi(N(t̂)) < 0, a contradiction.

The Fundamental Existence-Uniqueness Theorem (see, for example, Perko [33])
and Lemma 2.1(a) ensure that solutions of (1) exist uniquely for all time.

In the absence of allelopathic effects (γ = 0), system (1) reduces to the model
studied by Hsu [21] in the case of two competing species. As such, the system
exhibits the competitive exclusion principle, which Hardin [18] states as “complete
competitors cannot coexist”. That is, two species cannot coexist if they compete
for a single resource available in growth-limiting amounts.

Of note, if γ = 0 then only one species survives, the one with the lower breakeven
concentration.

2.2. Steady states: Existence and local stability. Steady states of model (1)
are solutions of:

dN

dt
=
dP1

dt
=
dP2

dt
= 0.

In what follows, λi is the unique positive solution of the equation fi(N) = mi.
Three of the steady states are readily identified and are given by:
E0 = (N0, 0, 0), Eλ1

= (λ1, P̄1, 0), and Eλ2
= (λ2, 0, P̄2), where P̄i = γi(N0 −

λi)D/mi, for i = 1, 2.
We say that a steady state does not exist if any one of its components is negative.

E0 always exists, whereas for each i ∈ {1, 2} a necessary and sufficient condition on
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the parameters for feasibility of Eλi is N0 > λi. Note that when N0 = λi, E0 and
Eλi coalesce.

If any other equilibria exist, they must be interior equilibria (for which N , P1,

and P2 are all positive). By the third equation of (1), we must have N̂ = λ2,

so that an interior equilibrium Ê = (λ2, P̂1, P̂2) of (1) corresponds to solutions

(P̂1, P̂2) ∈ Int(R2
+) of the system

1

γ1
f1(λ2)P1 +

1

γ2
m2P2 = (N0 − λ2)D,

γP1P
2
2 = f1(λ2)−m1.

(5)

Note that there is no interior equilibrium when λ1 ≥ λ2. Using a method similar
to that of Roy [38] we establish the existence of zero, one or two interior equilibria as
a function of the value of the input nutrient concentration N0. The second equation
of system (5) defines a curve F2(P2) = (f1(λ2) − m1)/γP 2

2 in the first quadrant
convex to the origin and satisfying limP2→∞ F2(P2) = 0 and limP2→0+ F2(P2) =∞.
The first equation of system (5) gives a straight line in the first quadrant with
slope −γ2f1(λ2)/γ1m2 and P2-intercept γ2(N0 − λ2)D/m2. These curves may or
may not intersect in the first quadrant. If N0 is too small, the two curves do
not intersect and model (1) does not have an interior equilibrium point. As N0 is
increased, there is a critical value N c

0 for which the straight line is tangent to the

curve, and model (1) has precisely one equilibrium given by Ẽ = (λ2, P̃1, P̃2), where

P̃1 = γ1(N0 − λ2)D/3f1(λ2), and P̃2 = 2γ2(N0 − λ2)D/3m2. The critical value is
computed using system (5), and is given by

N c
0 = λ2 + 3

√
27f1(λ2)m2

2(f1(λ2)−m1)

4γ1γ2
2D

3γ
. (6)

As N0 is increased beyond N c
0 , the straight line intersects the curve in two points

and (1) has two interior equilibria Ê′ = (λ2, P̂ ′1, P̂
′
2) and Ê′′ = (λ2, P̂ ′′1 , P̂

′′
2 ), where

0 < P̂ ′1 < P̃1, P̃2 < P̂ ′2 < 3P̃2/2, P̃1 < P̂ ′′1 < 3P̃1, and 0 < P̂ ′′2 < P̃2 (see Figure 1).

Recall P̃1 = γ1(N0 − λ2)D/3f1(λ2), and P̃2 = 2γ2(N0 − λ2)D/3m2 are respectively

the P1− and P2−coordinates of the unique interior equilibrium Ẽ when N0 = N c
0 .

We now investigate the local stability properties of (1) through an examination
of the linearized system about each of the equilibria. The variational matrix of (1),
denoted by V (N,P1, P2), is given by −D − P1

γ1
f ′1(N)− P2

γ2
f ′2(N) − f1(N)

γ1
− f2(N)

γ2

P1f
′
1(N) f1(N)−m1 − 2γP1P

2
2 −2γP 2

1P2

P2f
′
2(N) 0 f2(N)−m2

 .

At E0 = (N0, 0, 0) we have

V (N0, 0, 0) =


−D − f1(N0)

γ1
− f2(N0)

γ2

0 f1(N0)−m1 0
0 0 f2(N0)−m2


with eigenvalues α1 = −D, α2 = f1(N0)−m1, and α3 = f2(N0)−m2. Thus E0 is
locally asymptotically stable for (1) provided f1(N0) < m1 (so that N0 < λ1) and
f2(N0) < m2 (so that N0 < λ2): that is, no other equilibria exist. It is unstable if
either N0 > λ1 (so that Eλ1 exists) or N0 > λ2 (so that Eλ2 exists).
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Figure 1. Existence and non-existence of interior equilibria of
model (1) in the (P1, P2)-plane. For N0 < N c

0 there is no inte-
rior equilibrium (the graph of the first equation of system (5) does
not intersect the curve). For N0 = N c

0 there is a unique interior
equilibrium (the graph of the first equation of system (5) is tan-
gent to the curve). For N0 > N c

0 there are precisely two interior
equilibria (the graph of the first equation of system (5) intersects
the curve in two distinct points).

Suppose N0 > λ1 so that Eλ1 = (λ1, P̄1, 0) exists. We examine the local stability
properties of Eλ1 . At Eλ1 the variational matrix is given by

V (λ1, P̄1, 0) =

 −D − P̄1

γ1
f ′1(λ1) −m1

γ1
− f2(λ1)

γ2

P̄1f
′
1(λ1) 0 0
0 0 f2(λ1)−m2

 .

The characteristic polynomial is given by

[(f2(λ1)−m2)− α]

[
α2 + α(D +

P̄1

γ1
)f ′1(λ1) +

m1P̄1

γ1
f ′1(λ1)

]
.

Since f ′1(N) > 0 for all N ≥ 0, and P̄1 ≥ 0, the Routh-Hurwitz criterion implies that

the roots of α2 + (D + P̄1

γ1
)f ′1(λ1)α + m1P̄1

γ1
f ′1(λ1) have negative real parts. Hence,

Eλ1
is locally asymptotically stable for (1) provided f2(λ1) < m2 (so that λ1 < λ2)

and is unstable if f2(λ1) > m2 (so that λ1 > λ2).
Assuming that N0 > λ2, so that Eλ2 = (λ2, 0, P̄2) exists. The variational matrix

at Eλ2
is given by

V (λ2, 0, P̄2) =

 −D − P̄2

γ1
f ′2(λ2) − f1(λ2)

γ1
−m2

γ2

0 f1(λ2)−m1 0
P̄2f

′
2(λ2) 0 0

 .
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The symmetrical property of V (λ2, 0, P̄2) and V (λ1, P̄1, 0) allows us to draw the
following conclusion: Eλ2 is locally asymptotically stable for (1) if and only if
f1(λ2) < m1 (so that λ2 < λ1) and is unstable if f1(λ2) > m1 (so that λ2 > λ1).

Now suppose that N0 ≥ N c
0 so that there exists at least one interior equilibrium

of the form Ê = (λ2, P̂1, P̂2). The variational matrix V (λ2, P1, P2) of (1) at an
equilibrium point of the form (λ2, P1, P2) (where both P1 and P2 are positive) is
given by −D − P1f

′
1(λ2)
γ1

− P2f
′
2(λ2)
γ2

− f1(λ2)
γ1

−m2

γ2

P1f
′
1(λ2) −m1 + f1(λ2)− 2γP 2

2P1 −2γP 2
1P2

P2f
′
2(λ2) 0 0

 .

The corresponding characteristic polynomial is given by r(α) = α3 +Aα2 +Bα+C,
where

A = D +
P1f

′
1(λ2)

γ1
+
P2f

′
2(λ2)

γ2
+ γP 2

2P1 > 0

B =
P2f

′
2(λ2)m2

γ2
+
P1f

′
1(λ2)f1(λ2)

γ1
+ γ(D +

P1f
′
1(λ2)

γ1
+
P2f

′
2(λ2)

γ2
)P 2

2P1 > 0

C = γP 2
2P1f

′
2(λ2)

[
m2P2

γ2
− 2P1f1(λ2)

γ1

]
.

(7)
We have three cases to consider for the different interior equilibrium points.

Case 1. At the critical point Ẽ = (λ2, P̃1, P̃2), where P̃1 = γ1(N0−λ2)D
3f1(λ2) and P̃2 =

2γ2(N0−λ2)D
3m2

, replacing each Pi in the expression for C with P̃i yields C = 0. Thus,

zero is an eigenvalue of V (λ2, P̃1, P̃2), so that Ẽ = (λ2, P̃1, P̃2) is a nonhyperbolic
rest point of model (1).

In the remaining cases, we use the following notations for the interior equilibria

when N0 > N c
0 : Ê′ = (λ2, P̂ ′1, P̂

′
2) and Ê′′ = (λ2, P̂ ′′1 , P̂

′′
2 ) with 0 < P̂ ′1 < P̃1,

P̃2 < P̂ ′2 < 3P̃2/2, P̃1 < P̂ ′′1 < 3P̃1, and 0 < P̂ ′′2 < P̃2.

Case 2. At the critical point Ê′ = (λ2, P̂ ′1, P̂
′
2), a direct computation of C leads

to C > 0. By the Routh-Hurwitz criterion, the eigenvalues of V (λ2, P̂ ′1, P̂
′
2) have

negative real parts if and only if A > 0 (true by definition of A) and AB > C. Hence,

when Ê′ exists , it is locally asymptotically stable for (1) if and only if AB > C.

Case 3. At the rest point Ê′′ = (λ2, P̂ ′′1 , P̂
′′
2 ), a direct computation of C gives us

C < 0. By the Routh-Hurwitz criterion, V (λ2, P̂ ′′1 , P̂
′′
2 ) has at least one eigenvalue

with positive real, so that Ê′′ is unstable (saddle point).
Roy [38] asserts that , when N0 > N c

0 and the functions fi are Michaelis-Menten
one of these two coexistence equilibria is locally stable whereas the other is unstable.
Our results are consistent with those of Roy [38] in that Ê′′ = (λ2, P̂

′′
1 , P̂

′′
2 ) is

unstable and we are able to give conditions under which Ê′ = (λ2, P̂
′
1, P̂

′
2) is locally

asymptotically stable.
We summarize the results of this subsection in the following theorem.

Theorem 2.1. 1. E0 always exists. It is locally asymptotically stable for (1), if
and only if N0 < λi for i = 1, 2.
2. Suppose λ1 < N0, so that Eλ1 = (λ1, P̄1, 0) exists. Eλ1 is locally asymptotically
stable for (1) if and only if λ1 < λ2 (so that f2(λ1) < m2) .
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3. Suppose λ2 < N0, so that Eλ2 = (λ2, 0, P̄2) exists. Eλ2 is locally asymptotically
stable for (1) if and only if λ2 < λ1 (so that f1(λ2) < m1) .

4. Suppose N0 = N c
0 , so that Ẽ = (λ2, P̃1, P̃2) exists. Then Ẽ is nonhyperbolic.

5. Suppose N0 > N c
0 , so that there are two distinct interior equilibria, Ê′ =

(λ2, P̂ ′1, P̂
′
2) and Ê′′ = (λ2, P̂ ′′1 , P̂

′′
2 ) with 0 < P̂ ′1 < P̃1, P̃2 < P̂ ′2 < 3P̃2/2, P̃1 <

P̂ ′′1 < 3P̃1, and 0 < P̂ ′′2 < P̃2. Then Ê′′ is a saddle, while Ê′ = (λ2, P̂ ′1, P̂
′
2) satisfy-

ing (8), is locally asymptotically stable for (1) if and only if AB > C.

A = D +
P̂ ′1f

′
1(λ2)

γ1
+
P̂ ′2f

′
2(λ2)

γ2
+ γP̂ ′2

2
P̂ ′1 > 0

B =
P̂ ′2f

′
2(λ2)m2

γ2
+
P̂ ′1f

′
1(λ2)f1(λ2)

γ1
+ γ(D +

P̂ ′1f
′
1(λ2)

γ1
+
P̂ ′2f

′
2(λ2)

γ2
)P̂ ′2

2
P̂ ′1 > 0

C = γP̂ ′2
2
P̂ ′1f

′
2(λ2)

[
m2P̂ ′2
γ2

− 2P̂ ′1f1(λ2)

γ1

]
.

(8)

2.3. Ecological interpretations of inequalities. This subsection gives ecolog-
ical interpretations of inequalities resulting from the local stability results for our
model (1) (see Theorem 2.1). By statement 1 of Theorem 2.1, the species-free steady
state is locally asymptotically stable if and only if fi(N0) < mi, for i = 1, 2. That
is, the growth rate of species Pi is strictly less than its removal rate mi, even when
the culture vessel is held at the input nutrient concentration N0. Thus neither P1

nor P2 can survive at this input level of nutrient.
Statement 2 means that the growth rate of species P2 is strictly less than its

removal rate when the nutrient level in the culture vessel is held at λ1. Thus, species
P2 cannot compensate for the rate at which it is being removed from competition.
It makes biological sense that only P1 avoids extinction for initial conditions in a
neighborhood of Eλ1

.
The biological interpretation of the local stability conditions for Eλ2

is symmet-
rical to that of Eλ1

.

2.4. Global results. In this subsection, we establish the global asymptotical sta-
bility of boundary equilibria due to the inadequacy of the resource supply. We first
establish the competition-independent extinction of Pi. The proof uses the following
result due to Miller [28].

Lemma 2.2. (Miller’s Lemma) Let ω(t) ∈ C2(t0,∞), ω(t) ≥ 0 and K > 0.
(a) If ω′(t) ≥ 0, ω(t) is bounded and ω′′(t) ≤ K for all t ≥ t0 then ω′(t) → 0 as
t→∞.
(b) If ω′(t) ≤ 0, ω′′(t) ≤ −K for all t ≥ t0 then ω′(t)→ 0 as t→∞.

Lemma 2.3. If λi > N0; then Pi(t)→ 0 as t→∞ in (1).

Proof of Lemma 2.3. Choose δ > 0 so that N0 + δ < λi. By Lemma 2.1(b), N(t) <
N0 + δ for all sufficiently large t. From the second and third equations of system
(1), and by monotonicity properties of uptake functions fi, we have

dPi(t)

dt
≤ Pi(t)[fi(N(t))−mi] ≤ Pi(t)[fi(N0 + δ)−mi] (9)

for all sufficiently large t. Hence by the definition of λi (that is, fi(λi) = mi),
dPi(t)

dt
< 0 for all sufficiently large t. Also, P ′′i (t) is bounded below. It follows
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from Lemma 2.2 (b) that P ′i (t) → 0 as t → 0. However, lim supt→∞ fi(N(t)) <
fi(N0 + δ) < mi so that the only possibility is that Pi(t)→ 0 as t→∞.

We are now in a position to prove that E0 is a global attractor when it is the
only steady state.

Theorem 2.2. If N0 < λi for i = 1, 2, E0 is globally asymptotically stable for (1).

Proof. Take Q ∈
{

(N,P1, P2) ∈ R3
+ : P1 > 0, P2 > 0

}
. Let Ω(Q) denote the omega

limit set of the orbit through Q. By the hypothesis and Lemma 2.3, any P =
(N,P1, P2) ∈ Ω(Q) satisfies P1 = 0 and P2 = 0. On

{
(N, 0, 0) ∈ R3

+

}
the system

reduces to N ′(t) = (N0 −N(t))D and hence N(t)→ N0. Therefore, {E0} ∈ Ω(Q).
Since all solutions of (1) are positive and bounded, Ω(Q) is a nonempty and compact
subset of R3

+. If P ∈ Ω(Q) then the entire trajectory through P is in Ω(Q). Hence,
E0 is the only candidate. Thus, E0 is globally asymptotically stable for (1).

The next theorem gives conditions under which Eλi is globally asymptotically
stable.

Theorem 2.3. (a) Suppose λ1 < N0 < λ2. Then Eλ1 is globally asymptotically
stable for (1).
(b) Suppose λ2 < N0 < λ1. Then Eλ2

is globally asymptotically stable for (1).

Proof. Here we need to prove only (a) as the proof of (b) is similar. Take

Q ∈
{

(N,P1, P2) ∈ R3
+ : P1 > 0, P2 > 0

}
.

Let Ω(Q) denote the omega limit set of the orbit through Q. By the hypothesis and
Lemma 2.3, any P = (N,P1, P2) ∈ Ω(Q) satisfies P2 = 0. On

{
(N,P1, 0) ∈ R3

+

}
the system reduces to

N ′(t) = (N0 −N(t))D − P1(t)

γ1
f1(N(t))

P ′1(t) = P1(t)(f1(N(t))−m1).

(10)

By an argument comparable to that given in Hsu [21], N(t)→ λ1 and P1(t)→ P̄1 =
γ1(N0−λ1)D

m1
. Therefore, {Eλ1

} ∈ Ω(Q). Since (10) has no periodic orbits and the

boundary is acyclic, it follows from Lemma 4.3 in Thieme [45] that Eλ1
is globally

asymptotically stable for (1).

2.5. Transfer of local stability and one-parameter bifurcation. In this sub-
section we describe the evolution of equilibria into the nonnegative cone of R3 and
the consequent transfer of stability as N0 is increased. In particular, whenever a
new boundary steady state coalesces with an existing one, a transcritical bifurcation
occurs. We have two scenarios to consider.

Scenario 1: λ1 < λ2. When N0 < λ1 only the washout equilibrium E0 exists and
is globally asymptotically stable. As N0 is increased so that N0 = λ1, E0 and Eλ1

coalesce. As N0 is increased still further, so that λ1 < N0 < λ2, Eλ1
bifurcates into

the nonnegative cone of R3 through E0. The washout equilibrium loses a degree
of stability, and Eλ1

is globally asymptotically stable for (1). As N0 is increased
so that N0 = λ2, E0 and Eλ2 coalesce. As N0 is increased still further so that
λ1 < λ2 < N0 < N c

0 , Eλ2 bifurcates into the nonnegative cone of R3 through E0.
Here, E0 loses another degree of stability, Eλ1

loses a degree of stability, and Eλ2

is locally asymptotically stable for (1). When N0 = N c
0 the interior equilibrium Ẽ
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becomes feasible in the positive cone of R3. For N0 > N c
0 , Ẽ undergoes a saddle-

node bifurcation to generate Ê′ and Ê′′. Ê′′ is a saddle point for model (1) while

Ê′ is locally asymptotically stable for (1) under conditions given in Theorem 2.1. In
other words, we have an unstable interior equilibrium and an asymptotically stable
interior equilibrium. As such, persistence is not possible. Unlike Roy [38], our goal
is not to identify the basin of attraction of the locally stable interior equilibrium.
We are more interested in global stability and uniform persistence.

Scenario 2: λ2 < λ1. When N0 < λ2 only the washout equilibrium E0 exists and
is globally asymptotically stable. As N0 is increased so that N0 = λ2, E0 and Eλ2

coalesce. As N0 is increased still further, so that λ2 < N0 < λ1, Eλ2
bifurcates into

the nonnegative cone of R3 through E0. The washout equilibrium loses a degree
of stability, and Eλ2 is globally asymptotically stable. As N0 is increased so that
N0 = λ1, E0 and Eλ1 coalesce. As N0 is increased still further so that λ2 < λ1 < N0,
Eλ1

bifurcates into the nonnegative cone of R3 through E0. Here, E0 loses another
degree of stability, Eλ2

loses a degree of stability, and Eλ1
is locally asymptotically

stable for (1), attracting solutions from the interior.

Hence, system (1) cannot be uniformly persistent.

2.6. Effect of nutrient recycling. The model considered so far lacks the effects
of nutrient recycling. The regeneration of nutrient due to bacterial decomposition
of the dead biomass must be considered. We modify model (1) to incorporate
the effect of nutrient recycled from each phytoplankton cell on its death. The
mortality of nontoxic phytoplankton P1 is the sum of its intrinsic death and the
death due to phytotoxic effects. The mortality of toxic phytoplankton P2 is due to
its intrinsic death and the death due autotoxic effects. For simplicity, we assume
limiting nutrient recycling is instantaneous. We denote by ηi (assumed to be less
than 1 and constant over time) the nutrient contents of a single cell of phytoplankton
Pi. Under these considerations, model (1) can be extended as follows:

dN

dt
= (N0 −N)D − 1

γ1
f1(N)P1 −

1

γ2
f2(N)P2

+ η1(ε1 + γP1P
2
2 )P1 + η2(ε2 + a2)P2,

dP1

dt
= f1(N)P1 −m1P1 − γP 2

1P
2
2

dP2

dt
= f2(N)P2 −m2P2,

N(0) > 0, P1(0) > 0, P2(0).

(11)

We assume that all model parameters are nonnegative. Adapting the method used
for the previous model, we can show that model (11) has the following steady

states: E∗0 = (N0, 0, 0), E∗λ1
= (λ1,

γ1(N0−λ1)D
m1−γ1η1ε1 , 0) with N0 > λ2 and m1 > γ1η1ε1,

and E∗λ2
= (λ2, 0,

γ2(N0−λ2)D
m2−γ2η2(ε2+a2

) with N0 > λ2 and m2 > γ2η2(ε2 + a2).

As before, there are zero, one or two interior equilibria depending on whether or
not the magnitude of the input nutrient concentration equals or exceeds a modified
critical value N c∗

0 given by,

N c∗
0 = λ2 + 3

√
27(f1(λ2)− γ1η1(f1(λ2)−D))(m2 − γ2η2(ε2 + a2))2(f1(λ2)−m1)

4γ1γ2
2D

3γ
.

(12)
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The qualitative dynamics remain unchanged from those exhibited by system (1)
when the effect of nutrient recycling is incorporated into the model. Only the critical
values of the parameters at which transitions take place are affected. For instance,
the eigenvalues of the Jacobian matrix at E?0 are α?1 = −D, α?2 = f1(N0) − m1,
and α?3 = f2(N0) − m2. Thus the local stability of E0 remains the same under
nutrient recycling. The characteristic polynomial of the Jacobian matrix at E∗λ1

=

(λ1,
γ1(N0−λ1)D
m1−γ1η1ε1 , 0) is given by

[(f2(λ1)−m2)− α]

[
α2 + α(D +

P̄1

ψ1γ1
)f ′1(λ1) + (

m1P̄1

γ1
− η1ε1)f ′1(λ1)

]
,

where ψ1 = 1 − γ1η1ε1
m1

. The existence conditions of E?λ1
and the Routh-Hurwitz

criterion imply that the roots of this polynomial have negative real parts. Hence
the local stability criteria of E?λ1

and Eλ1
are similar. Observe that along a given

Pi− direction, each equilibrium of model (11) appears below the corresponding
equilibrium of model (1).

Our analytical findings are consistent with those of Roy [38]. In the next section,
we further extend this work to include predation of phytoplankton species by a
zooplankton population.

3. The competition-allelopathy-predation model. We reconsider model (1)
and add a zooplankton species Z as a fourth interacting component. The two phy-
toplankton populations are the only prey of zooplankton. We neglect the potential
negative effect of toxic phytoplankton P2 on the growth of zooplankton Z. With
the above assumptions our model may be formulated as follows:

dN

dt
= (N0 −N)D − 1

γ1
f1(N)P1 −

1

γ2
f2(N)P2,

dP1

dt
= f1(N)P1 −m1P1 −

1

η1
g1(P1)Z − γP 2

1P
2
2 ,

dP2

dt
= f2(N)P2 −m2P2 −

1

η2
g2(P2)Z

dZ

dt
= (g1(P1) + g2(P2)− c)Z,

N(0) > 0, P1(0) > 0, P2(0) > 0, Z(0) > 0.

(13)

In these equations, N(t), P1(t), P2(t), D, γi, and mi have the same meanings as
in model (1) and the fi’s satisfy assumptions of model (1). Z(t) is the biomass of
zooplankton species at time t. Here, the removal rate c of zooplankton Z is the sum
of washout rate D and the specific death rate ξ, so that c = D + ξ. The response
function gi(Pi) represents the per capita rate of conversion of phytoplankton Pi to
biomass of population Z per unit of population Z as a function of the biomass of
phytoplankton Pi. We assume that the rate of conversion of biomass of phytoplank-
ton Pi to biomass of zooplankton Z is proportional to the amount of phytoplankton
consumed, so that the consumption rate of phytoplankton Pi per unit of population
Z is of the form 1

ηi
gi(Pi), where ηi is a growth yield constant (number of zooplankton

per unit of phytoplankton). Since P1 and P2 are perfectly substitutable resources
for Z (see for examples, Butler and Wolkowicz [8], León and Tumpson [25], Rapport
[35], and Ballyk and Wolkowicz [4]), the per capita growth rate of zooplankton as
a function of P1 and P2 takes the form G(P1, P2) = g1(P1) + g2(P2) for all P1 ≥ 0
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and P2 ≥ 0. Following Li and Kuang [26], Ruan [40], Wolkowicz and Lu [48] and
others, we make the following assumptions concerning the response functions gi:

gi : R+ −→ R+, gi is continuously differentiable, (14)

gi(0) = 0, g′i(Pi) > 0, lim
Pi→∞

gi(Pi) = ωi, for all Pi ≥ 0, (15)

where ωi denotes the maximal growth rate of zooplankton Z on phytoplankton Pi.
It will also be convenient to express gi(Pi) as

gi(Pi) = Pihi(Pi), (16)

where hi(Pi) is some positive and differentiable function. Since gi is continuously
differentiable it follows that

lim
Pi→0

hi(Pi) = g′i(0), (17)

and so we define

hi(0) = g′i(0). (18)

The breakeven concentration for population Z on phytoplankton Pi is obtained

by setting
dZ

dt
= 0 = gi(Pi)−c and solving for Pi. By the monotonicity assumptions,

the solution Λi is a uniquely defined positive extended real number as long as we
assume Λi =∞ if gi(Pi) < c for all Pi ≥ 0.

Prototypes of response functions gi often found in the literature (Anderson et
al. [2], Aris and Humphrey [3], Boon and Laudelout [6], Edwards [12], Jost et al.
[23], Monod [30], Ruan [40], Wolkowicz and Lu [48], Yang and Humphrey [49])
include Lokta-Volterra kinetics, Michaelis-Menten kinetics, sigmoidal kinetics, and
Ivlev’s functional response formulation.

The half-saturation constant Li of zooplankton for the ith phytoplankton is given
by gi(Li) = ωi

2 and represents the phytoplankton biomass Pi supporting growth at
half the maximal growth rate.

System (13) was considered by Butler and Wolkowicz [7] under the assumptions
that specific death rates are insignificant compared to the washout rate D (εi =
0, i = 1, 2, ξ = 0), Z feeds only on one phytoplankton Pi and there is no allelopathic
effect. Holt et al. [19] studied model (13) under linearity of response functions fi
and gi, and in the absence of allelopathic effects. Grover and Holt [13] relaxed the
linearity assumptions on the responses functions in Holt et al. [19] and included the
Holling types I and II response functions. In addition, system (13) was considered
by Li and Kuang [26] under the assumption that one of the Pi’s is absent and there
is no allelopathic interaction. As such, model (13) is a significant generalization of
those previously considered.

3.1. Preliminary results. We first establish that solutions of (13) are positive
and bounded.

Lemma 3.1. Solutions of (13) are (a) positive and (b) bounded.

Proof of (a). The proof is similar to that of Lemma 2.1 (a) except that we have to

replace the Ai’s and ti’s in the proofs of Pi(t) > 0 for all t, by the following Âi’s
and t̂i’s, respectively:
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For i ∈ 1, 2, let t̂i = min {t > 0 : Pi(t) = 0} and define

Â1 = min

{
f1(N(t))−m1 −

1

η1
h1(P1(t))Z(t)− γP1(t)P 2

2 (t), 0 ≤ t ≤ t̂1
}
, (19a)

Â2 = min

{
f2(N(t))−m2 −

1

η2
h2(P2(t))Z(t), 0 ≤ t ≤ t̂2

}
. (19b)

Suppose now that Z(0) > 0, then
dZ

dt
= (g1(P1) + g2(P2))Z − cZ yields Z(t) =

Z(0) exp
(∫ t

0
h(s)ds

)
> 0, where h(s) = g1(P1(s)) + g2(P2(s))− c.

Proof of (b). To prove boundedness of solutions of model (13), define T (t) = N(t)+
1
γ1
P1(t) + 1

γ2
P2(t) + Z(t). From (13) we have

dT
dt ≤ N0D −D0T ,

where D0 = min(D,m1,m2, c). By Gronwall’s lemma, 0 ≤ T (t) ≤ N0D
D0

+ (T (0) −
N0D
D0

) exp(−D0t). Since limt→∞(T (0) − dN0

D0
) exp(−D0t) = 0, it follows that for all

ε > 0, the solutions (N(t), P1(t), P2(t), Z(t)) of (13) satisfy

0 ≤ N(t) +
1

γ1
P1(t) +

1

γ2
P2(t) + Z(t) ≤ N0D

D0
+ ε, (20)

for sufficiently large t.

The Fundamental Existence-Uniqueness Theorem (see, for example, Perko [33])
and Lemma 3.1(b) ensure that solutions of (13) exist uniquely for all time.

3.2. Steady states: Existence and local stability. It is straightforward to
prove that all the boundary steady states of model (1) along with their existence
conditions are transferred to model (13) except that we add a zero Z component.
In the remainder of this work, we denote by λi and Λi the unique positive solutions
of fi(N) = mi, and gi(Pi) = c, respectively. The steady states of model (13) along
with their existence conditions are listed below.

The washout equilibrium E0 = (N0, 0, 0, 0) always exists. Eλ1
= (λ1, P̄1, 0, 0)

exists provided N0 > λ1. Eλ2
= (λ2, 0, P̄2, 0) exists as long as N0 > λ2. For

simplicity, we have kept the same notations for E0, Eλ1 , and Eλ2 as in model (1).
No equilibrium of the form (N, 0, 0, Z) (for which N and Z are both positive)

exists. EΛ1 = (N1,Λ1, 0, Z1) exists if and only if λ1 < N1 < N0 − Λ1m1

γ1D
. Similarly,

EΛ2 = (N2, 0,Λ2, Z2) exists provided λ2 < N2 < N0 − Λ2m2

γ2D
. Here Ni is the unique

positive solution of γi(N0 −N)D = Λifi(N) when Λi, while Zi = ηi(fi(Ni)−mi)
hi(Λi)

, for

i = 1, 2.
The zooplankton-free equilibria (for which for which N , P1, P2 are all positive

and Z = 0) depend on the magnitude N0 and are derived from the interior equilibria
of model (1) by just adding a zero Z component. As established in Subsection 2.2,
there is a critical value of N0

N c
0 = λ2 + 3

√
27f1(λ2)m2

2(f1(λ2)−m1)

4γ1γ2
2D

3γ
. (21)

Model (13) does not have any equilibrium point of the form (N,P1, P2, 0) (where
N, P1, and P2 are all positive) when N0 < N c

0 . When N0 = N c
0 , model (13)

has precisely one equilibrium given by Ẽ = (λ2, P̃1, P̃2, 0), where P̃1 = γ1(N0 −
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λ2)D/3f1(λ2), and P̃2 = 2γ2(N0 − λ2)D/3m2. As N0 is increased beyond N c
0 , the

straight line intersects the curve in two points and (13) has two equilibria of the form

Ē′ = (λ2, P̄ ′1, P̄
′
2, 0) and Ē′′ = (λ2, P̄ ′′1 , P̄

′′
2 , 0), where 0 < P̄ ′1 < P̃1, P̃2 < P̄ ′2 < 3P̃2/2,

P̃1 < P̄ ′′1 < 3P̃1, and 0 < P̄ ′′2 < P̃2 (see Figure 1).
The local stability properties of (13) through an examination of the linearized

system about the equilibria E0, Eλ1
, and Eλ2

are omitted because they are similar
to those of the corresponding boundary equilibria in Theorem 2.1.

Let Ê = (λ2, P̂1, P̂2, 0) be an arbitrary zooplankton-free critical point for (13).
The stability conditions for Ē′ are similar to those of an interior equilibrium for (1)
except that we must add the inequality

g1(P̄ ′1) + g2(P̄ ′2) < c.

We will just investigate the local stability properties of (13) through an exami-
nation of the linearized system about the equilibria EΛ1 , and EΛ2 .

We assume that N0 − Λ2m2

γ2D
> N2 > λ2 and f2(N2) > m2, so that EΛ2 exists.

We examine the local stability properties of EΛ2
. The variational matrix of (13)

evaluated at EΛ2 , is given by
−D − Λ2f

′
2(N2)
γ2

− f1(N2)
γ1

− f2(N2)
γ2

0

0 f1(N2)−m1 − Z2

η1
g′1(0) 0 0

Λ2f
′
2(N2) 0 f2(N2)−m2 − Z2

η2
g′2(Λ2) − c

η2

0 Z2g
′
1(0) Z2g

′
2(Λ2) 0

 .

The corresponding characteristic polynomial is given by

p(α) = (α− f1(N2) +m1 +
Z2

η1
g′1(0))(α3 + Ãα2 + B̃α+ C̃),

where

Ã = −f2(N2) +m2 +
Z2

η2
g′2(Λ2) +D +

Λ2f
′
2(N2)

γ2
, (22a)

B̃ = (D+
Λ2f

′
2(N2)

γ2
)(−f2(N2)+m2+

Z2

η2
g′2(Λ2)) + g′2(Λ2)Z2

c

η2
+ Λ2f

′
2(N2)

f2(N2)

η2
,

(22b)

C̃ = Z2g
′
2(Λ2)

c

η2
(D +

Λ2f
′
2(N2)

γ2
) > 0. (22c)

The monotonicity of f2(N) and g2(P2), the positivity of N2, Λ2, and Z2, together
with the Routh-Hurwitz criterion, ensure that the roots of the cubic factor have
negative real parts if and only if Ã > 0 and ÃB̃ > C̃. Hence, EΛ2

is locally asymp-

totically stable for (13) if and only if f1(N2) < Z2

η1
g′1(0) +m1, Ã > 0 and ÃB̃ > C̃.

The local stability analysis of EΛ1 = (N1,Λ1, 0, Z1) is symmetrical to the analysis
for EΛ2

. It is straightforward to show that the coefficients of the cubic factor of the
corresponding characteristic polynomial are given by

Â = −f1(N1) +m1 +
Z1

η1
g′1(Λ1) +D +

Λ1f
′
1(N1)

γ1
, (23a)
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B̂ = (D+
Λ1f

′
1(N1)

γ1
)(−f1(N1)+m1+

Z1

η1
g′1(Λ1)) + g′1(Λ1)Z1

c

η1
+ Λ1f

′
1(N1)

f1(N1)

η1
,

(23b)

Ĉ = Z1g
′
1(Λ1)

c

η1
(D +

Λ1f
′
1(N1)

γ1
) > 0. (23c)

We summarize the results of this subsection in the following theorem which
extends Theorem 2.1.

Theorem 3.1. 1. Ê0 is locally asymptotically stable for (13), if and only if N0 < λi
for i = 1, 2.
2. Suppose λ1 < N0, so that Eλ1 = (λ1, P̄1, 0, 0) exists. Eλ1

is locally asymptoti-
cally stable for (13) if and only if λ1 < λ2 (so that f2(λ1) < m2) and g1(P̄1) < c.
The local stability conditions for Eλ2

are symmetrical to those of Eλ1
and therefore

omitted.
3. Assume that N0 − Λ1m1

γ1D
> N1 > λ1 so that EΛ1

exists. EΛ1
is locally asymptot-

ically stable for (13) if and only if f2(N1) < Z1

η2
g′2(0) + m2, Â > 0 and ÂB̂ > Ĉ,

where Â, B̂, and Ĉ are as defined by equations (23).
4. Assume that N0 − Λ2m2

γ2D
> N2 > λ2 so that EΛ2 exists. EΛ2 is locally asymptot-

ically stable for (13) if and only if f1(N2) < Z2

η1
g′1(0) + m1, Ã > 0 and ÃB̃ > C̃,

where Ã, B̃, and C̃ are as defined by equations (22).

5. Suppose that N0 = N c
0 , so that Ẽ = (λ2, P̃1, P̃2, 0) exists. Then Ẽ is nonhyper-

bolic.
6. Suppose N0 > N c

0 , so that there are two distinct equilibria of the form, Ē′ =

(λ2, P̄ ′1, P̄
′
2, 0) and Ē′′ = (λ2, P̄ ′′1 , P̄

′′
2 , 0) with 0 < P̄ ′1 < P̃1, P̃2 < P̄ ′2 < 3P̃2/2,

P̃1 < P̄ ′′1 < 3P̃1, and 0 < P̄ ′′2 < P̃2. Then Ē′′ is a saddle, while Ē′ = (λ2, P̄ ′1, P̄
′
2)

satisfying (8), is locally asymptotically stable for (13) if and only if C > 0, AB > C,
and g1(P̄ ′1) + g2(P̄ ′2) < c. Here A, B, and C are the same as in Theorem 2.1 (5).

3.3. Global results. In this subsection we list conditions under which E0, Eλi
, and

EΛi are globally asymptotically stable for system (13) with respect to all solutions
initiating in the positive cone of R4.

Theorem 3.2. If N0 < λi for i = 1, 2, then the species-free steady state E0 is
globally asymptotically stable for (13).

Proof. Since N0 < λi for i = 1, 2 , by Lemma 2.3 we obtain Pi(t)→ 0 as t→∞ in
(13). Take

Q ∈
{

(N,P1, P2, Z) ∈ R4
+ : N > 0, P1 > 0, P2 > 0, Z > 0

}
.

Let Ω(Q) denote the omega limit set of the orbit through Q. Then it follows that
any P = (N,P1, P2, Z) ∈ Ω(Q) satisfies P1 = 0, P2 = 0. On

{
(N, 0, 0, Z) ∈ R4

+

}
the system reduces to

N ′(t) = (N0 −N(t))D,

Z ′(t) = −cZ
(24)

and hence N(t)→ N0 and Z(t)→ 0 as t→∞. Therefore, {E0} ∈ Ω(Q). Since all
solutions of (13) are positive and bounded, Ω(Q) is a nonempty compact subset of
R4

+. If P ∈ Ω(Q) then the entire trajectory through P is in Ω(Q). Hence, E0 is the
only candidate. Thus, E0 is globally asymptotically stable for (13).
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The next theorem gives conditions under which Eλi is globally asymptotically
stable for (13).

Theorem 3.3. (a) Suppose λ1 < N0 < λ2 and ω1 < c. Then Eλ1
is globally

asymptotically stable for (13).
(b) Suppose λ2 < N0 < λ1 and ω2 < c . Then Eλ2 is globally asymptotically stable
for (13).

Proof. We prove only (b) as the proof of (a) is symmetrical. Take

Q ∈
{

(N,P1, P2, Z) ∈ R4
+ : N > 0, P1 > 0, P2 > 0, Z > 0

}
.

Let Ω(Q) denote the omega limit set of the orbit through Q. Then it follows
from Lemma 2.3 that any P = (N,P1, P2, Z) ∈ Ω(Q) satisfies P1 = 0. On{

(N, 0, P2, Z) ∈ R4
+

}
the system reduces to

N ′(t) = (N0 −N(t))D − P2(t)

γ2
f2(N(t)),

P ′2(t) = P2(t)(f2(N(t))−m2)− g2(P2)Z

η2
,

Z ′(t) = (g2(P2(t))− c)Z(t).

(25)

The third equation of (25) gives us

Z ′(t) = (g2(P2(t))− c)Z(t) < (ω2 − c)Z(t) (26)

for all sufficiently large t. Hence, Z(t) ≤ Z(0) exp((ω2−c)t)→ 0 as t→∞ (because
ω2 < c). Since Z(t) > 0 we get Z(t) → 0 in (13). On

{
(N, 0, P2, 0) ∈ R4

+

}
system

(25) reduces to

N ′(t) = (N0 −N(t))D − P2(t)

γ2
f2(N(t)),

P ′2(t) = P2(t)(f2(N(t))−m2).

(27)

By an argument comparable to that given in Hsu [21], N(t)→ λ1 and P2(t)→ P̄2 =
γ2(N0−λ2)D

m2
. Therefore, {Eλ2

} ∈ Ω(Q). Since (27) has no periodic orbits and the

boundary is acyclic, it follows from Lemma 4.3 in Thieme [45] that Eλ2
is globally

asymptotically stable for (13).

The last result of this section gives conditions under which EΛi
is globally asymp-

totically stable for (13).

Theorem 3.4. (a) Assume that N0 − Λ1m1

γ1D
> N1 > λ1, f2(N1) < Z1

η2
g′2(0) + m2,

and ω1 > c. Then EΛ1 is globally asymptotically stable for (13).
(b) Assume that N0− Λ2m2

γ2D
> N2 > λ2, f1(N2) < Z2

η1
g′1(0)+m1, and ω2 > c . Then

EΛ2
is globally asymptotically stable for (13).

Proof. We prove only (a) as the proof of (b) is symmetrical. Take

Q ∈
{

(N,P1, P2, Z) ∈ R4
+ : N > 0, P1 > 0, P2 > 0, Z > 0

}
.

Let Ω(Q) denote the omega limit set of the orbit through Q. Then it follows
from Lemma 2.3 that any P = (N,P1, P2, Z) ∈ Ω(Q) satisfies P2 = 0. On
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(N,P1, 0, Z) ∈ R4

+

}
the system reduces to

N ′(t) = (N0 −N(t))D − P1(t)

γ1
f1(N(t)),

P ′1(t) = (f1(N(t))−m1)P1(t)− g1(P1)Z

η1
,

Z ′(t) = (g1(P1(t))− c)Z(t).

(28)

Applying Lemma 2.2 to the third equation of (28) gives us

(g2(P2(t))− c)Z(t)→ 0, (29)

as t→∞. Given that ω1 > c, Z(t) cannot approach 0 as t→∞. Hence, P1(t)→ Λ1

in (13). On
{

(N,Λ1, 0, Z) ∈ R4
+

}
system (28) reduces to

N ′(t) = (N0 −N(t))D − Λ1

γ1
f1(N(t)),

P ′1(t) = (f1(N(t))−m1)Λ1 −
Λ1h1(Λ1)Z

η1
,

(30)

because g1(P1) = P1h1(P1) by assumptions on the response function g1. By an
argument comparable to that given in Hsu [21], N(t) → N1 and Z(t) → Z1 =
η1(f1(N1)−m1)

h1(Λ1) . Therefore, {EΛ1
} ∈ Ω(Q). Since (30) has no periodic orbits and the

boundary is acyclic, it follows from Lemma 4.3 in Thieme [45] that EΛ1
is globally

asymptotically stable for (13).

We found two new equilibria of the form (N1,Λ1, 0, Z1) and (N2, 0,Λ2, Z2) that
did not exist for the model (1). These new equilibria are globally asymptotically
stable under conditions given by Theorem 3.4. Another striking change on model
(1) under predation (referred to as model (13)) is the existence and uniqueness of
an interior equilibrium point (see Figure 7). The analytical part of this result is
achieved through an appropriate choice of the model parameters and variables. The
proof is left for future investigation. This shows that adding predation to model (1)
increases the number of boundary equilibria and brings diversity in the ecosystem.

Note that it is a simple matter to incorporate nutrient recycling into system
(13) in much the same way this was done for model (1). Although delays in nutri-
ent recycling may occur in some systems (see for example, Beretta et al. [5]), we
assume instantaneous recycling of nutrients lost from phytoplankton and zooplank-
ton. Grover and Holt [13] justify this assumption by the statement that nutrient
recycling results from microorganisms with shorter generation times and more rapid
metabolism than other biotic components. Model (13) under instantaneous nutrient
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recycling takes the form:

dN

dt
= (N0 −N)D − 1

γ1
f1(N)P1 −

1

γ2
f2(N)P2

+ θ1(ε1 + γP1P
2
2 )P1 + θ2(ε2 + a2)P2 + θ3ξZ,

dP1

dt
= f1(N)P1 −m1P1 −

1

η1
g1(P1)Z − γP 2

1P
2
2 ,

dP2

dt
= f2(N)P2 −m2P2 −

1

η2
g2(P2)Z,

dZ

dt
= (g1(P1) + g2(P2)− c)Z,

N(0) > 0, P1(0) > 0, P2(0) > 0, Z(0) > 0.

(31)

In these equations θ1, θ2, and θ3 (assumed to be less than 1) are the nutrient
contents of a single cell of species P1, P2, and Z, respectively. The variables and
remaining parameters of model (31) are the same as in model (13). It is straightfor-
ward to verify that instantaneous nutrient recycling does not impact the qualitative
behavior of model (13). Only the values at which transitions take place are altered.
The explanations are similar to those for model (11) and therefore are omitted.

4. Examples.

4.1. Example 1. In the figures of this subsection, each of the outcomes previously
described analytically is illustrated. We ran simulations using Matlab. We consider
the system (1) with D = mi = γi = 1, i = 1, 2, γ = 0.11, µ1 = 8.5, µ2 = 6,
K1 = 0.6, and K2 = 0.7. The consumption functions fi follow Michaelis-Menten
kinetics, so that f1(N) = 8.5N

0.6+N and f2(N) = 6N
0.7+N . It is straightforward to check

that λ1 = 0.07 and λ2 = 0.14. The time frame for our simulations was 0 to 25,000
days. Only the first 60 days are shown in the figures of this subsection. A very
large grid of initial conditions (N(0), P1(0), P2(0)) in the positive cone Int(R3

+) was
used to ensure convergence of all solutions of system (1) to the indicated boundary
equilibrium. For illustration, we use (N(0), P1(0), P2(0)) = (0.1, 0.7, 0.7).

We first take N0 = 0.05, so that N0 < λ1 < λ2. By Theorem 2.2, the species-free
steady state E0 is globally asymptotically stable for (1): all solutions of (1) tend to
E0 regardless of initial condition. One such solution is depicted in Figure 2.

We then increase N0 to 0.1, so that λ1 < N0 < λ2. By Theorem 2.3, Eλ1
is

globally asymptotically stable for (1): all solutions of (1) tend to Eλ1
regardless of

initial condition. One such solution is depicted in Figure 3.

4.2. Example 2. In this subsection the outcomes for the competition-allelopathy-
predation model are illustrated. We ran simulations using Mathematica Version
10. We consider the system (13) with D = mi = γi = ηi = 1, i = 1, 2, c = 1.1,
µ1 = 8.5, µ2 = 6, K1 = 0.6, K2 = 0.7, ω1 = 8.4 (except in Figure 5 where
ω1 = 1), ω2 = 5.9, L1 = 0.9, and L2 = 1.8. The phytotoxic coefficient is taken
to be γ = 0.11. The consumption functions fi and gi follow Michaelis-Menten
kinetics, so that f1(N) = 8.5N

0.6+N , f2(N) = 6N
0.7+N , g1(P1) = 8.4P1

0.9+P1
, and g2(N) =

5.9P2

1.8+P2
. The time frame for our simulations was 0 to 25,000 days. Only the first

60 or 400 days are shown in the figures of this subsection. In all figures we take
(N(0), P1(0), P2(0), Z(0)) = (0.1, 0.7, 0.7, 0.8). It is straightforward to check that
λ1 = 0.07, λ2 = 0.14, Λ1 = 0.1356, Λ2 = 0.7125, N1 = 0.2556, and N2 = 0.0939.
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Figure 2. Graphs of N(t), P1(t), and P2(t). The input nutrient
concentration N0 = 0.05, satisfies N0 < λ1 < λ2. By Theorem 2.2,
the washout equilibrium E0 is globally asymptotically stable for
model (1).

We first take N0 = 0.05, so that N0 < λ1 < λ2. By Theorem 3.2, the species-free
steady state E0 is globally asymptotically stable for (13): all solutions of (13) tend
to E0 regardless of initial condition. One such solution is depicted in Figure 4.

We then increase N0 to 0.12, so that λ1 < N0 < λ2, and we pick ω1 = 1, so
that ω1 < c. By Theorem 3.3, Eλ1

is globally asymptotically stable for (13): all
solutions of (13) tend to Eλ1 regardless of initial data. One such solution is depicted
in Figure 5.

We further increase N0 to 0.60, so that N0 − Λ1m1

γ1D
> N1 > λ1, and f2(N1) <

Z1

η2
g′2(0)+m2. We choose ω1 = 8.4, so that ω1 > c. By Theorem 3.4, EΛ1 is globally

asymptotically stable for (13): all solutions of (13) tend to EΛ1 regardless of initial
conditions as shown in Figure 6.

We finally increase N0 to 0.70. Figure 7 shows that there is a unique interior
equilibrium for model (13).
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Figure 3. Graphs of N(t), P1(t), and P2(t). The input nutrient
concentration N0 = 0.10 satisfies λ1 < N0 < λ2. By Theorem
2.3 (a), the non-toxic monospecies Eλ1 is globally asymptotically
stable for model (1).

Z(t)

N(t)

P1 (t) P2 (t)

0 10 20 30 40 50 60

0.0

0.5

1.0

1.5

t

N(t),P1(t),P2(t),Z(t)

Figure 4. Graphs of N(t), P1(t), P2(t), and Z(t). The input
nutrient concentration N0 = 0.05 satisfies N0 < λ1 < λ2. By
Theorem 3.2, the species-free equilibrium is globally asymptotically
stable for model (13).
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Figure 5. Graphs of N(t), P1(t), P2(t), and Z(t). The input nu-
trient concentration N0 = 0.12 satisfies λ1 < N0 < λ2, and c > ω1,
(c = 1.1, ω1 = 1). By Theorem 3.3 (a), the nontoxic monospecies
equilibrium Eλ1

is globally asymptotically stable for model (13).
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Figure 6. Graphs of N(t), P1(t), P2(t), and Z(t). The input nu-
trient concentration N0 = 0.60 satisfies N0 − Λ1m1

γ1D
> N1 > λ1.

Also, ω1 = 8.4 > c and f2(N1) < Z1

η2
g′2(0) + m2. By Theorem 3.4

(a), the equilibrium EΛ1 is globally asymptotically stable for model
(13).
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Figure 7. Graphs of N(t), P1(t), P2(t), and Z(t). The input nu-
trient concentration N0 = 0.70 satisfies the assumptions on the
existence of an interior equilibrium of model (13).
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5. Concluding remarks. In this paper, we have extended the work of Roy [38]
to general uptake functions, demonstrating again that allelopathy due to one toxin-
producing species can lead to stable coexistence (while competitive exclusion of the
weaker competitor would otherwise occur). Roy used the phytotoxic coefficient γ
for his bifurcation analysis. We have used the input nutrient concentration N0 as
our bifurcation parameter because it can be controlled by the experimenter. As
N0 is increased, the model exhibits a biologically revelant evolution of equilibria
into the nonnegative cone of R3 and the consequent transfer of stability. We have
studied local and global stability of each of the boundary equilibria E0, Eλ1

, and
Eλ2

of model (1). When N0 reaches at least the threshold N c
0 , we are able to study

local stability of interior equilibria. Model (1) cannot exhibit uniform persistence
because when N0 > N c

0 , we have two distinct interior equilibria: one is a saddle and
the other one is locally asymptotically stable. This result remains true when the
toxic phytoplankton P2 is the stronger competitor. We recall that when λ2 < λ1

(P2 is stronger in competition than P1) there is no interior equilibrium.
The incorporation of nutrient recycling into the model (1) modifies only the

parameter bounds at which transitions occur, leaving the qualitative dynamics of
the model (1) unchanged.

Predation can be responsible for diversity in ecosystems. Predation may pro-
mote, hinder or have no effect on interspecific competitive interactions (Chesson et
al. [10]). We introduced predation of phytoplankton species by zooplankton in the
model (1) and analyzed the modified system. Model (13) illustrates how predation
increases the number of boundary equilibria of model (1) and brings diversity to
interspecific competitive interactions. When the input nutrient concentration N0

reaches a critical value, model (1) has one or two interior equilibria while our simula-
tions indicate that model (13) has a unique interior equilibrium (see Figure 7). The
system (31) extends model (13) to incorporate instantaneous nutrient recycling.

In a recent work (Kengwoung-Keumo [24]), we showed that model (13), in the
absence of phytotoxic effects and nutrient recycling, exhibits uniform persistence.
For future work, we could investigate if the persistence result still holds in the
presence of phytotoxic effects and nutrient recycling. We could also incorporate
excretion and/or the phytotoxic effects of toxins on the growth of zooplankton and
study the impact(s) on the model (13).

Acknowledgments. The author sincerely appreciates the constructive comments
and suggestions of the editor and two referees.
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