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Abstract. A two-strain tuberculosis (TB) transmission model incorporating

antibiotic-generated TB resistant strains and long and variable waiting periods

within the latently infected class is introduced. The mathematical analysis is
carried out when the waiting periods are modeled via parametrically friendly

gamma distributions, a reasonable alternative to the use of exponential dis-

tributed waiting periods or to integral equations involving “arbitrary” dis-
tributions. The model supports a globally-asymptotically stable disease-free

equilibrium when the reproduction number is less than one and an endemic

equilibriums, shown to be locally asymptotically stable, or l.a.s., whenever the
basic reproduction number is greater than one. Conditions for the existence

and maintenance of TB resistant strains are discussed. The possibility of ex-

ogenous re-infection is added and shown to be capable of supporting multiple
equilibria; a situation that increases the challenges faced by public health ex-

perts. We show that exogenous re-infection may help established resilient com-
munities of actively-TB infected individuals that cannot be eliminated using

approaches based exclusively on the ability to bring the control reproductive

number just below 1.
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1. TB reservoirs. Tuberculosis (TB) is a bacterial disease caused by the etio-
logical agent Mycobacterium tuberculosis. The World Health Organization (WHO)
reports roughly 9.4 million new cases (incidence) per year, an active-TB preva-
lence of 14 million, and 1.6 to 1.9 million deaths per year, a number that includes
400,000 deaths coming from HIV positive individuals each year. Most active-TB
cases are concentrated in South East Asia, African and Western Pacific regions
(page 1; [43]). Approximately 250,000 multi-drug TB resistant (MDR TB) cases
(including increasing cases of extremely drug resistant or XDR-MDR TB), most
involving undiagnosed (nearly ninety percent) individuals, were reported by 2009
and the number seems to be increasing. Funding to control TB has passed the 11
billion mark (US dollars) (page 1; [43]). Why has it been so difficult to control TB?

“Latent tuberculosis infection (LTBI) ... a state of persistent immune response to
stimulation by Mycobacterium tuberculosis antigens without evidence of clinically
manifested active TB” (page 10; [19]) is extremely prevalent, a huge TB reservoir.
“... One third of the world’s population is estimated to be infected with M. tuber-
culosis ... are at risk for developing active TB disease and becoming infectious. The
lifetime risk of [TB reactivation] for a person with documented LTBI is estimated to
be 5−10%, with the majority developing TB disease within the first five years after
initial infection ... the risk of developing TB disease following infection depends on
several factors, the most important one being the immunological status of the host”
(page 10; [19])

Tuberculosis (TB) has often simplistically but effectively been classified as a
fast/slow disease since there is a small window in time, following infection, that may
give rise to active TB cases. However, in general, TB-activation (and re-activation)
is slow and rare [28]. Here, it is assumed that TB may be activated at “all” speeds,
with most active-TB cases the result of extremely slow rates of activation at this
time in history. TB progression has, over the past centuries, moved from fast (and
common) to primarily slow (and rare) progressing disease. Hence, the use of flexible
distributions to model TB latency periods is natural and necessary. Today, active-
TB (infectious) individuals (8−14 million per year globally) remain so for relatively
short periods of time due to the generalized availability of antibiotics. Yet, active
TB disease remains a serious global health threat, the result of a lack of universal
access to antibiotics and the high levels of non-compliance with antibiotic treatment
when available. Further, the emergence and/or re-emergence of diseases that have
a strong deleterious impact on the immunological status of individuals (HIV and
Ebola) have increased the importance that of global threat posed by TB. In short,
TB progression, the transfer or movement of infected latent individuals to the active
stage, is today relatively uncommon (given the size of the reservoir), taking place
on time scales not too different than the average life span of human hosts albeit
immune-compromising diseases are known to facilitate the reactivation of latent TB,
with malnutrition playing a central role for decades. [2, 3, 9, 10, 12, 32, 36, 38, 42].

In short, there is a huge TB-latent human reservoir, for Mycobacterium tuber-
culosis [6]. This reservoir has increased its average probability of re-activation due
to the emergence and growth HIV and TB drug-resistant strains; data supporting
the premises of this article, which can be summarized in two questions. What is
the role of long and variable latency periods and treatment on the co-evolutionary
dynamics of MDR-TB and TB? and what is the role if exogenous re-infection?
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2. Drug resistance. One of the biggest health challenges facing the world is tied
in to the dramatic increases in the levels of drug resistance, particular in hospital
settings [18, 31]. The case of Tuberculosis, a disease heavily dependent on multi-
drug treatment that must be faithfully carried out over 6-9 months [10], is a source of
concern due the fact that a number of TB-active individuals do not complete treat-
ment giving rise to the emergence of drug resistance TB strains [11, 23, 27]. In this
manuscript, we study the dynamics of TB-drug resistance in a setting that expands
earlier works [7, 11, 12, 28]. In this manuscript, the latency period distributions
for the sensitive and resistant TB strains are modeled using gamma distribution to
better account for the length and variability of these periods on TB dynamics. This
paper is organized as follows: Section 3 introduces the general model, identifies some
key epidemiological parameters and averages; Section 4 carries the basic analysis
of special sub-models where the latency periods for the drug sensitive and resistant
strains have different distributions (not the same gamma distribution), conditions
for co-existence and competitive exclusion are identified using appropriately defined
and identified threshold conditions; Section 5 proceeds with the full analysis of the
general model under the assumption that drug sensitive and drug resistant strains
are given by distinct gamma distributions; numerical simulations are used to high-
light the effects of using distinct gamma distributions; Section 6 looks at the impact
of exogenous re-infection in two-strain models including the implications for public
health policy while Section 7 collects conclusions and discusses the implications of
the models’ results.

3. Model formulation. The total population at time t, denoted by N(t), is sub-
divided into five disjoint classes of susceptible (S(t)), latent (L(t); with n latent
stages), infectious (I(t)), drug-resistant latent (M(t); with m latent stages), and
drug-resistant infectious (J(t)) individuals, so that

N(t) = S(t) +

n∑
i=1

Li(t) + I(t) +

m∑
k=1

Mk(t) + J(t).

It is assumed that susceptible humans are recruited into the population at a constant
rate Λ while susceptible individuals acquire TB infections at the per-capita rate

λ1 = β1
I

N
, (1)

and drug-resistant infections at the per-capita

λ2 = β2
J

N
, (2)

where β1 and β2 denote susceptibility to TB and drug-resistant TB infections,
respectively. It is assumed that latent individuals do not transmit infection and
that the per-capita natural death rate in each class is given by the constant µ.
Thus, the rate of change of the susceptible population is given by

dS

dt
= Λ− λ1S − λ2S − µS.

The population of latent individuals in stage 1 (L1) is generated via the infection of
susceptible individuals (at the rate λ1) and via the fraction q of the rate of treated
infectious individuals, with r denoting the per-capita treatment rate for infectious
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individuals. This latent population progresses to the next latent stage (L2; at a
rate a1σ) while experiencing the per-capita natural death µ, and so,

dL1

dt
= λ1S + qrI − (a1σ + µ)L1.

In general, population of latent individuals in stage i (with 2 ≤ i ≤ n) come from the
progression of individuals from the previous stage. That is, those in stage Li−1 move
into the stage i at the per-capita rate ai−1σ. This population looses individuals via
progression to the next latent stage at the per-capita rate aiσ and by natural death
at the per-capita rate µ, so that

dLi
dt

= ai−1σLi−1 − (aiσ + µ)Li; i = 2, · · · , n.

The population of infectious individuals comes from the latent individuals in the
final stage (n). It is assumed that they develop symptoms at this stage at the per-
capita rate anσ while loosing individuals via antibiotic treatment at the per-capita
rate r, or via natural death at the per-capita death rate µ, or via disease-induced
death at the per-capita rate d1. Thus, we have,

dI

dt
= anσLn − (r + µ+ d1)I.

The population of drug-resistant latent individuals in stage 1 (M1) come from the
population of susceptible individuals acquiring drug-resistant infections at the per
susceptible and per infective (with resistant strain) rate λ2. It looses individual via
progression to the next drug-resistant latent stage M2; at the per-capita rate b1η
while dying from natural causes at the per-capita death µ, so that

dM1

dt
= λ2S − (b1η + µ)M1.

The population of drug-resistant latent individuals in stage k (with 2 ≤ k ≤ m)
comes from the progression of individuals in stage k − 1 at the per-capita rate
bk−1η. It losses individuals via progression to the next drug-resistant latent stage
at per-capita rate bkη or by natural death at the per-capita rate µ. Thus,

dMk

dt
= bk−1ηMk−1 − (bkη + µ)Mk; k = 2, · · · ,m.

Finally, the population of drug-resistant infectious individuals is generated when
drug-resistant individuals in the final stage (m) develop symptoms at the per-capita
rate bmη with the fraction (1− q) of treated infectious individuals developing drug-
resistant TB (due to non-compliance with treatment). This class looses individuals
by natural death at the per-capita rate µ and via disease-induced death at the
per-capita rate d2, so that

dJ

dt
= bmηMm + (1− q)rI − (µ+ d2)J.

In the above formulation, ai, bk (i = 1, 2, · · · , n; k = 1, 2, · · · ,m) are assumed to
be constants and so the distributions of latent periods at each stage is exponential.
That is,

PLi = aiσe
−aiσS , i = 1, 2, · · · , n,

PMk
= bkηe

−bkηS , k = 1, 2, · · · ,m. (3)
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In Eq. (3), TLi = 1
aiσ

and TMk
= 1

bkη
denote the mean stage latent periods. Using

the definitions in Eq. (3) we have

n∑
i=1

1

aiσ
=

1

σ
and

n∑
i=1

1

bkη
=

1

η
,

representing the mean time spent in the latency stage (e.g., 1
σ for the latent class,

L), which is “shared” among the various stages with the time period 1
σ distributed

equally (if a1 = a2 = · · · = an = n) or unequally (if a1 6= a2 6= · · · 6= an 6= n) among
all the Li (i = 1, 2, · · · , n) stages.

Letting,

L =

n∑
i=1

aiLi
n

and M =

m∑
k=1

bkMk

m
, (4)

and making use of Eqs. (3) and (4), it follows that the time spent in the the
classes L and M are gamma-distributed. Specifically, their corresponding respective
distributions are

PL(S) =
(nσ)ne−nσSSn−1

Γ(n)
; n ≥ 1,

PM (S) =
(mη)me−mηSSm−1

Γ(m)
; m ≥ 1,

with the mean associated latent periods given, respectively, by

TL =
1

σ
, and TM =

1

η
.

Putting the definitions, formulations and assumptions together, it follows that a
model for the transmission dynamics of TB, an infectious disease that involves a
wild and resistant (antibiotic generated) strains, must involve latent, infectious,
drug-resistant latent and drug-resistant infectious periods, that when modeled via
gamma distributed sojourn periods, give rise to the following non-linear system of
nonlinear differential equations (model flow diagram is given in Figure 1 and the
associated variables and parameters are tabulated in Table 1).

M𝟏

ʌ
(1-q)r

μ

μ

qrI
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𝝁𝝁𝝁
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Figure 1. Flow diagram of the model (5)
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Symbol Description

Variables

S(t) Population of susceptible individuals
Li(t) Population of latent individuals
I(t) Population of infectious individuals
Mk(t) Population of drug-resistant latent individuals
J(t) Population of treated individuals

who developed drug resistance

Parameters

Λ Recruitment rate
µ Natural death rate
β1, β2 Effective contact rate needed to acquire a TB

and a drug-resistant TB infections, respectively
r Per-capita treatment rate for infectious individuals
q Fraction of treated infectious individuals

who complete treatment
aiσ Progression rate from latent stage i

to stage i+ 1(i = 1, · · · , n− 1)
anσ Progression rate of latent individuals

in stage n to infectious class
bkη Progression rate from drug-resistant latent

stage k to stage k + 1(k = 1, · · · ,m− 1)
bmη Progression rate of drug-resistant latent individuals

in stage m to drug-resistant infectious class
d1, d2 TB-induced mortality rate for individuals in

I and J classes, respectively

Table 1. Description of variables and parameters of the model (5).

dS

dt
= Λ− λ1S − λ2S − µS,

dL1

dt
= λ1S + qrI − (a1σ + µ)L1,

dLi
dt

= ai−1σLi−1 − (aiσ + µ)Li; i = 2, · · · , n,

dI

dt
= anσLn − (r + µ+ d1)I, (5)

dM1

dt
= λ2S − (b1η + µ)M1,

dMk

dt
= bk−1ηMk−1 − (bkη + µ)Mk; k = 2, · · · ,m,

dJ

dt
= bmηMm + (1− q)rI − (µ+ d2)J.

3.1. Basic model properties. In this section we show that our model is “biolog-
ically” well posed.
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Theorem 3.1. Let the initial data for the model (5) be S(0) > 0, Li(0) > 0, I(0) >
0,Mk(0) > 0 and J(0) > 0 for i = 1, · · · , n, k = 1, · · · ,m. Then, the solutions
S(t) > 0, Li(t) > 0, I(t) > 0,Mk(t) > 0 and J(t) > 0 for i = 1, · · · , n, k = 1, · · · ,m
of the model (5), with positive initial data, will remain positive for all time t > 0.

Proof. Let

t1 = sup{t > 0 : S > 0, Li > 0, I > 0,Mk > 0, J > 0,

∈ [0, t], i = 1, · · · , n, k = 1, · · · ,m}.

It follows from the first equation of Model (5) that

dS

dt
= Λ− λ1S − λ2S − µS,

which can be written as,

d

dt

{
S(t) exp

[
µt+

∫ t

0

(λ1(τ) + λ2(τ))dτ

]}
=

Λ

{
exp

[
µt+

∫ t

0

(λ1(τ) + λ2(τ))dτ

]}
.

Thus,

S(t1) exp

[
µt1 +

∫ t1

0

(λ1(τ) + λ2(τ))dτ

]
− S(0) =∫ t1

0

Λ

{
exp

[
µy +

∫ y

0

(λ1(τ) + λ2(τ))dτ

]}
dy,

so that,

S(t1) = S(0) exp

[
−µt1 −

∫ t1

0

(λ1(τ) + λ2(τ))dτ

]

+

{
exp

[
−µt1 −

∫ t1

0

(λ1(τ) + λ2(τ))dτ

]}
∫ t1

0

Λ

{
exp

[
µy +

∫ y

0

(λ1(τ) + λ2(τ))dτ

]}
dy > 0.

Similarly, it can be shown that Li(t) ≥ 0, I(t) ≥ 0,Mk(t) ≥ 0, and J(t) ≥ 0 (with
i = 1, · · · , n, k = 1, · · · ,m )for all time t > 0. Hence, all solutions of Model (5)
remain positive for all non-negative initial conditions, as required.

Theorem 3.2. The closed set

D =

{
(S,L1, · · · , Ln, I,M1, · · · ,Mm, J) ∈ Rn+m+3

+ : N ≤ Λ

µ

}
is positively-invariant and attracts all positive solutions of Model (5).

Proof. Consider the biologically-feasible region, D and observe that the rate of
change of the total population, obtained by adding all the equations of the model
(5), is given by

dN

dt
= Λ− µN − d1I − d2J,

≤ Λ− µN.
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It follows that dN
dt < 0 whenever N > Λ

µ . Further, since dN
dt ≤ Λ − µN , it is clear

that, using a standard comparison theorem [24] that

N(t) ≤ N(0)e−µt +
Λ

µ
(1− e−µt).

Hence we have that N ≤ Λ
µ if N(0) ≤ Λ

µ . Hence, all solutions of the model with

initial conditions in D do remain in D for all t > 0 (i.e., the ω-limits sets of System
(5) are contained in D), that is, the set D is positively- invariant and attracting.

Since the region D is positively-invariant, the unique solution of the model (5) ex-
ists and depends continuously on the initial data of the model (hence, it is sufficient
to study its asymptotic dynamics in the region D [21]).

4. Special model case: n = 2 and m = 1. First, we focus on the analysis of the
special case of Model (5) obtained when n = 2 and m = 1, namely,

dS

dt
= Λ− λ1S − λ2S − µS,

dL1

dt
= λ1S + qrI − (a1σ + µ)L1,

dL2

dt
= a1σL1 − (a2σ + µ)L2,

dI

dt
= a2σL2 − (r + µ+ d1)I, (6)

dM

dt
= λ2S − (b1η + µ)M,

dJ

dt
= b1ηM + (1− q)rI − (µ+ d2)J.

4.1. Disease-free equilibrium (DFE). Model (6) always supports a Disease-free
equilibrium (DFE), by setting the right-hand side of the equations of the model to
zero and solving for the state variables. Then we have

ε0 = (S∗, L∗1, L
∗
2, I
∗,M∗, J∗) = (

Λ

µ
, 0, 0, 0, 0, 0). (7)

Making use of the next generation operator method [14], we compute RC and
address the conditions that guarantee the local stability of ε0. The non-negative
matrix, FC , of the new infection terms, and the M -matrix, VC , of the transition
terms associated with the model (6), are given, respectively, by

FC =


0 0 β1 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 β2

0 0 0 0 0

 ,

VC =


a1σ + µ 0 −qr 0 0
−a1σ a2σ + µ 0 0 0

0 −a2σ r + µ+ d1 0 0
0 0 0 b1η + µ 0
0 0 −(1− q)r −b1η µ+ d2

 .
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It follows, from Theorem 2 in [14], that the control reproduction numbers of Model
(6), defined by RC = ρ(FCV−1

C ) (where ρ denotes the spectral radius of the next

generation matrix FCV−1
C ) are given by:

RC1
(q) =

β1a1σa2σ

(a1σ + µ)(a2σ + µ)(r + µ+ d1)− qra1σa2σ
, (8)

and

RC2 =
β2b1η

(µ+ d2)(b1η + µ)
. (9)

RC1
and RC2

are control reproduction numbers for the TB wild strain only and for
the drug-resistant TB strain, respectively. Thus, the spectral radius of the matrix
FCV−1

C is

RC = max{RC1
,RC2

}, (10)

4.2. Interpretation of RC .

4.2.1. Terms in the expression for RC1
. The average duration that an individual

spends in class I per visit to this class is given by TI = 1
r+µ+d1

. The newly-infected

individuals entering into compartments L1 and L2, a fraction h1 = a1σa2σ
(a1σ+µ)(a2σ+µ)

survives and proceeds to stage I. A fraction h2 = qr
r+µ+d1

of infectious individuals

re-enters compartment L1. Hence, a fraction h1 of latent individuals passes through
compartment I at least once, a fraction h2

1h2 passes through at least twice, and a

fraction hk1h
k−1
2 passes through at least k times. The expected number of times an

latent individual passes through compartment I is

h1 + h2
1h2 + · · · = h1

1− h1h2
=

(r + µ+ d1)a1σa2σ

(a1σ + µ)(a2σ + µ)(r + µ+ d1)− qra1σa2σ
.

Thus, the expected total time that a newly-infected individual spends in compart-
ment I is given by

T totalI =
a1σa2σ

(a1σ + µ)(a2σ + µ)(r + µ+ d1)− qra1σa2σ
.

Thus, the generation of secondary TB-strain infections generated by a “typical” in-
fectious individual when an appropriate fraction of population is receiving treatment
is given by

β1a1σa2σ

(a1σ + µ)(a2σ + µ)(r + µ+ d1)− qra1σa2σ
= RC1

.

4.2.2. Terms in the expression for RC2
. Similarly, the average duration in the class

J is given by TJ = 1
µ+d2

, the newly-infected individuals entering compartment M

with a fraction b1η
(b1η+µ) surviving and proceeding to stage J . Thus, the expected

total time that a newly-infected individual spends in compartment J is given by

T totalJ =
b1η

(b1η + µ)(µ+ d2)
.

Thus, the generation of secondary TB resistant-strain infections generated by a
“typical” resistant-strain infected individual given that an appropriate fraction of
the population is receiving treatment, is given by

β2b1η

(b1η + µ)(µ+ d2)
= RC2

.
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Theorem 4.1. The DFE, ε0, of Model (6) given by (7), is locally-asymptotically
stable (l.a.s) if RC1 < 1 and RC2 < 1. ε0 is unstable if RC1 > 1 or RC2 > 1.

The epidemiological implications associated with Theorem 4.1 leads to the con-
clusion that TB can be controlled in a community provided RC < 1 and the initial
sizes of the sub-populations involved in Model (6) are in the basin of attraction of
the DFE. The dimensionless threshold quantity or ratio, RC , represents the aver-
age number of new TB infections generated by a single infectious individual in a
susceptible population in the presence of treatment [14].

Theorem 4.2. The DFE, ε0, of the model (6) is globally asymptotically stable
(g.a.s.) in D whenever RC1

< 1 and RC2
< 1.

The proof of Theorem 4.2, is given in Appendix A.

4.3. Existence of an endemic equilibrium point (EEP). Computing endemic
states are important, particularly in the case of TB, since roughly a third of the
world population live in a TB-latent stage. We divide the analyses in various cases
as follows:

Case (i): The case q = 1, that is, treatment is 100% effective.
It is assumed, that at the time (t = 0), a subpopulation of drug-resistant
infectious individuals exists. That is, J(0) > 0 (due to immigration or due to
the inadequate prior use of the drugs used for treatment). We see that when
q = 1, two possible endemic equilibria for the System (6) can be identified,
namely, two boundary equilibria ε1 (when only the first strain is present) and
ε2 (when only the second strain is present). There is no interior equilibrium
(where both strains are present).

4.3.1. The TB-strain only equilibrium. This is obtained by setting M = J =
0. The TB only equilibrium in terms of the equilibrium value of the force of
infection λ∗∗1 is given as

ε1 = (S∗∗, L∗∗1 , L
∗∗
2 , I

∗∗), (11)

where,

S∗∗ =
Λ

λ∗∗1 + µ
,

L∗∗1 =
(a2σ + µ)(r + µ+ d1)

a1σa2σ
I∗∗,

L∗∗2 =
r + µ+ d1

a2σ
I∗∗, (12)

I∗∗ =
RC1

β1
λ∗∗1 S

∗∗.

The expression for λ1, defined in Eq. (1), at the endemic steady-state, denoted
by λ∗∗1 , is given by

λ∗∗1 =
β1µI

∗∗

Λ
, (13)

where N(t) is now replaced by its limiting value, N∗∗ = Λ
µ . Substituting

equations in Eq. (12) into Eq. (13) and simplifying leads to the following
equation in terms of λ∗∗1 ,

λ∗∗1 = µ(RC1 − 1).
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Thus,

λ∗∗1 > 0, whenever RC1
> 1. (14)

The components of the unique endemic equilibrium (ε1) can be obtained by
substituting the unique value of λ∗∗1 , given in Eq. (14), into the expressions
in (12). Thus, the following result has been established.

Lemma 4.3. Model (6) has a unique TB-strain-only equilibrium, given by
(ε1) whenever RC1

> 1 > RC2
.

Theorem 4.4. The TB only equilibrium ε1, is l.a.s whenever RC1 > 1 >
RC2

.

The proof of Theorem 4.4 is given in Appendix B.

4.3.2. The drug resistant TB-strain only equilibrium. This is obtained by set-
ting L1 = L2 = I = 0. The drug resistant TB only equilibrium in terms of
the equilibrium value of the force of infection λ∗∗2 is given as

ε2 = (S∗∗,M∗∗, J∗∗), (15)

where,

S∗∗ =
Λ

λ∗∗2 + µ
,

M∗∗ =
1

b1η + µ
λ∗∗2 S

∗∗, (16)

J∗∗ =
RC2

β2
λ∗∗2 S

∗∗.

The expression for λ2, defined in Eq. (2), at the endemic steady-state, denoted
by λ∗∗2 , is given by

λ∗∗2 =
β2µJ

∗∗

Λ
. (17)

Substituting the equations in (16) into Eq. (17), and simplifying, we have (in
terms of λ∗∗2 )

λ∗∗2 = µ(RC2 − 1). (18)

Thus,

λ∗∗2 > 0, whenever RC2
> 1.

Therefore, the following result has been established.

Lemma 4.5. Model (6) has a unique drug resistant TB-strain-only equilib-
rium, given by (ε2) whenever RC2

> 1 > RC1
.

Theorem 4.6. The drug resistant TB-strain-only equilibrium ε2, is l.a.s
whenever RC2 > 1 > RC1 .

The proof of Theorem 4.6 is given in Appendix C.
Figure 2 captures the bifurcation possibilities for the case q = 1. There are

three regions I, II, and III in the parameter space (RC1 ,RC2). In the region
I, ε0 is a global attractor and other equilibria are unstable when they exist.
In regions II and III, ε3 does not exist and ε1 and ε2 are l.a.s., respectively.
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Figure 2. A bifurcation diagram for the system (6) in the case q = 1.

Case (ii): 0 < q < 1 treatment is not 100% efficient due to non-compliance

There are two possible endemic equilibria for System (6) when 0 < q < 1,
namely, ε2 (when only the second strain is present), and the interior equilib-
rium point ε3 (when both strains exist). In the last case, there is no boundary
equilibrium ε1, that is, there is no equilibrium where only the first strain is
present.

4.3.3. The drug resistant TB-strain only equilibrium. Analysis of ε2 in the
case 0 < q < 1 is identical in the case q = 1, but it is not shown here to avoid
repetition. Thus, the following results have been established.

Lemma 4.7. Model (6) with 0 < q < 1 supports a unique drug resistant
TB-strain equilibrium, which is given by ε2 whenever RC1

< 1 < RC2
.

Theorem 4.8. When 0 < q < 1, the drug resistant TB-strain-only equilib-
rium ε2, is l.a.s whenever RC1 < 1 < RC2 .

4.3.4. Interior equilibrium. The endemic equilibrium where both TB strains
co-exist is denoted by

ε3 = (S∗∗, L∗∗1 , L
∗∗
2 , I

∗∗,M∗∗, J∗∗), (19)

where,

S∗∗ =
Λ

λ∗∗1 + λ∗∗2 + µ
,

L∗∗1 =
(a1σ + µ)(r + µ+ d1)

a1σa2σ
I∗∗,

L∗∗2 =
r + µ+ d1

a2σ
I∗∗,

I∗∗ =
RC1

β1
λ∗∗1 S

∗∗, (20)

M∗∗ =
1

b1η + µ
λ∗∗2 S

∗∗,

J∗∗ =
RC2

β2
λ∗∗2 S

∗∗ +
(1− q)rRC1

(µ+ d2)β1
λ∗∗1 S

∗∗.
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The expression for λ1, defined in (1), at the endemic steady-state, denoted by
λ∗∗1 , is given by

λ∗∗1 =
β1µI

∗∗

Λ
. (21)

Substituting the equations in Eq. (20) into Eq. (21), and simplifying, gives
the following equation (in terms of λ∗∗1 and λ∗∗2 )

λ∗∗1 + λ∗∗2 = µ(RC1 − 1). (22)

Since the left-hand side of Eq. (22) is always positive, it is necessary that
RC1 > 1. The expression for λ2, defined in Eq. (2), at the endemic steady-
state, denoted by λ∗∗2 , is given by

λ∗∗2 =
β2µJ

∗∗

Λ
. (23)

Substituting the equations in Eq. in (20) into Eq. (23), and simplifying, gives
the following equation (in terms of λ∗∗1 and λ∗∗2 )

λ∗∗2 =
β2(1− q)rRC1

(µ+ d2)β1(RC1
−RC2

)
λ∗∗1 , (24)

so that,

λ∗∗2 > 0, whenever RC1
> RC2

.

Further, for (ε3) to exist, it is necessary that the TB and resistant strains
exist (i.e., RC1

> 1 and RC2
> 1). Thus, we have established the following

result:

Lemma 4.9. The model (6) has a unique interior equilibrium, given by ε3

whenever RC1
> RC2

> 1.

Theorem 4.10. The interior equilibrium ε3 is l.a.s. whenever RC1
> RC2

>
1 and unstable otherwise.

The proof of Theorem 4.10 is given in Appendix D.
Figure (3) gives a bifurcation diagram for the case 0 < q < 1. There are

three regions I, III and IV in parameter space (RC1
,RC2

) (ε1 does not exist.).
The regions correspond to zones of stability for ε0, ε2, and ε3, respectively.
When q → 0, the region IV becomes wider (i.e. more drug resistant individuals
exist there and so “more” coexistence). Whenever q → 1, the region IV
narrows (i.e. “less” drug-resistant individuals exist there).

5. Analysis of the full model. In this section, System (5) (i.e., the full model)
is analyzed, that is, we look at its equilibria and its stability properties.

5.1. Local stability of disease-free equilibrium (DFE). Model (5) has a unique
disease-free equilibrium, which is obtained by setting the right-hand sides of the
equations in the model (5) equal to zero and solving and so, we get that,

ε0 = (S∗, L∗1, · · · , L∗n, I∗,M∗1 , · · · ,M∗m, J∗) = (
Λ

µ
, 0, · · · , 0). (25)
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Figure 3. A bifurcation diagram for the system (6) in the case
0 < q < 1.

We proceed to compute the control reproduction number via the next generation
operator method; and so, we make use of the associated matrices FC , for the new
infection terms, and VC , for the remaining transition terms. They are given by

FC =

[
AF BF
CF DF

]
, (26)

and

VC =

[
AV BV
CV DV

]
, (27)

where, CF is a (m + 1) × (n + 1) zero matrix, BF , BV are (n + 1) × (m + 1) zero
matrices. Further, AF is a (n+ 1)× (n+ 1) matrix and DF is a (m+ 1)× (m+ 1)
matrix given by,

AF =


0 0 · · · 0 β1

0 0 · · · 0 0
...

...
. . .

...
...

0 0 · · · 0 0

 ,

DF =


0 0 · · · 0 β2

0 0 · · · 0 0
...

...
. . .

...
...

0 0 · · · 0 0

 .
AV is a (n + 1) × (n + 1) matrix, CV is a (m + 1) × (n + 1) matrix, and DV is a
(m+ 1)× (m+ 1) matrix, given by

AV =



a1σ + µ 0 · · · 0 0 −qr
−a1σ a2σ + µ · · · 0 0 0

...
. . .

. . .
...

...
...

...
. . .

. . .
...

...
0 0 · · · −an−1σ anσ + µ 0
0 0 · · · 0 −anσ r + µ+ d1


,



A TWO-STRAIN TB MODEL 755

CV =


0 0 · · · 0 0
0 0 · · · 0 0
...

. . .
. . .

...
...

0 · · · 0 0 0
0 · · · 0 0 −(1− q)r

 ,

DV =



b1η + µ 0 · · · 0 0 0
−b1η b2η + µ · · · 0 0 0

...
. . .

. . .
...

...
...

...
. . .

. . .
...

...
0 0 · · · −bm−1η bmη + µ 0
0 0 · · · 0 −bmη µ+ d2


.

It follows that

RC1(q) =
β1

∏n
i=1 aiσ

(r + µ+ d1)
∏n
i=1(aiσ + µ)− qr

∏n
i=1 aiσ

,

and

RC2
=

β2

∏m
k=1 bkη

(µ+ d2)
∏m
k=1(bkη + µ)

,

whereRC1
andRC2

are reproduction numbers for TB strain only and drug-resistant
TB strain only, respectively. Hence, that the spectral radius of the matrix FCV−1

C

is

RC = max{RC1
,RC2

},

5.2. Interpretation of RC .

5.2.1. Terms in the expression for RC1
. The average duration that an individual

spends in class I per visit to this class is given by TI = 1
r+µ+d1

. Of the newly-

infected individuals entering into compartments Li, i = 1, · · · , n, the fraction

h1 =

∏n
i=1 aiσ∏n

i=1(aiσ + µ)
,

survives and proceeds to stage I. The fraction h2 = qr
r+µ+d1

of infectious indi-

viduals re-enters compartment L1. Hence, the fraction h1 of latent individuals
passes through compartment I at least once, the fraction h2

1h2 passes through at

least twice, and the fraction hk1h
k−1
2 passes through at least k times. Hence, the

expected number of times that a latent individual passes through compartment I is

h1 + h2
1h2 + · · · = h1

1− h1h2
=

(r + µ+ d1)
∏n
i=1 aiσ

(r + µ+ d1)
∏n
i=1(aiσ + µ)− qr

∏n
i=1 aiσ

.

Thus, the expected total time that a newly-infected individual spends in compart-
ment I, is given by

T totalI =

∏n
i=1 aiσ

(r + µ+ d1)
∏n
i=1(aiσ + µ)− qr

∏n
i=1 aiσ

.
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Hence, the number of secondary new TB-strain infections generated by a TB-active
individual is given by

β1

∏n
i=1 aiσ

(r + µ+ d1)
∏n
i=1(aiσ + µ)− qr

∏n
i=1 aiσ

= RC1
.

5.2.2. Terms in the expression for RC2 . Similarly, the average duration in the class
J is given by TJ = 1

µ+d2
. The newly-infected individuals entering into compart-

ments Mk, k = 1, · · · ,m, a fraction∏m
k=1 bkη∏m

k=1(bkη + µ)

survives and proceeds to stage J . Thus, the expected total time that a newly-
infected individual spends in compartment J is given by

T totalJ =

∏m
k=1 bkη

(µ+ d2)
∏m
k=1(bkη + µ)

.

Hence, the number of secondary new TB resistant-strain infections generated by a
TB-resistant active case individual is given by

β2

∏m
k=1 bkη

(µ+ d2)
∏m
k=1(bkη + µ)

= RC2
.

Therefore, we have arrived at the following results:

Theorem 5.1. The DFE, ε0, of Model (5), given by (25), is l.a.s. if RC1 < 1 and
RC2

< 1. ε0 is unstable if RC1
> 1 or RC2

> 1.

Theorem 5.2. The DFE, ε0, of the model (5) is g.a.s. in D whenever RC1
< 1

and RC2
< 1.

The proof of Theorem 5.2 is given in Appendix E.

5.3. Existence of endemic equilibrium point (EEP).

Case (i): q = 1, that treatment is 100% effective
It is assumed that at the initial time (t = 0) there are drug-resistant infectious
individuals in the population, that is, J(0) > 0. There are two possible
endemic equilibria for System (6) when q = 1, two boundary equilibria ε1

(when only the first strain is present) and ε2 (when only the second strain is
present). There is no interior equilibrium (where both strains are present).

5.3.1. The TB-strain only equilibrium. This is computed by setting M1 =
· · · = Mm = J = 0 and observing that the TB-only equilibrium is a function
of the force of infection λ∗∗1 . Specifically, it is given by

ε1 = (S∗∗, L∗∗1 , · · · , L∗∗n , I∗∗),

where,

S∗∗ =
Λ

λ∗∗1 + µ
,
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L∗∗1 =
(r + µ+ d1)

∏n
i=2(a1σ + µ)∏n

i=1 aiσ
I∗∗,

... (28)

L∗∗n =
r + µ+ d1

anσ
I∗∗,

I∗∗ =
RC1

β1
λ∗∗1 S

∗∗.

The expression for λ1, defined in (1), at the endemic steady-state, here denoted
by λ∗∗1 , which is given by

λ∗∗1 =
β1µI

∗∗

Λ
, (29)

where N(t) is now replaced by its limiting value, N∗∗ = Λ
µ . Substituting the

equations in Eq. (28) into (29) and simplifying, leads to the following equation
in terms of λ∗∗1 :

λ∗∗1 = µ(RC1 − 1).

Thus,

λ∗∗1 > 0, whenever RC1
> 1. (30)

The components of the unique endemic equilibrium (ε1) are obtained by sub-
stituting the unique value of λ∗∗1 , given in (30), into the expressions in (28).
Hence, the following result has been established.

Lemma 5.3. Model (5) has a unique TB-strain-only equilibrium given by ε1

whenever RC1
> 1 > RC2

.

Theorem 5.4. The TB only equilibrium ε1 of Model (5) when q = 1 is l.a.s
whenever RC2 < 1 < RC1 .

The proof of Theorem 5.4 is given in Appendix F.

5.3.2. Drug resistant TB-strain equilibrium. An expression of the drug resis-
tant TB-strain equilibrium is obtained by setting L1 = · · · = Ln = I = 0 from
where this equilibrium can be expressed in terms of the equilibrium value of
the force of infection λ∗∗2 . It is given by

ε2 = (S∗∗,M∗∗1 , · · · ,M∗∗m , J∗∗),

where

S∗∗ =
Λ

λ∗∗2 + µ
,

M∗∗1 =
1

b1η + µ
λ∗∗2 S

∗∗,

... (31)

M∗∗m =

∏m−1
k=1 bkη∏m

k=1(bkη + µ)
λ∗∗2 S

∗∗,

J∗∗ =
RC2

β2
λ∗∗2 S

∗∗.
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The expression for λ2, defined in Eq. (2), at the endemic steady-state, denoted
by λ∗∗2 , is given by

λ∗∗2 =
β2µJ

∗∗

Λ
. (32)

Substituting the equations in (32) into Eq. (32) and simplifying, leads to the
following equation in terms of λ∗∗2 :

λ∗∗2 = µ(RC2 − 1). (33)

So that,

λ∗∗2 > 0, whenever RC2
> 1.

Thus, the following result has been established:

Lemma 5.5. Model (5) has a unique drug resistant TB-strain-only equilib-
rium, which it is given by ε2 whenever RC1

< 1 < RC2
.

Theorem 5.6. The drug resistant TB only equilibrium ε2 of Model (5) is
l.a.s. whenever RC1

< 1 < RC2
.

The proof of Theorem 5.6 is given in Appendix G.
Case (ii): 0 < q < 1, that is, treatment is not 100% effective due to non-

compliance.
There are two possible endemic equilibria for model system (6) when 0 < q <
1: ε2 (when only the second strain is present), and the interior equilibrium
point ε3 (when both strains exist). In this case there is no second boundary
equilibrium ε1 (where only the first strain is present).

5.3.3. The drug resistant TB-strain only equilibrium. Analysis of ε2 in the
case 0 < q < 1 is identical to the case q = 1 and so it is not included. Thus,
the following result is true.

Lemma 5.7. Model (6) has a unique drug resistant TB-strain-only equilib-
rium, is given by ε2 whenever 0 < q < 1 and RC1

< 1 < RC2
.

Theorem 5.8. The drug resistant TB-strain-only equilibrium ε2, is l.a.s.
whenever 0 < q < 1 and RC1

< 1 < RC2
.

5.3.4. Interior equilibrium. The endemic equilibrium where both TB strains
exist is denoted by

ε3 = (S∗∗, L∗∗1 , · · · , L∗∗n , I∗∗,M∗∗1 , · · · ,M∗∗m , J∗∗),

where

S∗∗ =
Λ

λ∗∗1 + λ∗∗2 + µ
,

L∗∗1 =
(r + µ+ d1)

∏n
i=2(aiσ + µ)∏n

i=1 aiσ
I∗∗,

...
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L∗∗n =
r + µ+ d1

anσ
I∗∗,

I∗∗ =
RC1

β1
λ∗∗1 S

∗∗, (34)

M∗∗1 =
1

b1η + µ
λ∗∗2 S

∗∗,

...

M∗∗m =

∏m−1
k=1 bkη∏m

k=1(bkη + µ)
λ∗∗2 S

∗∗,

J∗∗ =
RC2

β2
λ∗∗2 S

∗∗ +
(1− q)rRC1

β1(µ+ d2)
λ∗∗1 S

∗∗.

The expression for λ1, defined in (5), at the endemic steady-state, is denoted
by λ∗∗1 . It is given by

λ∗∗1 =
β1µI

∗∗

Λ
. (35)

Substituting the equations in (34) into Eq. (35) and simplifying, leads to the
following equation, in terms of λ∗∗1 and λ∗∗2 :

λ∗∗1 + λ∗∗2 = µ(RC1 − 1). (36)

Since the left-hand side of Eq. (36) is always positive, it is necessary that
RC1 > 1.

The expression for λ2, defined in Eq. (2), at the endemic steady-state,
denoted by λ∗∗2 , is given by

λ∗∗2 =
β2µJ

∗∗

Λ
. (37)

Substituting the equations (34) into Eq. (37) and simplifying, gives the fol-
lowing equation (in terms of λ∗∗1 and λ∗∗2 )

λ∗∗2 =
β2(1− q)rRC1

(µ+ d2)β1(RC1
−RC2

)
λ∗∗1 ,

so that,

λ∗∗2 > 0, whenever RC1 > RC2 .

Thus, the following result has been established:

Lemma 5.9. Model (5) has a unique interior equilibrium given by ε3, when-
ever RC1 > RC2 > 1.

Theorem 5.10. The interior equilibrium ε3 is l.a.s. whenever RC1 > RC2 >
1 and unstable otherwise.

The proof of Theorem 5.10 is given in Appendix H.
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5.4. Numerical simulations. For numerical simulations, we consider the follow-
ing initial conditions for Model (6):

(S(0), L1(0), L2(0), I(0),M(0), J(0))

=

(
60N

100
,

14N

100
,

10N

100
,

3N

100
,

12N

100
,

5N

100

)
, (38)

with N = 25000. The parameters of model (6) take the values of Table 3.
The numerical simulations of Model (6) when RC < 1(RC1 < 1 and RC2 < 1)

(Figure 8), suggest that the associated disease-free equilibrium (ε0) is stable when
it exists. We took β1 = 0.2 and β2 = 0.1, corresponding to RC1

= 0.5752 and
RC2

= 0.4452, with the rest of the parameters taking the values in Table 3.
Figure 9 shows that, for RC1 > 1 and RC2 < 1, the TB-strain-only equilibrium

(ε1) exists. We considered q = 1, β1 = 0.8 and β2 = 0.1, which corresponds to
RC1

= 2.3007 and RC2
= 0.4452. The rest of the parameters take the values in

Table 1. We observe that the state variables converge to (ε1) when t→∞.
Figure 10 shows that, for RC1

< 1 and RC2
> 1, the drug resistant TB-strain-

only equilibrium (ε2) exists. We considered q = 0.5, β1 = 0.2 and β2 = 0.6,
corresponding to RC1 = 0.1484 and RC2 = 2.6709, and the rest of the parameters
take the values in Table 1. We observe that the state variables converge to (ε2)
when t→∞.

Figure 11 shows that the interior equilibrium (ε2) exists when RC1
> 1 and

RC2
> 1. We took q = 0.5, β1 = 2 and β2 = 0.6, values that correspond to

RC1 = 1.4840 and RC2 = 2.6709. The rest of the parameters take the values in
Table 1. We observe that the state variables converge to (ε2) when t→∞.

The cumulative number of new cases, as a function of time, for various values
of the effective contact rate for TB infection (β1), it is shown in Figure 12. It
follows from these figures that, as expected, an increase of effective TB contact
rates significantly increase cumulative disease incidence. The effect prevalence of
the disease is depicted in Figure 14.

The effect of the effective contact rate for drug-resistant TB infection (β2 ) on
the cumulative incidence and prevalence of the disease is depicted in Figures 13 and
15, respectively.

5.5. On models with parametrically friendly sojourn distributions. Sec-
tions 3, 4, and 5 introduced two-strain TB models that included long and variable
periods of latency, which are characteristic of TB. These models expand on those
first introduced in [10, 11, 16]. The results, in the context of single strain SEIR
models, are those found in [17], here generalized two include two-strains. The re-
sults in this paper combined the results for two strains found in [10] and single
strain found in [17]. The formulae includes explicit expression for the basic repro-
duction number for generalized strain-specific gamma distributions and show that
the results carry out in the case of two strains in the presence of antibiotic resistance
due to non-treatment compliance. The modeling and the analysis has been used in
similar settings before. A good reference that includes a detailed analysis of quite
general models is that of [22].

6. Exogenous reinfections. Exogenous reinfection has been identified as a pos-
sibly significant mechanism in the transmission dynamics of TB, particularly in
environments where tuberculosis infectivity and prevalence are high. Mathematical
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models that focus on the impact of exogenous reinfection on TB dynamics have
been developed and analyzed [15, 41, 42].

Some experience TB recurrence, that is, the return of symptoms, active TB, after
the effect of treatment is over. In fact, endogenous infection and exogenous reinfec-
tion are well-documented paths that lead to active tuberculosis among individuals
who have experienced prior active-TB infections. Whether or not the major mecha-
nisms behind the recurrence of TB include endogenous reactivation (exacerbation of
an old infection) or exogenous reinfection (recurrent infection by a different strain)
has been debated for decades [25]. What does activate TB? Endogenous reacti-
vation is the leading suspect in the search for significant mechanisms responsible
for tuberculosis progression since the 1960s [39]. TB models have incorporated en-
dogenous reactivation (relapse) via the generation of secondary cases from contacts
between treated individuals and those with active infections [1, 4, 7, 15, 40, 41].
However, the evidence that exogenous reinfection is also an important source of
TB recurrence among “recovered” is strong [2, 4, 13, 15, 33, 41]. There are studies
supporting this mode of infection. For example, a recent Shanghai study found that
61.5% of TB recurrent cases from 1999 through 2004could be attributed to exoge-
nous reinfection [33] (see also exogenous reinfection as reported in [5, 26, 29, 30, 34])

6.1. Model equations. Exogenous re-infection can be achieved with minimal sec-
ond order progression interactions between TB-exposed and TB-active. The impact
of this second order interactions are rather surprising and unique [15, 41, 42] and
so, the goal here is to highlight its dynamical role in a model that includes sensitive
and resistant TB strains, the first time that this has been explored in two strain
models. And so, two latent classes are considered, drug-sensitive and drug-resistant
strains within a highly simplified version of the general model proposed in the prior
sections, since the primary goal, is that of highlighting the impact of second order
interactions, exogenous re-infection to be precise, have on the dynamical richness
of the TB models just studied. Members in the L1 latent class have a higher risk
of developing active TB at the rate α0L1 (fast route to active TB) but in general
they will move at the rate a1σL1 to the next latent latent stage. It is assumed that
exogenous reinfection does not act in a substantive way on the L1 class because
the time spent in this class is very small, and so this effect is totally neglected in
this simplified model. And so, since individuals tend to spend long periods of time
in the latent state, it is assumed that the average residence time in L2 is signif-
icant. Consequently, individuals in this class may be reinfected, moving into the
TB-active class, via the exogenous reinfection route. We also assume that the drug-
sensitive strain will not play a role in the process of exogenous reinfection for the
drug-resistant strain (another simplifying assumption). Time scale considerations
makes it possible to assume that successfully treated individuals will become mem-
bers of the L2 class at the rate qrI. It is assumed that α0 << a1σ since only 10%
of TB infected individuals move into the active TB cases class. In addition to new
the parameter α0, we add two more parameters β3 and β4 to account for the risk
of exogenous reinfections under the just described simplifying assumptions. The
model equations with exogenous reinfections are therefore given by the following
nonlinear system,

dS

dt
= Λ− β1S

I

N
− β2S

J

N
− µS,
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dL1

dt
= β1S

I

N
− (a1σ + α0 + µ)L1,

dL2

dt
= a1σL1 + qrI − (a2σ + µ)L2 − β3L2

I + J

N
, (39)

dI

dt
= a2σL2 + α0L1 + β3L2

I

N
− (r + µ+ d1)I,

dM

dt
= β2S

J

N
− (b1η + µ)M − β4M

J

N
,

dJ

dt
= β3L2

J

N
+ β4M

J

N
+ b1ηM + (1− q)rI − (µ+ d2)J.

A flow diagram of Model (39) is found in Figure 4.
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Figure 4. Flow diagram of the model (39)

6.2. Computation of the basic reproduction number. The next-generation
matrix approach [14] is used again to compute the basic reproduction number.
To cluster blocks of zeroes in the linearization matrices are used to rearrange the
equations in Model (39) as follows.

dS

dt
= Λ− β1S

I

N
− β2S

J

N
− µS,

dL1

dt
= β1S

I

N
− (a1σ + α0 + µ)L1,

dM

dt
= β2S

J

N
− (b1η + µ)M − β4M

J

N
,

dL2

dt
= a1σL1 + qrI − (a2σ + µ)L2 − β3L2

I + J

N
, (40)

dI

dt
= a2σL2 + α0L1 + β3L2

I

N
− (r + µ+ d1)I,

dJ

dt
= β3L2

J

N
+ β4M

J

N
+ b1ηM + (1− q)rI − (µ+ d2)J.

Direct computations give
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F =


0 0 0 β1 0
0 0 0 0 β2

0 0 0 0 0
0 0 0 0 0
0 0 0 0 0


and

V =


a1σ + α0 + µ 0 0 0 0

0 b1η + µ 0 0 0
−a1σ 0 a2σ + µ −qr 0
−α0 0 −a2σ r + µ+ d1 0

0 −b1η 0 −(1− q)r µ+ d2

 .
In block form

F =

[
0 β
0 0

]
and V =

[
V11 V12

V21 V22

]
,

where β =

[
β1 0
0 β2

]
, V11 is the sub-matrix of V consisting of the first 3 rows and

the first 3 columns of V; V22 is a 2 by 2 sub-matrix involving the last 2 rows and
last 2 columns.

Let V−1 =

[
v11 v12

v21 v22

]
in the block form then since FV−1 =

[
βv21 βv22

0 0

]
is in

upper-triangular form, we need only to compute on the v21 block in V−1. It is not
hard to see that

V −1
11 =


1

a1σ+α0+µ 0 0

0 1
b1η+µ 0

a1σ
(a1σ+α0+µ)(a2σ+µ) 0 1

a2σ+µ

 .
Using the invertible matrices

A =

[
I 0

−V21V
−1
11 I

]
and B =

[
I −V −1

11 V12

0 I

]
,

we can express V −1 as

V−1 =

[
V −1

11 + V −1
11 V12D

−1
2 V21V

−1
11 −V −1

11 V12D
−1
2

−D−1
2 V21V

−1
11 D−1

2

]
with

D2 = −V21V
−1
11 V12 + V22 =

[
r + µ+ d1 − qra2σ

a2σ+µ 0

−(1− q)r µ+ d2

]
.

The expression rc = r (1−q)a2σ+µ
a2σ+µ gives the effect of treatment on drug-sensitive TB

infections. Since successfully treated individuals go back to the chronically latently-
infected class L2 class rather than the susceptible class), the effect of treatment rate

needs to be discounted by the factor of (1−q)a2σ+µ
a2σ+µ < 1.

We find that

D−1
2 =

1

(µ+ d2)(rc + µ+ d1)

[
µ+ d2 0

(1− q)r rc

]
.

We introduce a new aggregate constants C = (µ+ d2)(rc + µ+ d1) to simplify the
expressions. The explicitly expression for v21, a crucial component of the inverse of
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V, is given by

v21 = −D−1
2 V21V

−1
11

=
1

C

[
α0(µ+d2)
a1σ+α0+µ + a1σa2σ(µ+d2)

(a1σ+α0+µ)(a2σ+µ) 0 (a2σ)(µ+d2)
a2σ+µ

α0(1−q)r
a1σ+α0+µ + a1σ(µ+d2)a2σ(1−q)r

(a1σ+α0+µ)(a2σ+µ)
b1η(rc+µ+d1)

b1η+µ
(a2σ)(1−q)r
a2σ+µ

]
.

Since FV−1 =

[
βv21 βv22

0 0

]
the dominant eigenvalue of FV−1 is the same as the

dominant eigenvalue of the sub-matrix given by the first two rows and first two
columns of βv21, that is,

1

C

β1

(
α0(µ+d2)
a1σ+α0+µ + a1σa2σ(µ+d2)

(a1σ+α0+µ)(a2σ+µ)

)
0

β2

(
α0(1−q)r
a1σ+α0+µ + a1σ(µ+d2)a2σ(1−q)r

(a1σ+α0+µ)(a2σ+µ)

)
β2

(
b1η(rc+µ+d1)

b1η+µ

) .
Hence, we can define

R1
0 =

β1

(µ+ d2)(rc + µ+ d1)

(
α0(µ+ d2)

a1σ + α0 + µ
+

a1σa2σ(µ+ d2)

(a1σ + α0 + µ)(a2σ + µ)

)
=

β1

(rc + µ+ d1)

α0

a1σ + α0 + µ
+

β1

(rc + µ+ d1)

a1σ

(a1σ + α0 + µ)

a2σ

(a2σ + µ)
,

and

R2
0 =

β2

(µ+ d2)(rc + µ+ d1)

(
b1η(rc + µ+ d1)

b1η + µ

)
=

β2

(µ+ d2)

(
b1η

b1η + µ

)
.

And so, the basic reproduction number is

R0 = max{R1
0,R2

0}. (41)

In order that we gain a better understanding of the basic reproduction number, we
rearrange R1

0 and R2
0 as follows:

R1
0 =

β1
rc + µ+ d1

α0

a1σ + α0 + µ
+

β1
rc + µ+ d1

a1σ

a1σ + α0 + µ

a2σ

a2σ + µ
(42)

R2
0 =

β2

µ+ d2

b1η

b1η + µ
(43)

R1
0 is the basic reproduction number for the drug-sensitive strain and R2

0 for drug-
resistant strain. Each term in R1

0 and R2
0 has a clear biological meaning. We

provide a detailed interpretation of R1
0 for illustrative purposes. Its first part is

β1

rc+µ+d1
α0

a1σ+α0+µ giving the secondary cases generated via the fast route. The term
1

rc+µ+d1
stands for the adjusted average infectious period of drug-sensitive strain

TB-active individuals. The term α0

a1σ+α0+µ gives the “probability” of progressing

to the TB-active state before moving into the second latent stage or dying. Its
second part, β1

rc+µ+d1
a1σ

a1σ+α0+µ
a2σ

a2σ+µ gives the secondary cases generated via the

slow route. The infected in L1 class move to L2 class with “probability” a1σ
a1σ+α0+µ

and the infected in the L2 class progresses into TB-active class with “probability”
a2σ

a2σ+µ . The average infectious period is assumed to be same as in the fast route,

namely, 1
rc+µ+d1

.
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6.3. Bifurcation classification at R0 = 1. This section classifies the bifurcation
of Model (39) that originates at R0 = 1. The following theorem (see [12]) helps to
identify the bifurcation type.

Theorem 6.1. Consider a system of ordinary differential equations

dx

dt
= f(x, φ), f : Rn × R→ Rn and f ∈ C2(Rn × R), (44)

with a parameter φ. Assumed that:

1. 0 is an equilibrium of the system, f(0, φ) ≡ 0 for all φ; and

2. Zero is a simple eigenvalue of A = Dxf(0, 0) = ( ∂fi∂xi
(0, 0)) and all other

eigenvalues of A have negative real parts.

Let W = [w1, w2, ...wn]T and V = [v1, v2, ..., vn] be a right and a left eigenvector of
matrix A, respectively, associated with eigenvalue zero, and let fk(x, φ) be the kth
component of f(x, φ). Then the local dynamics of the system around the equilibrium
0 is totally determined by the signs of the expressions a and b below:

a =

n∑
k,i,j=1

vkwiwj
∂2fk
∂xi∂xj

(0, 0), (45)

b =

n∑
k,i=1

vkwi
∂2fk
∂xi∂φ

(0, 0). (46)

Particularly, if a > 0 and b > 0, a backward bifurcation occurs at φ = 0 for System
(44).

This theorem can be used in a straightforward way after we relabeled the variables
and rewrite System (39) into the following way,

dx1

dt
= Λ− β1x1

x5

N
− β2

x6x1

N
− µx1,

dx2

dt
= β1x1

x5

N
− (a1σ + α0 + µ)x2,

dx3

dt
= β2x1

x6

N
− (b1η + µ)x3 − β4x3

x6

N
,

dx4

dt
= a1σx2 + qrx5 − (a2σ + µ)x4 − β3x4

x5 + x6

N
, (47)

dx5

dt
= a2σx4 + α0x2 + β3

x5x4

N
− (r + µ+ d1)x5,

dx6

dt
= β3

x4x6

N
+ β4

x3x6

N
+ b1ηx3 + (1− q)rx5 − (µ+ d2)x6,

N = x1 + x2 + x3 + x4 + x5 + x6,

where x1 = S, x2 = L1, x3 = M , x4 = L2, x5 = I, x6 = J , and N = x1 + x2 + x3 +
x4 + x5 + x6.

The Jacobian matrix of System (47) around the DFE (Λ/µ, 0, 0, 0, 0, 0) is given
by

J =


µ 0 0 0 −β1 −β2
0 −(a1σ + α0 + µ) 0 0 β1 0
0 0 −(b1η + µ) 0 0 β2
0 a1σ 0 −(a2σ + µ) qr 0
0 α0 0 a2σ −(r + µ+ d1) 0
0 0 b1η 0 (1− q)r −(µ+ d2)

 .
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We shall deal with the case R1
0 ≥ R2

0 or R2
0 ≥ R1

0 in exactly the same way.

6.3.1. The case of R2
0 ≥ R1

0. Let us assume R2
0 ≥ R1

0 first. Then R0 = R2
0 =(

β2

µ+d2

)(
b1η

b1η+µ

)
> R1

0. We choose β2 as the bifurcation parameter. Apparently

R0 = 1 if and only if
(

β2

µ+d2

)(
b1η

b1η+µ

)
= 1, or β2 = (µ+d2)(b1η+µ)

b1η
. It can be checked

that

W = [w1, w2, w3, w4, w5, w6]′ = [−β2/µ, 0, β2/(b1η + µ), 0, 0, 1]′

is a right eigenvector of J(R0 = 1) corresponding to eigenvalue 0. With little longer
algebraic management then finding the right eigenvector, we can find a left eigenvec-
tor of J(R0 = 1) corresponding to eigenvalue 0 is given by V = [v1, v2, v3, v4, v5, v6],
where

v1 = 0,

v2 =
a1σ + α0

a2σ+µ
a2σ

a1σ + µ+ α0
,

v3 =
b1η

b1η + µ

(rc + µ+ d1)(a2σ + µ)

(1− q)ra2σ
(1−R1

0),

v4 = 1,

v5 =
a2σ + µ

a2σ
,

v6 =
(rc + µ+ d1)(a2σ + µ)

(1− q)ra2σ
(1−R1

0).

We compute a using (45) as follows.

a = 2v3
∂2f3

∂x3∂x6
w3w6 + 2v3

∂2f3

∂x6∂x6
w6w6 + 2v6

∂2f6

∂x3∂x6
w3w6

= 2
b1η

b1η + µ
v6

(
−µ

Λ

)
(β2 + β4)

β2

b1η + µ
+ 2

b1η

b1η + µ
v6

(
−µ

Λ

)
β2

+ 2v6
β2

b1η + µ

(µ
Λ

)
β4

= 2v6

(
µ

Λ

β2

b1η + µ

)(
b1η

b1η + µ
(−β2 − β4)− b1η + β4

)
= 2v6

(
µ

Λ

β2

b1η + µ

)(
µ

b1η + µ
β4 −

b1η

b1η + µ
β2 − b1η

)
= 2v6

(
µ

Λ

β2

b1η + µ

)(
µ

b1η + µ
β4 − (µ+ d2)− b1η

)
= 2v6

(µ
Λ

) β2(µ+ d2 + b1η)

b1η + µ

(
µβ4

(µ+ d2 + b1η)(b1η + µ)
− 1

)
In processing these computations, equation

(
β2

µ+d2

)(
b1η

b1η+µ

)
= 1 was used. Choos-

ing β2 as the bifurcation parameter, we can check that

b =

n∑
k,i=1

vkwi
∂2fk
∂xi∂β2

(R0 = 1,DFE) =
β2

b1η + µ
> 0.

Therefore, we have established the following theorem.
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Figure 5. Diagram backward bifurcation when R2
0 > R1

0. Red
represent unstable equilibria and blue represent stable equilibria.
Selected (unrealistic) parameter values are: d1 = .01, d2 = .01,
Λ = 1, µ = .14, β3 = 0.3, β4 = 30, q = 0.2, β1 = .33, a1 = 1,
a2 = 2, σ = 0.04, η = 0.03, b1 = .1, r = 0.01, α0 = 0.01 and β2

varies from 0.1 to 7.2.

Theorem 6.2. Consider Model (39) and assume that R2
0 ≥ R1

0.

If µβ4

(µ+d2+b1η)(b1η+µ) > 1 then Model (39) undergoes a backward bifurcation at

R0 = 1 while if µβ4

(µ+d2+b1η)(b1η+µ) < 1 Model (39) undergoes a forward bifurcation

at R0 = 1.

Comparing Model (39) with the earlier models discussed in this paper we find
that the bifurcation at R0 = 1 has changed. Theorem 6.2 essentially concludes that
whenever exogenous reinfections are incorporated, the basic reproduction number
alone is not enough to determine dynamical outcomes. The initial values must now
be considered since there are a pair of stable equilibria.

6.3.2. The case of R1
0 ≥ R2

0. We find that if R1
0 ≥ R2

0 then a backward bifurcation
is possible. In this case R0 = R1

0 > R2
0. Now we switch the bifurcation parameter

from β2 to β1. One can verify that R0 = 1 if only if

β1 =
(rc + µ+ d1)(σ + α0 + µ)

α0(a2σ + µ) + a1σa2σ

Let V = [v1, v2, v3, v4, v5, v6] be a left eigenvector of J corresponding to the eigen-
value 0 with

v1 = 0, v3 = 0, v5 = 1, v6 = 0

v2 =
a1σa2σ + (a2σ + µ)α0

(a2σ + µ)(a1σ + µ+ α0)

v4 =
a2σ

(a2σ + µ)
.
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Introduce the parameter, A =
(µ+d2)(1−R2

0)
(1−q)r and observe that a right eigenvector of

J corresponding to the eigenvalue 0 is W = [w1, w2, w3, w4, w5, w6] with

w1 = −
(
β1

µ
A+

β2

µ

)
,

w2 =
rc + µ+ d1
a1σa2σ
a2σ+µ + α0

A,

w3 =
β2

b1η + µ
,

w4 =
A

a2σ + µ

(
a1σ(rc + µ+ d1)

a1σa2σ
a2σ+µ + α0

+ qr

)
,

w5 = A,

w6 = 1

Using W and V , we are able to compute a in (45)

a = v2

∑
i,j

∂2f2

∂xi∂xj
wiwj + v4

∑
i,j

∂2f4

∂xi∂xj
wiwj + v5

∑
i,j

∂2f5

∂xi∂xj
wiwj

= 2v2

(
−β1µ

Λ

)
w5

6∑
i=2

wi + 2v4

(
−β3µ

Λ

)
w4w5 + 2v4

(
−β3µ

Λ

)
w4w6

+ 2v5

(
β3µ

Λ

)
w4w5

Since we only concerned here with the sign of a, we focused on a positive multiplier
of a instead, namely

aΛ

2µ
= w4β3(w5v5 − w6v4 − w5v4)− β1w5v2

6∑
i=2

wi

Noticing that w4

w5
= a1σ(rc+µ+d1)

a1σ2σ+(a2σ+µ)α0
+ qr

a2σ+µ , it can be checked that β1v2 = rc +

µ+ d1 using R0 = R1
0 = 1. Thus,

aΛ

2w5µ
=

(
a1σ(rc + µ+ d1)

a1σ2σ + (a2σ + µ)α0
+

qr

a2σ + µ

)
β3(w5v5 − w6v4 − w5v4)

− (rc + µ+ d1)

6∑
i=2

wi

Straightforward computations lead to the expressions

w5v5 − w6v4 − w5v4 = w5 − v4 − w5v4 = w5(1− v4)− v4

=
µ

a2σ + µ
w5 − v4

=
µ

a2σ + µ

(µ+ d2)(1−R2
0)

(1− q)r
− a2σ

a2σ + µ

=
µ(µ+ d2)(1−R2

0)− a2σ(1− q)r
(a2σ + µ)(1− q)r
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Simplifying the summation term gives

6∑
i=2

wi =
(µ+ d2)(1−R2

0)

(1− q)r

[
(rc + µ+ d1)(a1σ + a2σ + µ)

a1σ2σ + (a2σ + µ)α0
+
a2σ + qr

a2σ + µ

]
+
b1η + µ+ β2

b1η + µ
.

Since β1 is the selected the bifurcation parameter, we can check the sign of b via
the expression

b =

n∑
k,i=1

vkwi
∂2fk
∂xi∂β1

(R0 = 1,DFE)

= v2
∂2f2

∂x5∂β1
w5

=

(
a1σa2σ + (a2σ + µ)α0

(a2σ + µ)(a1σ + µ+ α0)

)(
(µ+ d2)(1−R2

0)

(1− q)r

)
> 0

Parallel to Theorem 6.2, we arrive to the following theorem:

Theorem 6.3. Consider Model (39) and assume that R1
0 ≥ R2

0. If µ(µ+ d2)(1−
R2

0) ≥ a2σ(1− q)r and

β3 >
(rc + µ+ d1)

∑6
i=2 wi(

a1σ(rc+µ+d1)
a1σ2σ+(a2σ+µ)α0

+ qr
a2σ+µ

)(
µ(µ+d2)(1−R2

0)−a2σ(1−q)r
(a2σ+µ)(1−q)r

) , (48)

then Model (39) undergoes a backward bifurcation at R0 = 1, while if

β3 <
(rc + µ+ d1)

∑6
i=2 wi(

a1σ(rc+µ+d1)
a1σ2σ+(a2σ+µ)α0

+ qr
a2σ+µ

)(
µ(µ+d2)(1−R2

0)−a2σ(1−q)r
(a2σ+µ)(1−q)r

) , (49)

Model (39) undergoes a forward bifurcation at R0 = 1.

Theorem 6.2 and Theorem 6.3 show that if exogenous reinfection forces (β3 or
β4) reach some critical values then a backward bifurcation can happen, creating
an endemic equilibrium when R0 < 1. These cases are numerically illustrated in
Figures 5 and 6, respectively, by choosing not necessarily realistic parameter values.
In such cases, the disease will not go away whenR0 < 1. Definitely, latently-infected
individuals must avoid becoming infected again, killing the possible occurrence of
a backward bifurcation.

6.4. Multiple endemic equilibria. The analysis of the case of R0 > 1 gets us
into pretty rough algebra and so, we investigate the model numerically, particularly
documenting the appearance of multiple endemic equilibria since the goal is just
to show that the introduction of the possibility of exogenous reinfection within
drug-sensitive and drug-resistant strains, in highly simplified circumstances, can
indeed support complex dynamical outcomes, particularly the possibility of multiple
endemic states . In order to just illustrate these possibilities, we choose the following
(unrealistic) parameter values, d1 = .01, d2 = .01, Λ = 1, µ = .14, β3 = 0.3,
β4 = 0.3, q = 0.2, β1 = 2, a1 = 1, a2 = 2, σ = 0.04, η = 0.03, b1 = .01, r = 0.01,
and α0 = 0.01. Hence, we let β2 vary from 1.5 to 20 as we generate the bifurcation
curves in Figure 7. For this set of parameters we have that R0 = 1.6222 > 1 and yet
as it can be seen from Figure 7, there are four equilibria, two of which are stable.
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Figure 6. Diagram of backward bifurcation when R1
0 > R2

0. Red
represent unstable equilibria and blue represents stable equilibria.
Selected (unrealistic) parameter values are d1 = 0.01, d2 = 0.01,
Λ = 1, µ = .14, β3 = 5, β4 = 3, q = .2, β2 = 0.0199, a1 = 4,
a2 = 2, σ = 0.04, η = .03, b1 = 0.1, r = 0.01, α0 = 0.01 and β1

varies from .5 to .8.

Figure 7. Appearance of multiple endemic equilibria when R0 >
1, and let β2 vary. The other parameter values (unrealistic) are
d1 = .01, d2 = .01, Λ = 1, µ = .14, β3 = 0.3, β4 = 0.3, q = 0.2,
β1 = 2, a1 = 1, a2 = 2, σ = 0.04, η = 0.03, b1 = .01, r = 0.01, and
α0 = 0.01.

In this Section 6, we have carried out a bifurcation analysis of a highly simplified
TB-model, with the only objective, not unexpected given the work in [41, 42], in
order to highlight the possibility of multiple steady states involving drug-resistant
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and drug-sensitive TB. The model is not being used to fit any specific outbreak or a
particular endemic situation, it is being introduced just to highlight, like in [41, 42],
that multiple steady states are indeed possible.

7. Conclusions. Tuberculosis (TB) has colonized 2 billion humans. Fortunately,
despite dramatic increases in population density, the growth of mega-cities, intense
population mobility and higher contact rates (mass public and air transportation),
the likelihood of developing active-TB decreased significantly before the introduc-
tion of antibiotics in Europe and the USA. Today, we see “only” about 9 million
new cases of active TB per year, throughout the world, that result in roughly 3
million deaths per year. Yet, the fact remains, that one out of three humans is the
host of a TB strain. A fact, that should not be ignored as the potential for mas-
sive re-activation cannot be totally ruled out. And so, solid understanding of the
processes of re-infection and/or re- activation as well as the population-level con-
sequences of such mechanisms for reactivation are critically important. The HIV
epidemics increased the rates of TB re-activation ([32]) for some time and so, we
must be prepared. In addition, the lack of compliance with multi-drug TB treat-
ment protocols has also been contributing to the increases in the number of cases
of DR- and XDR-TB.

Models have shown that TB exogenous re-infection can support multiple endemic
states and bi-stability ([41, 42], a situation that we have shown, in this paper to
be possible, in the presence of drug-sensitive and drug-resistant TB strains. It
should be intuitively clear, after reading Section 6 that the impact of exogenous re-
infection is likely to be altered by changes in HIV prevalence, deteriorating economic
conditions (famine, wars, climate change) and the growth of DR- and XDR-TB
cases. In this paper, we have just shown that it is dynamically possible in a highly
simplified model, without any attempts to connect our results to any specific realistic
system, that exogenous re-infection is indeed worth studying.

Looking at policies that bring R0 to a value less than one may therefore not
be sufficient if reactivation or re-infection are strong. In this manuscript, we have
looked via rather simple models that ignore epidemiological, social and socioeco-
nomic factors, host’s heterogeneity, population structure and “mobility,” at the
possibility of multiple steady states and bi-stability. In our analysis, we did not
incorporate HIV co-infections, or DR-TB, or XDR-TB. The addition of such lev-
els of complexity would more likely strengthen the possibility that multiple steady
states are supported by TB dynamics. Reactivation or re-infection mechanisms are
therefore extremely likely to play a central role, in the context of complex social
environments in highly heterogeneous communities, on TB dynamics.

Prior studies on the role of long and variable periods of latency have been con-
ducted in general [10, 12, 16, 17, 22] and so, those interested, should look at their
approaches. Here, we also provide specific formulae and a detailed careful analysis in
situations when drug-sensitive and drug-resistant TB strains are present. Formulae
are provided when a gamma or generalized gamma distributions of sojourn times in
the latent class are considered. The formulae are useful enough to those interested
in connecting models to data and those that must focus on the study of the transient
dynamics of epidemic models–a problem of particular interest given that antibiotic
resistance appears to be invading an increasing number of communities. Success
due to the relatively easy access that some countries provide to antibiotics and a
lack of understanding of the problems generated when those undergoing treatment
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do not comply rigorously with treatment protocols has been difficult to reach and
so, the question remains: How long will we have before drug resistance becomes
pervasive?

The models and analysis presented here may help practitioners and public health
officials address the above issues via easily carried out simulations. The last section
focused on the impact of incorporating of exogenous infection within a simplified
two strain model that includes sensitive and drug resistants strains; with drug re-
sistant arising due to a lack of compliance with treatment has the sole purpose
of highlighting the possibility of multiple steady states in our multi-strain model.
TB-dynamical outcomes are enhanced when exogenous reinfection is included and
it seems more so in a two-strain model. It is not surprising to see that the incor-
poration of exogenous reinfection is not yet a popular alternative among those who
believe that R0 is the key to public policy formulation. Although, the use of R0

has been extraordinarily useful, providing overall quantitative perspectives on what
may be needed to ameliorate the impact of a disease, the fact remains that the pre-
ponderance of its use under the limited assumptions of homogenous mixing, needs
to be study in deeper ways. Models that incorporate gender differences, variability
in susceptibility, age structure, socio-economic factors, mobility and behavioral re-
sponses are being systematically considered by computational epidemiologists. The
conclusions tend to be that while R0 is still extremely useful, it is certainly not
sufficient for the development of public health policy that accounts for the role of
initial conditions [8]. In fact, here, it is shown that exogenous re-infection makes
life difficult, particularly to those involved in making health policy decisions. The
analysis shows that in general initial conditions do matter, that is, variations in
initial conditions, may in fact lead to quite distinct epidemic outbreaks.

Acknowledgments. AJ thanks the support of the Infectious and Tropical Disease
Research Center, Tabriz University of Medical Science. The authors are thankful
for the helpful suggestions from the reviewers.

REFERENCES

[1] J. P. Aparicio, A. F. Capurro and C. Castillo-Chavez, Markers of disease evolution: The case

of tuberculosis, J Theor Biol , 215 (2002), 227–237.
[2] J. P. Aparicio, A. F. Capurro and C. Castillo-Chavez, Long-term dynamics and re-emergence

of tuberculosis, in Mathematical Approaches for Emerging and Reemerging Infectious Dis-

eases: An Introduction, Springer-Verlag. Edited by Sally Blower, Carlos Castillo-Chavez,
Denise Kirschner, Pauline van den Driessche and Abdul-Aziz Yakubu, 125 (2002), 351–360.

[3] J. P. Aparicio, A. F. Capurro and C. Castillo-Chavez, Transmission and dynamics of tuber-

culosis on generalized households, J Theor Biol , 206 (2000), 327–341.
[4] J. P. Aparicio and C. Castillo-Chavez, Mathematical modelling of tuberculosis epidemics,

Math Biosci Eng, 6 (2009), 209–237.

[5] J. H. Bates, W. Stead and T. A. Rado, Phage type of tubercle bacilli isolated from patients
with two or more sites of organ involvement, Am Rev Respir Dis, 114 (1976), 353–358.

[6] B. R. Bloom, Tuberculosis: Pathogenesis, Protection, and Control, ASM Press, Washington,
D.C., 1994.

[7] S. M. Blower, A. R. McLean, T. C. Porco, P. M. Small, P. C. Hopwell, M. A. Sanchez and A.

R. Moss, The intrinsic transmission dynamics of tuberculosis epidemics, Nature Medicine, 1
(1995), 815–821.

[8] F. Brauer and C. Castillo-Chavez, Mathematical Models for Communicable Diseases, SIAM,

2013.
[9] C. Castillo-Chavez, Chalenges and opportunities in mathematical and theoretical biology and

medicine: foreword to volume 2 (2013) of Biomath, Biomath, 2 (2013), 1312319, 2pp.

http://www.ams.org/mathscinet-getitem?mr=MR1942797&return=pdf
http://dx.doi.org/10.1006/jtbi.2001.2489
http://dx.doi.org/10.1006/jtbi.2001.2489
http://www.ams.org/mathscinet-getitem?mr=MR1938895&return=pdf
http://dx.doi.org/10.1007/978-1-4757-3667-0_20
http://dx.doi.org/10.1007/978-1-4757-3667-0_20
http://dx.doi.org/10.1006/jtbi.2000.2129
http://dx.doi.org/10.1006/jtbi.2000.2129
http://www.ams.org/mathscinet-getitem?mr=MR2532014&return=pdf
http://dx.doi.org/10.3934/mbe.2009.6.209
http://dx.doi.org/10.1038/nm0895-815
http://www.ams.org/mathscinet-getitem?mr=MR2906399&return=pdf
http://www.ams.org/mathscinet-getitem?mr=MR3172946&return=pdf
http://dx.doi.org/10.11145/j.biomath.2013.12.319
http://dx.doi.org/10.11145/j.biomath.2013.12.319


A TWO-STRAIN TB MODEL 773

[10] C. Castillo-Chavez and Z. Feng, To treat or not to treat: The case of tuberculosis, J Math
Biol , 35 (1997), 629–656.

[11] C. Castillo-Chavez and Z. Feng, Mathematical models for the disease dynamics of tuberculosis,

Advances in Mathematical Population Dynamics - Molecules, Cells, and Man O. Arino, D.
Axelrod, M. Kimmel, (eds), World Scientific Press, (1998), 629–656.

[12] C. Castillo-Chavez and B. Song, Dynamical models of tuberculosis and their applications,
Math Biosci Eng, 1 (2004), 361–404.

[13] C. Y. Chiang and L. W. Riley, Exogenous reinfection in tuberculosis, Lancet Infect Dis, 5

(2005), 629–636.
[14] P. van den Driessche and J. Watmough, Reproduction numbers and sub-threshold endemic

equilibria for compartmental models of disease transmission, Math Biosci , 180 (2002), 29–48.

[15] Z. Feng, C. Castillo-Chavez and A. F. Capurro, A model for tuberculosis with exogenous
reinfection, Theor Popul Biol , 57 ( 2000), 235–247.

[16] Z. Feng, W. Huang and C. Castillo-Chavez, On the role of variable latent periods in mathe-

matical models for tuberculosis, Journal of Dynamics and Differential Equations, 13 (2001),
425–452.

[17] Z. Feng, D. Xu and H. Zhao, Epidemiological models with non-exponentially distributed dis-

ease stages and applications to disease control, Bulletin of Mathematical Biology, 69 (2007),
1511–1536.

[18] Antibiotic-resistant Diseases Pose ’Apocalyptic’ Threat, Top Expert Says,
2013. Available from: http://www.theguardian.com/society/2013/jan/23/

antibiotic-resistant-diseases-apocalyptic-threat,

[19] Guidelines on the Management of Latent Tuberculosis Infection, 2015. Available from: http:

//apps.who.int/medicinedocs/documents/s21682en/s21682en.pdf.

[20] H. M. Hethcote, Qualitative analysis for communicable disease models, Math Biosc, 28 (1976),

335–356.
[21] H. M. Hethcote, The Mathematics of infectious diseases, SIAM Rev , 42 (2000), 599–653.

[22] J. M. Hyman and J. Li, An intuitive formulation for the reproductive number for the spread

of diseases in heterogeneous populations, Mathematical Biosciences, 167 (2000), 65–86.
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Λ
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Thus, J is a non-negative matrix since

S(t) ≤ N(t) ≤ Λ

µ
, in D.

Hence, it follows from (50) that

d

dt
X ≤ (FC − VC)X. (51)

Since RC = max{RC1
,RC2

} ≤ 1 (or, equivalently, the eigenvalues of the matrix
F − V all have negative real parts), it follows that the linearized differential in-
equality system (51) is stable whenever RC1 < 1 and RC2 < 1. Thus, it follows, by
Comparison Theorem [24], that

lim
t→∞

(L1(t), L2(t), I(t),M(t), J(t))→ (0, 0, 0, 0, 0).

Substituting L1(t) = L2(t) = I(t) = M(t) = J(t) = 0 into the (6) showes that
S(t)→ S∗ as t→∞ (for RC1 < 1 and RC2 < 1). Therefore,

lim
t→∞

(S(t), L1(t), L2(t), I(t),M(t), J(t))→ (S∗, 0, 0, 0, 0, 0) = ε0.

Hence, the DFE (ε0) of the model (6) is g.a.s. in D whenever RC1
< 1 and

RC2 < 1.

B. Proof of Theorem 4.4.

Proof. In this case, M = J = 0 in system (6), that is,

dS

dt
= Λ− λ1S − µS,

dL1

dt
= λ1S − ω1L1, (52)

dL2

dt
= a1σL1 − ω2L2,

dI

dt
= a2σL2 − κ1I.

The components of the unique endemic equilibrium ε1 can then be obtained by
substituting the unique value of λ∗∗1 , given in (14), into the expressions in (12) as
following

ε1 =

(
Λ

µRC1

,
ω2κ1Λ(RC1 − 1)

β1a1σa2σ
,

Λ(RC1 − 1)κ1

β1a2σ
,

Λ(RC1 − 1)

β1

)
.

The Jacobian matrix of model system (52) at ε1 is given by

J (εT1 ) =


−µRC1

0 0 − β1

RC1

µ(RC1
− 1) −ω1 0 r + β1

RC1

0 a1σ −ω2 0
0 0 a2σ −κ1

 . (53)

When RC1
> 1,

|aii| >
∑
j 6=i

|aji|,

hence, J (εT1 ) is a strictly column diagonally dominant matrix. Also all diagonal
elements of J (εT1 ) are negative. Therefore, using the Gershgorin circle theorem,
the radius of the disc, Ri =

∑
j 6=i |aij |, can easily be defined as Rj =

∑
j 6=i |aji|
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observing that the TB-strain only equilibrium ε1 is l.a.s whenever RC1 > 1 >
RC2 .

C. Proof of Theorem 4.6.

Proof. In this case, L1 = L2 = I = 0 in system (6), that is,

dS

dt
= Λ− λ2S − µS,

dM

dt
= λ2S −$1M, (54)

dJ

dt
= b1ηM − κ2J.

The components of the unique endemic equilibrium ε2 can then be obtained by
substituting the unique value of λ∗∗2 , given in (18), into the expressions in (16) as
following

ε2 =

(
Λ

µRC2

,
Λ(RC2

− 1)

$1RC2

,
Λ(RC2

− 1)

β2

)
.

The Jacobian matrix of model system (54) at ε2 is given by

J (εT2 ) =

 −µRC2
0 −β2

RC2

µ(RC2
− 1) −$1

β2

RC2

0 b1η −κ2

 .
When RC2

> 1,

|aii| >
∑
j 6=i

|aji|,

hence, J (εT2 ) is a strictly column diagonally dominant matrix. Also all diagonal
elements of J (εT2 ) are negative, so, using the Gershgorin circle theorem we observe
that the drug-resistant TB-strain only equilibrium ε2 is l.a.s. whenever RC2

> 1 >
RC1 .

D. Proof of Theorem 4.10.

Proof. The components of the unique endemic equilibrium ε3 can be obtained by
substituting the unique value of λ∗∗1 and λ∗∗2 given in (22) and (24), into the expres-
sions in (20) as following

ε3 = (S∗∗, L∗∗1 , L
∗∗
2 , I

∗∗,M∗∗, J∗∗),

where

S∗∗ =
Λ

λ∗∗1 + λ∗∗2 + µ
,

L∗∗1 =
ω1κ1

a1σa2σ
I∗∗,

L∗∗2 =
κ1

a2σ
I∗∗,

I∗∗ =
RC1

β1
λ∗∗1 S

∗∗,
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M∗∗ =
1

$1
λ∗∗2 S

∗∗,

J∗∗ =
RC2

β2
λ∗∗2 S

∗∗ +
(1− q)rRC1

κ2β1
λ∗∗1 S

∗∗.

The Jacobian matrix at ε3 is given by

J (εT3 ) =

[
A ∗
∗ D

]
,

where

J (εT3 ) =



−µRC1 0 0 − β1

RC1
0 − β2

RC1

G1 −ω1 0 r + β1

RC1
0 0

0 a1σ −ω2 0 0 0
0 0 a2σ −κ1 0 0

G2 0 0 0 −$1
β2

RC1

0 0 0 (1− q)r b1η −κ2


,

with,

G1 =
µβ1(RC1

− 1)κ2(RC1
−RC2

)

rβ2RC1(1− q) + β1κ2(RC1 −RC2)
,

and

G2 =
µβ2RC1

r(1− q)(RC1
− 1)

rβ2RC1
(1− q) + β1κ2(RC1

−RC2
)
.

When RC1
> RC2

> 1,

|aii| >
∑
j 6=i

|aji|,

hence, J (εT3 ) is a strictly column diagonally dominant matrix. Also all diagonal
elements of J (εT3 ) are negative, so, using the Gershgorin circle theorem we observe
that interior equilibrium ε3 is l.a.s. whenever RC1

> RC2
> 1.

E. Proof of Theorem 5.2.

Proof. It should, first of all, be mentioned that the system (5) satisfies the Type K
condition [35] (hence, Comparison Theorem can be used [24]).

d

dt
X = (FC − VC)X − JX, (55)

where,

X = [L1(t), · · · , Ln(t), I(t),M1(t), · · · ,Mm(t), J(t)],

The matrices F and V , defined in (26) and (27), respectively.

J = [1− µS(t)

Λ
]FC .

Thus, J is a non-negative matrix since

S(t) ≤ N(t) ≤ Λ

µ
, in D.

Hence, it follows from (55) that

d

dt
X ≤ (FC − VC)X. (56)
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Since RC = max{RC1 ,RC2} ≤ 1 (or, equivalently, the eigenvalues of the matrix
FC − VC all have negative real parts), it follows that the linearized differential
inequality system (56) is stable whenever RC1

< 1 and RC2
< 1. Thus, it follows,

by Comparison Theorem [24], that

lim
t→∞

(L1(t), · · · , Ln(t), I(t),M1(t), · · · ,Mm(t), J(t))→ (0, · · · , 0).

Substituting L1(t) = · · · = Ln(t) = I(t) = M1(t) = · · · = Mm(t) = J(t) = 0 into
the (5) showes that S(t)→ S∗ as t→∞ (for RC1

< 1 and RC2
< 1). Therefore,

lim
t→∞

(S(t), L1(t), · · · , Ln(t), I(t),M1(t), · · · ,Mm(t), J(t))→ (S∗, 0, · · · , 0) = ε0.

Hence, the DFE (ε0) of the model (5) is g.a.s. in D whenever RC1
< 1 and

RC2 < 1.

F. Proof of Theorem 5.4.

Proof. ε1 exists and is unique if and only if RC1
> 1 and ε1 to exist alone, it is

necessary that the resistant strain does not exist (i.e., RC2
< 1). The components of

the unique endemic equilibrium ε1 can then be obtained by substituting the unique
value of λ∗∗1 , given in (30), into the expressions in (28) as following

ε1 = (S∗∗, L∗∗1 , · · · , L∗∗n , I∗∗),

where

S∗∗ =
Λ

µRC1

, L∗∗1 =
κ1

∏n
i=2 ωi(RC1

− 1)Λ

β1

∏n
i=1 aiσ

, · · ·L∗∗n =
κ1(RC1

− 1)Λ

β1anσ
,

I∗∗ =
Λ(RC1 − 1)

β1
.

The Jacobian matrix at ε1 is given by

J (εT1 ) =



−µRC1
0 0 · · · 0 0 − β1

RC1

µ(RC1
− 1) −ω1 0 · · · 0 0 r + β1

RC1

0 a1σ −ω2 · · · 0 0 0
...

...
. . .

. . .
...

...
...

...
...

. . .
. . .

. . .
...

...
0 0 · · · 0 an−1σ −ωn 0
0 0 · · · 0 0 anσ −κ1


(n+2)×(n+2)

When RC1 > 1,

|aii| >
∑
j 6=i

|aji|,

hence, J (εT1 ) is a strictly column diagonally dominant matrix. Also all diagonal
elements of J (εT1 ) are negative, so, using the Gershgorin circle theorem we observe
that the the TB-strain only equilibrium ε1 is l.a.s. whenever RC1

> 1 > R2.
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G. Proof of Theorem 5.6.

Proof. ε2 to exist alone, it is necessary that the resistant strain does not exist (i.e.,
RC1

< 1). The components of the unique endemic equilibrium ε2 can then be
obtained by substituting the unique value of λ∗∗2 , given in (33), into the expressions
in (31) as following

ε2 = (S∗∗,M∗∗1 , · · · ,M∗∗m , J∗∗),

where

S∗∗ =
Λ

λ∗∗2 + µ
,

M∗∗1 =
1

$1
λ∗∗2 S

∗∗,

...

M∗∗m =

∏m−1
k=1 bkη∏m
k=1$k

λ∗∗2 S
∗∗,

J∗∗ =
RC2

β2
λ∗∗2 S

∗∗.

The Jacobian matrix at ε2 is given by

J (εT2 ) =



−µRC2
0 0 0 · · · 0 − β2

RC2

µ(RC2
− 1) −$1 0 0 · · · 0 β2

RC2

0 b1η −$2 0 · · · 0 0
...

...
. . .

. . .
. . .

...
...

...
...

. . .
. . . 0

...
0 0 0 · · · bm−1η −$m 0
0 0 0 · · · 0 bmη −κ2


(m+1)×(m+1)

When RC2 > 1,

|aii| >
∑
j 6=i

|aji|,

hence, J (εT2 ) is a strictly column diagonally dominant matrix. Also all diagonal
elements of J (εT2 ) are negative, so, using the Gershgorin circle theorem we observe
that the the drug resistant TB-strain-only equilibrium ε2 is l.a.s whenever RC2

>
1 > RC1

.

H. Proof of Theorem 5.10.

Proof. The components of the unique endemic equilibrium ε3 can be obtained by
substituting the unique value of λ∗∗1 and λ∗∗2 given in (22) and (24), into the expres-
sions in (20) as following

ε3 = (S∗∗, L∗∗1 , · · · , L∗∗n , I∗∗,M∗∗1 , · · · ,M∗∗m , J∗∗),
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where

S∗∗ =
Λ

λ∗∗1 + λ∗∗2 + µ
,

L∗∗1 =
(r + µ+ d1)

∏n
i=2(aiσ + µ)∏n

i=1 aiσ
I∗∗,

...

L∗∗n =
(r + µ+ d1)

anσ
I∗∗,

I∗∗ =
RC1

β1
λ∗∗1 S

∗∗,

M∗∗1 =
1

b1η + µ
λ∗∗2 S

∗∗,

...

M∗∗m =

∏m−1
k=1 bkη∏m

k=1(bkη + µ)
λ∗∗2 S

∗∗,

J∗∗ =
RC2

β2
λ∗∗2 S

∗∗ +
(1− q)rRC1

β1(µ+ d2)
λ∗∗1 S

∗∗.

The Jacobian matrix at ε3 is given by

J (εT3 ) =

[
A B
C D

]
(n+m+3)×(n+m+3)

where

A =



−µRC1
0 0 · · · 0 0 − β1

RC1

G1 −ω1 0 · · · 0 0 r + β1

RC1

0 a1σ −ω2 · · · 0 0 0
...

...
. . .

. . .
...

...
...

...
...

. . .
. . .

. . .
...

...
0 0 · · · 0 an−1σ −ωn 0
0 0 · · · 0 0 anσ −κ1


(n+2)×(n+2)

B =


0 0 · · · 0 − β2

RC1

0 0 · · · 0 0
0 0 · · · 0 0
...

...
. . .

...
...

0 0 0 0 0


(n+2)×(m+1)

C =


G2 0 · · · 0 0
0 0 · · · 0 0
0 0 · · · 0 0
...

...
. . .

...
...

0 0 0 0 (1− q)r


(m+1)×(n+2)
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and

D =



−$1 0 0 · · · 0 0 β2

RC1

b1η −$2 0 · · · 0 0 0
...

...
. . .

. . .
...

...
...

...
. . .

. . .
. . .

...
...

0 0 · · · 0 bm−1η −$m 0
0 0 · · · 0 0 bmη −κ2


(m+1)×(m+1)

with,

G1 =
µβ1(RC1

− 1)κ2(RC1
−RC2

)

rβ2RC1(1− q) + β1κ2(RC1 −RC2)
,

and

G2 =
µβ2RC1

r(1− q)(RC1
− 1)

rβ2RC1
(1− q) + β1κ2(RC1

−RC2
)
.

When RC1
> RC2

> 1,

|aii| >
∑
j 6=i

|aji|,

hence, J (εT3 ) is a strictly column diagonally dominant matrix. Also all diagonal
elements of J (εT3 ) are negative, so, using the Gershgorin circle theorem we observe
that the the interior equilibrium ε3 is l.a.s. whenever RC1

> RC2
> 1.

Symbol Value References
Λ 417 [9]
µ 0.016 [10]
β1 varies
β2 varies
r 2 [9]
σ 0.22 Assumed
η 0.67 Assumed
q varies
d1 0.1 [10]
d2 0.2 [10]

Table 2. Parameters of the model (6).

Number of stages Values of ai, bi
n = 2,m = 1 a1 = b1 = 1.5, a2 = 3
n = 3,m = 2 a1 = b1 = 1.5, a2 = b2 = 3, a3 = 4.5
n = 4,m = 3 a1 = b1 = 1.5, a2 = b2 = 3, a3 = b3 = 4.5, a4 = 6

Table 3. Values of ai and bi(i = 1, 2, 3, 4) for various number of
disease stages (m and n).
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Figure 8. Stability of the disease-free equilibrium (7)
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Figure 9. Stability of the TB-strain-only equilibrium (11)
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Figure 10. Stability of the drug resistant TB-strain-only equilib-
rium (15)
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Figure 11. Stability of the interior equilibrium (19)



784 A. JABBARI, C. CASTILLO-CHAVEZ, F. NAZARI, B. SONG AND H. KHEIRI

0 5 10 15 20
0

1000

2000

3000

4000

5000

6000

7000

8000

9000

Time (years)

C
um

ul
at

iv
e 

nu
m

be
r 

of
 n

ew
 in

fe
ct

ed
 in

di
vi

du
al

s

Figure 12. Simulations of the model (6), showing the cumulative
number of new infected individuals as a function of time, for various
values of the effective contact rate of TB-infected individuals (β1):
green curve (β1 = 0.6), blue curve (β1 = 1.2) and red curve (β1 =
1.8). Parameter values used are as given in Table 3
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Figure 13. Simulations of the model (6), showing the cumulative
number of new infected individuals as a function of time, for various
values of the effective contact rate of drug resistant TB-infected
individuals (β2): green curve (β2 = 0.3), blue curve (β2 = 0.6) and
red curve (β2 = 0.9). Parameter values used are as given in Table
3.
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Figure 14. Simulations of the model (6), showing the prevalence
of total infected individuals as a function of time, for various values
of the effective contact rate of TB-infected individuals (β1): green
curve (β1 = 0.6), blue curve (β1 = 1.2) and red curve (β1 = 1.8).
Parameter values used are as given in Table 3.
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Figure 15. Simulations of the model (6), showing the prevalence
of total infected individuals as a function of time, for various values
of the effective contact rate of drug resistant TB-infected individ-
uals (β2): green curve (β2 = 0.3), blue curve (β2 = 0.6) and red
curve (β2 = 0.9). Parameter values used are as given in Table 3.
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