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Abstract. In this paper, we develop and analyze an SIS epidemic model with
a general nonlinear incidence rate, as well as degree-dependent birth and nat-

ural death, on heterogeneous networks. We analytically derive the epidemic

threshold R0 which completely governs the disease dynamics: when R0 < 1,
the disease-free equilibrium is globally asymptotically stable, i.e., the disease

will die out; when R0 > 1, the disease is permanent. It is interesting that the

threshold value R0 bears no relation to the functional form of the nonlinear
incidence rate and degree-dependent birth. Furthermore, by applying an it-

eration scheme and the theory of cooperative system respectively, we obtain

sufficient conditions under which the endemic equilibrium is globally asymp-
totically stable. Our results improve and generalize some known results. To

illustrate the theoretical results, the corresponding numerical simulations are
also given.

1. Introduction. In the traditional epidemiology, mathematical models become
important tools in understanding epidemic dynamics and making strategies to con-
trol disease (see [1, 4, 9, 15, 18] and the references therein). All the above researches
are mainly based on the homogeneous mixing approximation, that is, each suscep-
tible individual has the same rate of disease-causing contacts. However, in reality,
each individual has limited contact with those who can spread disease. For better
handling the effects of contact heterogeneity, the disease transmission should be
modeled over complex heterogenous networks [11, 27]. On networks, nodes stand
for individuals and an edge connecting two nodes describes the interaction between
individuals, in which the infection may spread. In this way, the node with more
edges has a higher possibility of being infected. Recently, considerable concern has
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arisen over the study of epidemic models on complex heterogeneous networks (see
[2, 3, 5, 7, 8], [11]−[14], [16, 17], [19]−[27])

To deal with the heterogeneity of contact patterns, one needs to consider the
difference of node degree. For epidemic spreading of SIS process, each node in the
network can be either susceptible (S) or infected (I) at any time. Since a real
network is composed of a finite number of nodes, we Let N be the total nodes.
Then N = S + I. We classify all the nodes into groups based on the numbers of
edges emanating from a node. That is, each node in the k−th group has the same
edges (i.e., the same degree), say k, for k = 1, 2, · · · , n. Here n is the maximum
node degree of the finite-size network (1 ≤ n ≤ N) [7]. We let Sk(t) and Ik(t)
be the densities of susceptible and infected nodes with a given degree k at time t,
respectively, and let Nk(t) be the number of nodes with degree k at time t, that is,
Nk(t) = Sk(t) + Ik(t). Since different groups may have different fertility levels, we
let the degree-dependent parameter bk > 0 be the number of newly born nodes with
degree k per unit time. And we assume that each newly born node is susceptible.
Based on the above assumptions and the models in [17, 26], we have the following
dynamics model:{

dSk(t)
dt = bk − µSk(t)− λkSk(t)Θ(t) + γIk(t),

dIk(t)
dt = λkSk(t)Θ(t)− (µ+ γ)Ik(t), k = 1, 2, · · · , n,

(1)

where λ > 0 is the transmission rate; the natural deaths are proportional to the
densities of nodes with death rate µ > 0; γ > 0 is the recovery rate of the infected
nodes. According to [5, 7, 22], the probability Θ(t) that any given edge emanating
from a node with degree k connects to an infected node can be written as

Θ(t) =

n∑
i=1

ϕ(i)

i
P (i|k)

Ii(t)

Ni(t)
, (2)

where the factor 1/i accounts for the probability that one of the infected neighbors
of a node, with degree i, will contact this node at the present time step. P (i|k)
is the conditional probability that a node with degreek is connected to a node
with degreei. ϕ(k) represents the infectivity of a node with degree k, i.e., ϕ(k)
denotes the average number of occupied edges from which a node with degree k
can transmit the disease [8]. This means that ϕ(k) ≤ k. It should be noted
that various types of the infectivity ϕ(k) have been studied, such as ϕ(k) = k
[11, 12, 14, 17, 20, 27]; ϕ(k) = A [21]; ϕ(k) = min{A, σk}, 0 < σ ≤ 1 [3]; ϕ(k) = kσ

[2] and ϕ(k) = akσ/(1 + νkσ), a > 0, ν ≥ 0 [22]. That is, the function ϕ(i) in (2)
can take any of the above forms according to the degree of real networks.

For simplicity, in this paper, we assume that the connectivity of nodes is un-
correlated, that is P (i|k) = iP (i)/ < k > [13], where < k >=

∑n
k=1 kP (k) is the

average degree of the network; P (k) is the probability that a randomly chosen node
has degree k, which is also named as the degree distribution. For convenience, we
define < u(k) >:=

∑n
k=1 u(k)P (k), where u(k) is a function of the variable k.

Model (1) is used to describe a kind of diseases, such as Tuberculosis, which is
persistent and can last for a individual’s lifetime. Some special cases of model (1)
were studied, such as bk = µ = 0, γ = 1, ϕ(k) = k and Nk(0) = 1 in [17, 20];
bk = µ = 0, γ = 1, ϕ(k) = min{A, σk} and Nk(0) = 1 in [3]; and bk = µ = 0, γ = 1
and Nk(0) = 1 in [22]. And if bk = µNk(t) (i.e., deaths are balanced by births) and
Nk(0) = 1, then model (1) becomes model (2) with λ(k) = λk in [26].
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In modelling of infectious disease dynamics, the incidence rate (the rate of new in-
fections) plays a crucial role. Based on the law of mass action, bilinear and standard
incidence rates are frequently used in most homogeneous mixing models [15]. These
types of incidence rates, such as λkSk(t)Θ(t) in [3, 8, 11, 12, 14, 17, 20, 21, 22, 23, 25],

λ(k)Sk(t)Θ(t) in [5, 16, 26] and λk Sk(t)
Nk(t)Θ(t) in [19] are also often found in network-

based epidemic models.
However, there are some reasons for using nonlinear incidence rates such as sat-

urating and nearly bilinear in the process of disease modelling. For example, to
consider the instinctive reaction of people, Zhang and Sun [23] introduced a non-
linear incidence rate λkSk(t)(1−αΘ(t))Θ(t) into their network-based SIS epidemic
model, where the positive parameter α is called ‘fear factor’. To describe the psy-
chological effect of certain diseases spread in a contact network, Li [11] proposed a
nonmonotone incidence rate λkSk(t)Θ(t)/(1 + αΘ2(t)). Enlightened by [1, 9], we
will study a general nonlinear incidence rate given by λkSk(t)Θ(t)/f(Θ(t)). Obvi-
ously it is a bilinear incidence rate as f(Θ(t)) = 1. We assume that the function
f(Θ(t)) satisfies (H1): f(0) = 1 and (H2): f ′(Θ) ≥ 0, which implies f(Θ) ≥ 1 for
Θ ≥ 0.

Some of the specific forms of f(Θ(t)) appearing in the literature and satisfying
(H1) and (H2) are f(Θ(t)) = 1 + αΘ2(t) with α > 0 [11] andf(Θ(t)) = 1/(1 −
αΘ(t)) with 0 < α < 1 [23]. One can note from (H1) that, for Θ(t) small enough,
the bilinear term dominates. What’s more, it follows from (H2) that 1/f(Θ) is
increasing when Θ(t) is small and decreasing when Θ(t) is large (for example f(Θ) =
1 + αΘ(t), α ≥ 0). In this case, the function 1/f(Θ) can be used to interpret
the psychological or inhibition effect from the behavior change of the susceptible
individuals. This is because the number of contacts with the infected individuals
(or the force of infection) may decrease, when the probability that one may contact
with infected individuals increases (i.e., Θ(t) is becoming large). As pointed out
by Zhang and Sun [23], people will consciously reduce the number of contacts with
others during the period of the diseases prevalence. The larger the probability that
one may contact with infected individuals is, the more cautious the people will
become, and the more number of contacts will be reduced in everyday life.

Motivated by the above consideration, we propose the following network-based
SIS epidemic model with a general nonlinear incidence rate, as well as degree-
dependent birth and natural death:{

dSk(t)
dt = bk − µSk(t)− λkSk(t) Θ(t)

f(Θ(t)) + γIk(t),
dIk(t)

dt = λkSk(t) Θ(t)
f(Θ(t)) − (µ+ γ)Ik(t), k = 1, 2, · · · , n,

(3)

where the parameters and variables are the same as aforementioned. Note that
when f(Θ(t)) = 1, the nonlinear incidence rate becomes the bilinear one and model
(3) can be simplified to model (1). When f(Θ(t)) = 1/(1 − αΘ(t)), 0 < α < 1,
bk = µNk(t), Nk(0) = 1 and ϕ(k) = k, model (3) becomes model (4) in [23]. When
f(Θ(t)) = 1 + αΘ2(t), α > 0, bk = µ = 0, Nk(0) = 1 and ϕ(k) = k, model (3)
becomes model (4) in [11].

A fundamental problem in epidemiology is to study the global dynamics of epi-
demic spreading. The global behaviors of network-based SIS epidemic models are
well studied in [20, 26], but they are only based on the bilinear incidence rate. To
date, there has still been relatively little research studied on network-based epi-
demic models with nonlinear incidence rate. In [14], Liu and Ruan introduced an
SIS model with a generalized nonlinear incidence rate on scale-free networks. They



726 SHOUYING HUANG AND JIFA JIANG

derived the basic reproduction number and studied the stability of the disease-free
equilibrium, but they neglected to give the stability of the endemic equilibrium.
As already mentioned, Li [11], Zhang and Sun [23] analyzed the dynamics of their
network-based models with different nonlinear incidence rates, respectively. In [23],
Zhang and Sun obtained the globally asymptotical stability of the disease-free equi-
librium and the local stability of the endemic equilibrium. Later, in [24], they
further studied an SIS model with a generalized feedback mechanism on weighted
networks and obtained the similar results. In [11], Li proved that if the transmission
rate is greater than the threshold value, the disease is permanent; otherwise, the
disease-free equilibrium is globally attractive. By the numerical simulations, all of
[11, 23, 24] observed that the endemic equilibrium is globally asymptotically stable.
However, the authors have not found a strict mathematical proof of this conclusion
in the literatures, which is a very challenging issue.

The aim of this paper is to investigate the global dynamics of system (3). The
rest of this paper is organized as follows. In Section 2, we reveal some properties of
the solutions and obtain the epidemic threshold. In Section 3, the globally asymp-
totical stability of the disease-free equilibrium and the permanence of epidemic are
showed. In Section 4, the globally asymptotical stability of the endemic equilibrium
is discussed. In Section 5, numerical simulations are given to support the theoretical
analysis, and then the paper concludes with a brief discussion in Section 6.

2. Positivity, boundedness and equilibria. Before going into details, let us
simply system (3). For each k, summing the two equations in (3), it follows that
dNk(t)

dt = bk−µNk(t), whose solution is given by Nk(t) = Nk(0)e−µt+ bk
µ (1− e−µt).

Thus, we assume that the initial value is Nk(0) = Sk(0) + Ik(0) = bk
µ =: δk, for

k = 1, 2, · · · , n, in order to have a population of constant size (i.e., Sk(t)+Ik(t) ≡ δk,
for all t ≥ 0, k = 1, 2, · · · , n). Then system (3) becomes the following form:

dIk(t)
dt = λk(δk − Ik(t)) Θ(t)

f(Θ(t)) − (µ+ γ)Ik(t), k = 1, 2, · · · , n. (4)

Considering the uncorrelated networks, it follows from (2) that

Θ(t) =
1

< k >

n∑
k=1

ϕ(k)

δk
P (k)Ik(t), (5)

In order to investigate the global stability of system (3), we only need to study
the global stability of system (4). From a practical perspective, only the case of
P (k) > 0, for k = 1, 2, · · · , n, is considered, and the initial conditions for system
(3) (or system (4)) satisfy:

0 ≤ Sk(0), Ik(0) ≤ δk, Sk(0) + Ik(0) = δk, k = 1, 2, · · · , n, Θ(0) > 0. (6)

In the following lemma, some properties of the solutions are obtained.

Lemma 2.1. Suppose that (S1(t), I1(t), · · · , Sn(t), In(t)) is a solution of system (3)
with initial conditions (6), then 0 < Sk(t), Ik(t) < δk and 0 < Θ(t) < 1 for all t > 0,
k = 1, 2, · · · , n.

Proof. First, it follows from (4) and (5) that Θ(t) satisfies

Θ′(t) = 1
<k>

n∑
k=1

ϕ(k)
δk

P (k)[λk(δk − Ik(t)) Θ(t)
f(Θ(t)) − (µ+ γ)Ik(t)]

= Θ(t)[−(µ+ γ) + λ
<k>

n∑
k=1

kϕ(k)
δk

P (k) δk−Ik(t)
f(Θ(t)) ],

(7)
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which implies that

Θ(t) = Θ(0)exp
{
− (µ+ γ)t+

λ

< k >

∫ t

0

n∑
k=1

k
ϕ(k)

δk
P (k)

δk − Ik(s)

f(Θ(s))
ds
}
.

Since Θ(0) > 0, one has Θ(t) > 0 for all t > 0.

System (4) can be rewritten as dIk(t)
dt = −[(µ+γ) + λkΘ(t)

f(Θ(t)) ]Ik(t) + λkδkΘ(t)
f(Θ(t)) . Note

that f(Θ(t)) ≥ 1 for Θ(t) > 0, it holds that

dIk(t)

dt
+ [(µ+ γ) +

λkΘ(t)

f(Θ(t))
]Ik(t) > 0.

Multiplying the above inequality by exp
{

(µ+γ)t+λk
∫ t

0
Θ(s)

f(Θ(s)) ds
}

and integrating

from 0 to t, we get Ik(t) > Ik(0)exp
{
−(µ+γ)t−λk

∫ t
0

Θ(s)
f(Θ(s)) ds

}
≥ 0, for all t > 0,

k = 1, 2, · · · , n.
Next, it can be verified that the function δk − Ik(t) satisfied the equation

d(δk − Ik(t))

dt
= −[(µ+ γ) +

λkΘ(t)

f(Θ(t))
](δk − Ik(t)) + δk(µ+ γ).

Similarly proof shows that δk − Ik(t) > 0. Hence, 0 < Ik(t) < δk, for all t > 0,
k = 1, 2, · · · , n. Under the condition that Sk(t)+Ik(t) = δk, one has 0 < Sk(t) < δk,
for all t > 0, k = 1, 2, · · · , n. Since 0 < Ik(t) < δk, it follows from (5) that
0 < Θ(t) < 1, for all t > 0. The proof is completed.

Now, we discuss all biologically feasible equilibria of System (4). One can easily
find that there exists a zero equilibrium Ik = 0 (k = 1, 2, · · · , n), which is cor-

responding to the disease-free equilibrium of system (3). Let dIk(t)
dt = 0, then it

follows from system (4) that

Ik =
λkδkΘ

λkΘ + (µ+ γ)f(Θ)
, (8)

where Θ = 1
<k>

∑n
k=1

ϕ(k)
δk

P (k)Ik. Substituting (8) into Θ, an equation of the form

Θh(Θ) = Θ is obtained, where

h(Θ) =
λ〈
k
〉 n∑
k=1

kϕ(k)P (k)

λkΘ + (µ+ γ)f(Θ)
. (9)

Then h′(Θ) = − λ
<k>

∑n
k=1

kϕ(k)P (k)[λk+(µ+γ)f ′(Θ)]
[λkΘ+(µ+γ)f(Θ)]2 . Since f ′(Θ) ≥ 0 for Θ ≥ 0,

therefore h′(Θ) < 0. Note that h(1) < 1, then the equation Θh(Θ) = Θ has a
unique non-trivial solution Θ∗

(
Θ∗ ∈ (0, 1)

)
if and only if h(0) > 1, which yields a

threshold value R0 = λ<kϕ(k)>
(µ+γ)<k> > 1. In this case, we get that

λ〈
k
〉 n∑
k=1

kϕ(k)P (k)

λkΘ∗ + (µ+ γ)f(Θ∗)
= 1. (10)

From the above discussion, we have the following result.

Lemma 2.2. If and only if R0 > 1, system (4) has a unique positive equilibrium
I∗k , k = 1, 2, · · · , n, which is corresponding to the endemic equilibrium of system (3)
and satisfies

0 < I∗k =
λkδkΘ∗

λkΘ∗ + (µ+ γ)f(Θ∗)
< δk, 0 < Θ∗ =

1〈
k
〉 n∑
k=1

ϕ(k)

δk
P (k)I∗k < 1. (11)
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Remark 1. (1) Lemma 2.2 shows that the existence of the endemic equilibrium
depends on the epidemic thresholdR0, which is determined by the model parameters
and network structure.

(2) It is seen that the decrease of the transmission rate λ and the increase of the
recovery rate γ can deduce the decrease of R0. Thus it will be easier for us to
control the disease.

(3) More interestingly, the epidemic threshold R0 bears no relation to the functional
form of the nonlinear incidence rate and degree-dependent birth bk. In other words,
the nonlinear incidence rate and degree-dependent birth do not affect the epidemic
threshold R0.

3. Stability of the disease-free equilibrium and permanence of the dis-
ease. In this section, the global behavior of the disease-free equilibrium and the
permanence of the disease are discussed.

Theorem 3.1. If R0 < 1, then the disease-free equilibrium of system (4) is globally
asymptotically stable, i.e., the disease fades out.

Proof. Let us consider a non-negative solution Ik(t) (k = 1, 2, · · · , n) of system (4).
We define a Lyapunov function by

V (t) =

n∑
k=1

wkIk(t),

where wk = ϕ(k)P (k)
(µ+γ)δk<k>

> 0. Since R0 < 1, the time derivative of V (t) along the

trajectories of system (4) satisfies:

dV
dt

∣∣
(4)

=
n∑
k=1

ϕ(k)P (k)
(µ+γ)δk<k>

[λk(δk − Ik(t)) Θ(t)
f(Θ(t)) − (µ+ γ)Ik(t)]

= − 1
<k>

n∑
k=1

ϕ(k)
δk

P (k)Ik(t) +
n∑
k=1

λkϕ(k)P (k)
(µ+γ)δk<k>

(δk − Ik(t)) Θ(t)
f(Θ(t))

≤ −Θ(t) + λΘ(t)
(µ+γ)<k>

n∑
k=1

kϕ(k)P (k) = Θ(t)(R0 − 1) ≤ 0.

And dV
dt = 0 holds only if Θ(t) = 0, i.e., Ik(t) = 0 for k = 1, 2, · · · , n. By the

LaSalle Invariant Principle, the disease-free equilibrium of system (4) is globally
asymptotically stable. The proof is completed.

Next, we adapt the idea of [10, 24] to study the permanence of the disease.

Theorem 3.2. For system (4), if R0 > 1 and Θ(0) > 0, then there exists a constant
ρ > 0 (independent of initial conditions) such that lim inf

t→+∞
Θ(t) ≥ ρ > 0, i.e., the

disease is permanent on the network.

Proof. It follows from (7) that

Θ′(t) = −(µ+ γ)Θ(t) + λΘ(t)
<k>f(Θ(t))

n∑
k=1

kϕ(k)P (k)

− λΘ(t)
<k>f(Θ(t))

n∑
k=1

kϕ(k)
δk

P (k)Ik(t)

> −(µ+ γ)Θ(t) + λΘ(t)
f(Θ(t))

<kϕ(k)>
<k> − λnΘ2(t)

f(Θ(t))

= Θ(t)
[ λ<kϕ(k)>
f(Θ(t))<k> − (µ+ γ)− λnΘ(t)

f(Θ(t))

]
.
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Since R0 > 1, i.e., λ<kϕ(k)>
<k> > (µ+ γ), and lim

Θ→0+
f(Θ) = f(0) = 1, we obtain that

lim
Θ→0+

[ λ < kϕ(k) >

f(Θ(t)) < k >
− (µ+ γ)− λnΘ(t)

f(Θ(t))

]
=
λ < kϕ(k) >

< k >
− (µ+ γ) > 0.

Consequently, there exits sufficiently small constant 0 < ρ ≤ 1 such that

λ < kϕ(k) >

f(Θ0) < k >
− (µ+ γ)− λnΘ0

f(Θ0)
> 0, for any Θ0 ∈ (0, ρ].

Then, ∀Θ0 ∈ (0, ρ], dΘ
dt

∣∣
Θ=Θ0

> 0. As a result, when R0 > 1 and dΘ
dt > 0 for any

0 < Θ ≤ ρ, it follows that lim inf
t→+∞

Θ(t) ≥ ρ > 0. The proof is completed.

4. Stability of the endemic equilibrium. In this section, we first suppose
f ′(Θ) ≤ 1 and discuss the local asymptotical stability. And then the global asymp-
totical stability of the endemic equilibrium is analyzed.

Theorem 4.1. If R0 > 1, then the endemic equilibrium I∗k (k = 1, 2, · · · , n) of
system (4) is locally asymptotically stable.

Proof. Let yk(t) = Ik(t) − I∗k be a small perturbation of I∗k (k = 1, 2, · · · , n), then
the linearized dynamics of system (4) at I∗k (k = 1, 2, · · · , n) is given by

dyk
dt

= −Akyk(t) +Bk

n∑
i=1

Ciyi(t), k = 1, 2, · · · , n, (12)

where Ak = (µ+ γ) + λk Θ∗

f(Θ∗) , Bk = f(Θ∗)−Θ∗f ′(Θ∗)
[f(Θ∗)]2 λk(δk − I∗k) and Ci = ϕ(i)P (i)

δi<k>
,

i = 1, 2, · · · , n. Since 0 ≤ f ′(Θ) ≤ 1, f(0) = 1 and 0 < Θ∗ < 1, it holds that
Bk > 0, for k = 1, 2, · · · , n.

Obviously, (12) can be written as

dy(t)

dt
= Jy(t),

where y(t) = (y1(t), y2(t), · · · , yn(t))T ,

J =


−A1 +B1C1 B1C2 · · · B1Cn

B2C1 −A2 +B2C2 · · · B2Cn

· · · · · ·
. . . · · ·

BnC1 BnC2 · · · −An +BnCn

 .

The following characteristic polynomial can be calculated by mathematical in-
duction method:

L(λ̃) = det(λ̃E − J)

= (λ̃+A1)(λ̃+A2) · · · (λ̃+An) + (−B1C1)(λ̃+A2)(λ̃+A3) · · · (λ̃+An)

+(λ̃+A1)(−B2C2)(λ̃+A3) · · · (λ̃+An)

+ · · ·+ (λ̃+A1)(λ̃+A2) · · · (λ̃+An−1)(−BnCn).

Specially, if λ̃ 6= −Ai, i = 1, 2, · · · , n, then

L(λ̃) =
(
1 +

n∑
i=1

−BiCi
λ̃+Ai

)
·
n∏
i=1

(λ̃+Ai),
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where −An < −An−1 < · · · < −A2 < −A1 < 0. Note that

L(−Ai) · L(−Ai+1) = BiBi+1CiCi+1 ·
[ i−1∏
k=1

(Ak −Ai)(Ak −Ai+1)
]

·(Ai −Ai+1) ·
n∏

k=i+1

(Ak −Ai) ·
n∏

k=i+2

(Ak −Ai+1) < 0.

Since the function L(λ̃) is continuous, there exits at least one root in (−Ai+1,−Ai),
for i = 1, 2, · · · , n− 1. Namely, there are n− 1 negative roots in (−An,−A1). It is
clear that L(−A1) = (−B1C1)(A2−A1)(A3−A2) · · · (An−A1) < 0, and according
to (10),

L(0) =
(
1 +

n∑
k=1

−BkCk
Ak

)
·
n∏
k=1

Ak

=

{
1−

n∑
k=1

[
f(Θ∗)−Θ∗f′(Θ∗)

[f(Θ∗)]2
·λk(δk−I∗k)

]
·ϕ(k)P (k)
δk<k>

(µ+γ)+ λkΘ∗
f(Θ∗)

}
·
n∏
k=1

Ak

>
(

1− λ
<k>

n∑
k=1

kϕ(k)P (k)
(µ+γ)f(Θ∗)+λkΘ∗

)
·
n∏
k=1

Ak = 0.

(13)

Consequently, there exits a negative root in (−A1, 0). Up to now, it is proven that
all the eigenvalues of matrix J are negative, that is, the endemic equilibrium of
system (4) is locally asymptotically stable. The proof is completed.

Next, applying a novel monotone iterative technique in [5, 20, 26, 27], we obtain
sufficient conditions for the global asymptotical stability of the endemic equilibrium
of system (4).

Theorem 4.2. If R0 > 1 and λ > µ + γ, then the endemic equilibrium I∗k
(k = 1, 2, · · · , n) of system (4) is globally asymptotically stable, i.e., the disease
becomes endemic.

Proof. We first prove that the endemic equilibrium of system (4) is globally attrac-
tive, i.e., lim

t→+∞
Ik(t) = I∗k , for k = 1, 2, · · · , n, where Ik(t) is any solution of system

(4) with initial conditions (6).
In the following, k is fixed to be any integer in {1, 2, · · · , n}. By Theorem 3.2,

there exists a constant ρ0 > 0 and a sufficiently large constant T0 > 0 such that
Θ(t) ≥ ρ0 for t > T0. Since Θ(t) ≤ 1

<k>

∑n
k=1 ϕ(k)P (k) =

〈
ϕ(k)

〉
/
〈
k
〉

=: β, then
from system (4), it holds that

dIk(t)
dt ≥ λk

[
δk − Ik(t)

]
ρ0

f(β) − (µ+ γ)Ik(t)

= λkδkρ0

f(β) −
[
λkρ0

f(β) + (µ+ γ)
]
Ik(t), t > T0.

For any enough small constant 0 < ε
(1)
1 < λkδkρ0

2[λkρ0+(µ+γ)f(β)] , by the comparison

theorem, there exits a T
(1)
1 > T0 such that Ik(t) ≥ V (1)

k + ε
(1)
1 for t > T

(1)
1 , where

V
(1)
k =

λkδkρ0

λkρ0 + (µ+ γ)f(β)
− 2ε

(1)
1 > 0.

Since Θ(t) > 1
<k>

n∑
k=1

ϕ(k)
δk

P (k)V
(1)
k =: m1, then, it follows from system (4) that

dIk(t)
dt ≤ λk

(
δk − Ik(t)

)
β

f(m1) − (µ+ γ)Ik(t)

= λkδkβ
f(m1) −

[
λkβ
f(m1) + (µ+ γ)

]
Ik(t), t > T

(1)
1 .
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Similarly, for any enough small constant

0 < ε
(2)
1 < min{1

2
, ε

(1)
1 ,

δk(µ+ γ)f(m1)

λkβ + (µ+ γ)f(m1)
},

there exits a T
(2)
1 > T

(1)
1 such that

Ik(t) ≤ U (1)
k :=

λkδkβ

λkβ + (µ+ γ)f(m1)
+ ε

(2)
1 < δk.

As ε
(i)
1 > 0 (i = 1, 2), we have that 0 < V

(1)
k < U

(1)
k < δk. Let

Mi =
1

< k >

n∑
k=1

ϕ(k)

δk
P (k)U

(i)
k , mi =

1

< k >

n∑
k=1

ϕ(k)

δk
P (k)V

(i)
k , (14)

for i = 1, 2, · · · , n, then

0 < m1 < Θ(t) ≤M1 < β ≤ 1, t > T
(2)
1 . (15)

Turning back to system (4), one has

dIk(t)
dt ≥ λk

(
δk − Ik(t)

)
m1

f(M1) − (µ+ γ)Ik(t)

= λkδkm1

f(M1) −
[
λkm1

f(M1) + (µ+ γ)
]
Ik(t), t > T

(2)
1 .

Consequently, for any enough small constant

0 < ε
(1)
2 < min

{1

3
, ε

(2)
1 ,

λkδkm1

λkm1 + (µ+ γ)f(M1)

}
,

there exits a T
(1)
2 > T

(2)
1 such that

Ik(t) ≥ V (2)
k := max

{
V

(1)
k + ε

(1)
1 ,

λkδkm1

λkm1 + (µ+ γ)f(M1)
− ε(1)

2

}
, t > T

(1)
2 . (16)

Accordingly, it follows from system (4) and (15) that

dIk(t)
dt ≤ λk

(
δk − Ik(t)

)
M1

f(m2) − (µ+ γ)Ik(t)

= λkδkM1

f(m2) −
[
λkM1

f(m2) + (µ+ γ)
]
Ik(t), t > T

(1)
2 .

So, for any enough small constant

0 < ε
(2)
2 < min{1

4
, ε

(1)
2 ,

δk(µ+ γ)f(m2)

λkM1 + (µ+ γ)f(m2)
},

there exits a T
(2)
2 > T

(1)
2 such that

Ik(t) ≤ U (2)
k :=

λkδkM1

λkM1 + (µ+ γ)f(m2)
+ ε

(2)
2 < δk, t > T

(2)
2 .

Continuously, i = 3, 4, · · · , for any enough small constant

0 < ε
(1)
i < min

{ 1

2i− 1
, ε

(2)
i−1,

λkδkmi−1

λkmi−1 + (µ+ γ)f(Mi−1)

}
,

there exits a T
(1)
i > T

(2)
i−1 such that Ik(t) ≥ V (i)

k for t > T
(1)
i , where

V
(i)
k := max

{
V

(1)
k + ε

(1)
1 ,

λkδkmi−1

λkmi−1 + (µ+ γ)f(Mi−1)
− ε(1)

i

}
. (17)

And for any enough small constant

0 < ε
(2)
i < min{ 1

2i
, ε

(1)
i ,

δk(µ+ γ)f(mi)

λkMi−1 + (µ+ γ)f(mi)
},
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there exits a T
(2)
i > T

(1)
i such that

Ik(t) ≤ U (i)
k :=

λkδkMi−1

λkMi−1 + (µ+ γ)f(mi)
+ ε

(2)
i < δk, t > T

(2)
i . (18)

Hence, two sequences
(
V

(i)
k

)∞
i=1

and
(
U

(i)
k

)∞
i=1

are obtained.
We then consider the convergence of the two sequences mentioned above. First,

in order to prove U
(2)
k < U

(1)
k , let

g(x) =
λkδkx

λkx+ (µ+ γ)
. (19)

Since g′(x) > 0, g(x) is an increasing function, thus, it only need to prove

that M1

f(m2) < β
f(m1) . Obviously, by (16), V

(2)
k > V

(1)
k . Hence, m2 > m1 and

f(m2) > f(m1). From the choice of ε
(2)
j (j = 1, 2) and (15), it is concluded

that U
(2)
k < U

(1)
k . Further, by (14), we obtain M2 < M1 and m2

f(M2) > m1

f(M1) .

Consequently, it follows from (17) and (19) that V
(3)
k ≥ V

(2)
k . Then m3 ≥ m2 and

M2

f(m3) <
M1

f(m2) . Since ε
(2)
j (j = 2, 3) are small constants, we reach that U

(3)
k < U

(2)
k .

If V
(j+1)
k ≥ V

(j)
k and U

(j+1)
k < U

(j)
k , then mj+1 ≥ mj and Mj+1 < Mj . Thus

mj+1

f(Mj+1) >
mj

f(Mj)
. Due to (17), (19) and the choice of ε

(1)
j+i (i = 1, 2), it follows that

V
(j+2)
k ≥ V

(j+1)
k . Then mj+2 ≥ mj+1 and

Mj+1

f(mj+2) <
Mj

f(mj+1) . So, from (18), (19)

and the choice of ε
(2)
j+i (i = 1, 2), it holds that U

(j+2)
k < U

(j+1)
k .

By induction, we know that the sequence
(
V

(i)
k

)∞
i=1

is a monotone increasing se-

quence and the sequence
(
U

(i)
k

)∞
i=1

is a strictly monotone decreasing sequence. Then,

by (14), we also obtain two sequences
(
mi

)∞
i=1

and
(
Mi

)∞
i=1

, which are monotone
increasing and strictly monotone decreasing sequences, respectively. Consequently,

according to (17) and (18), there exits a enough large positive integer Ñ0 such that

for i ≥ Ñ0,

V
(i)
k = λkδkmi−1

λkmi−1+(µ+γ)f(Mi−1) − ε
(1)
i , U

(i)
k = λkδkMi−1

λkMi−1+(µ+γ)f(mi)
+ ε

(2)
i . (20)

And it is clear that

0 < V
(i)
k ≤ Ik(t) ≤ U (i)

k < δk, t ≥ T (2)
i . (21)

Since the sequential limits of (20) exit, let lim
i→∞

V
(i)
k = Vk and lim

i→∞
U

(i)
k = Uk. Then,

it follows from (21) that

0 < Vk ≤ lim inf
t→∞

Ik(t) ≤ lim sup
t→∞

Ik(t) ≤ Uk < δk. (22)

Note that 0 < ε
(1)
i < 1

2i−1 and 0 < ε
(2)
i < 1

2i (i = 2, 3, · · · ), then ε
(1)
i → 0 and

ε
(2)
i → 0 as i→∞. Thus, take i→∞, it follows from (14), (20) and (22) that

Vk = λkδkm
λkm+(µ+γ)f(M) , Uk = λkδkM

λkM+(µ+γ)f(m) and 0 < m ≤M < 1. (23)

where

m = 1
<k>

n∑
k=1

ϕ(k)
δk

P (k)Vk, M = 1
<k>

n∑
k=1

ϕ(k)
δk

P (k)Uk. (24)

Further,

λ
<k>

n∑
k=1

kϕ(k)P (k)
λkm+(µ+γ)f(M) = 1, λ

<k>

n∑
k=1

kϕ(k)P (k)
λkM+(µ+γ)f(m) = 1. (25)
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It immediately follows from (25) that

λ
<k>

n∑
k=1

kϕ(k)P (k)
{
λk(M−m)+(µ+γ)[f(m)−f(M)]

}
[λkm+(µ+γ)f(M)][λkM+(µ+γ)f(m)] = 0. (26)

Now we want to show that m = M . Suppose not. By the differential mean value
theorem, there exits ξ ∈ (m,M) such that f(M) − f(m) = f ′(ξ)(M −m). Hence,
from (26), we have

λ
<k>

n∑
k=1

kϕ(k)P (k)[λk−(µ+γ)f ′(ξ)](M−m)
[λkm+(µ+γ)f(M)][λkM+(µ+γ)f(m)] = 0. (27)

Since 0 ≤ f ′(Θ) ≤ 1 (0 ≤ Θ ≤ 1) and λ > µ + γ, we have λk > (µ + γ)f ′(ξ).
This implies that each item on the left side of (27) is positive, which is appar-
ently a contradiction. Thus we conclude that m = M . It follows from (24) that

1
<k>

n∑
k=1

ϕ(k)
δk

P (k)(Uk − Vk) = 0, which implies Uk = Vk for k = 1, 2, · · · , n. Notice

that the equation Θh(Θ) = Θ
(
h(Θ) is defined in (9)

)
has a unique positive solu-

tion Θ∗ if and only if R0 > 1. From (10) and (25), it is clear that when R0 > 1,
m = M = Θ∗. Therefore, it is immediately from (11) and (23) that Uk = Vk = I∗k
for k = 1, 2, · · · , n. By (22), we have

lim inf
t→∞

Ik(t) = lim sup
t→∞

Ik(t) = I∗k .

Namely, the endemic equilibrium I∗k (k = 1, 2, · · · , n) of system (4) is globally
attractive. Then, from Theorem 4.1, we can conclude that the endemic equilibrium
I∗k (k = 1, 2, · · · , n) of system (4) is globally asymptotically stable if R0 > 1 and
λ > µ+ γ. The proof is completed.

Remark 2. From the conditions of Theorem 4.2, especially the condition λ > µ+γ,
we can conclude that the disease has the potential to become endemic when the
transmission rate λ is greater than the natural death rate µ and the recovered rate
γ. Therefore, in order to control the disease, we should reduce the transmission
rate λ and increase the recovered rate γ, which is in accord with Remark 1(2).

Similar to the analysis of Theorem 4.2, we have the following corollaries.

Corollary 1. If R0 > 1, the endemic equilibrium of system (1) (i.e., f(Θ(t)) = 1)
is globally asymptotically stable.

Remark 3. In system (1), if bk = µ = 0, γ = 1, ϕ(k) = k and Nk(0) = 1, then
system (1) will be reduced to system (1.1) in [20]. Accordingly, R0 > 1 will be
simplified to λ >

〈
k
〉
/
〈
k2
〉
. And if bk = µNk(t) and Nk(0) = 1, then system

(1) becomes system (2) with λ(k) = λk in [26]. From Corollary 1, the globally
asymptotical stability of the endemic equilibrium of system (1.1) in [20] (or system
(2) with λ(k) = λk in [26]) is naturally obtained. Thus, this result is indeed a good
extension and supplement of [20] and [26].

Corollary 2. If R0 > 1, λ > µ + γ, and one of the following cases (L1) − (L3)
holds, where

(L1) : f(Θ(t)) = 1 + αΘ(t), 0 < α ≤ 1,
(L2) : f(Θ(t)) = 1/(1− αΘ(t)), 0 < α < min{1, (1− α)2},
(L3) : f(Θ(t)) = 1 + αΘ2(t), 0 < α ≤ 1/(2β), 0 < β =

〈
ϕ(k)

〉
/
〈
k
〉
≤ 1,

then the endemic equilibrium I∗k (k = 1, 2, · · · , n) of system (4) is globally asymp-
totically stable.
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A natural and interesting question now arises about whether the same result
holds for a larger parameter α. In other words, shall we ignore the conditions
f ′(Θ) ≤ 1 and λ > µ+ γ ? To solve this question, we turn to the following results
from the theory of cooperative system.

Definition 4.3. [6] A C1 system of differential equations

dxi
dt = Fi(x1, · · · , xn) = Fi(x), i = 1, 2, · · · , n, (28)

is called cooperative in an open set X ⊂ Rn, if ∂Fi
∂xj

(x) ≥ 0 for i 6= j and for all

x ∈ X.

Lemma 4.4. [6] Suppose that X = Rn, or IntRn+, or [[p, q]]. Then the cooperative
system (28) has a globally asymptotically stable equilibrium if and only if the fol-
lowing conditions hold in X:
(a) every forward semi-obit has compact closure; and
(b) there is not more than one equilibrium.

Define Ω := {(I1, I2, · · · , In) =: ~I ∈ Rn+ | 0 ≤ Ik ≤ δk, k = 1, 2, · · · , n} and

Fk(~I) := λk(δk − Ik(t))
Θ(t)

f(Θ(t))
− (µ+ γ)Ik(t), k = 1, 2, · · · , n,

then ∂Fk
∂Ij

(~I) = λk(δk − Ik(t)) f(Θ)−Θf ′(Θ)
f2(Θ)

ϕ(j)
δj
P (j), k = 1, 2, · · · , n and k 6= j. Sup-

pose X = Ω \ {~0}, then system (4) is cooperative in X if f(Θ) ≥ Θf ′(Θ). It
follows from Lemma 2.1 and Lemma 2.2 that the conditions (a) and (b) hold in X,
respectively. So we have the following theorem.

Theorem 4.5. If R0 > 1, and one of the following cases (Q1)− (Q3) holds, where

(Q1) : f(Θ(t)) = 1 + αΘ(t),

(Q2) : f(Θ(t)) = 1/(1− αΘ(t)), 0 < α < min{1, 1/(2β)},
(Q3) : f(Θ(t)) = 1 + αΘ2(t), 0 < α ≤ 1/β2, 0 < β =

〈
ϕ(k)

〉
/
〈
k
〉
≤ 1,

then the unique endemic equilibrium I∗k (k = 1, 2, · · · , n) of system (4) is globally

asymptotically stable in Ω \ {~0}.

Remark 4. Corollary 2 and Theorem 4.5 show that the outstanding issues in
[11, 23] are partly solved. So the results we obtained improve and complement
those of [11, 23].

5. Numerical simulations. In this section, some numerical simulations are given
to illustrate the theoretical analysis. All the simulations are based on a finite scale-
free networks, where the degree distribution is P (k) = Ck−τ , 2 < τ ≤ 3 and the
constant C is chosen to satisfy

∑n
k=1 P (k) = 1.

Let I(t) =
∑n
k=1 P (k)Ik(t) and S(t) =

∑n
k=1 P (k)Sk(t) be the global average

densities of the two epidemic classes. Since Sk(t) + Ik(t) ≡ δk, the variables Ik(t)
(k = 1, 2, · · · , n) are only considered. Now we study the dynamical behaviors of

system (3) with τ = 2.6. We assume ϕ(k) = akσ

1+bkσ . In Fig.1−3 and Fig.5, we chose

n = 500, a = 0.3, σ = 0.75, ν = 0.02, then β =
〈
ϕ(k)

〉
/
〈
k
〉

= 0.2299.
Figure 1 displays the time series I(t) with different incidence rates. The initial

value of Fig.1(a) is I(0) = 80. The parameters are chosen as: λ = 0.2, µ = 0.06,
γ = 0.25 and bk = 6. Then the epidemic threshold R0 = 0.6739 < 1. In Fig.1(b),
the initial value is I(0) = 5, and the parameters are listed as follows: λ = 0.5,
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(a) R0 = 0.6739 < 1. (b) R0 = 2.0891 > 1.

Figure 1. The time series of I(t) with different incidence rates.

(a) R0 = 0.6739 < 1. (b) R0 = 2.0891 > 1.

Figure 2. The time evolution of Ik(t), k = 1, 2, · · · , n.

µ = 0.05, γ = 0.2 and bk = 4. Then R0 = 2.0891 > 1. It can be seen from Fig.1,
regardless of the functional form of the nonlinear incidence rate, when R0 < 1,
the disease will disappear; when R0 > 1, the epidemic disease is permanent on the
network.

In the following Fig.2 and Fig.3, we only show f(Θ(t)) = 1 + αΘ2(t) (α = 1.75)
on behalf of other forms of the function f(Θ(t)). To further study the detailed
outcome of system (3), we should examine the time series of those nodes with
different degree. In Fig.2(a) and Fig.2(b), the initial value and the parameters are
the same as those of Fig.1(a) and Fig.1(b), respectively. Figure 2 also verifies that
when R0 < 1, the disease-free equilibrium is globally asymptotically stable; when
R0 > 1 and λ > µ+γ, the number of the infected with different degree will converge
to a positive constant, respectively.

Figure 3 depicts the relevance Ik(t) versus t with different initial values. Here we
choose k = 50 on behalf of other degrees. It should be noted that the time evolution
of the infected nodes with other degrees are analogous. The parameters in Fig.3(a)
and Fig.3(b) are the same as those in Fig.1(a) and Fig.1(b), respectively. One
can observe from Fig.3 that, no matter how many the initial values of the infected
nodes are, the density function Ik(t) (k = 1, 2, · · · , n) tends to 0 and approaches to
a positive stationary level according to above two cases, respectively. The numerical
results mentioned above coincide with our theoretical analysis.
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(a) R0 = 0.6739 < 1. (b) R0 = 2.0891 > 1.

Figure 3. The prevalence of I50(t) versus t respect to different initial values.

(a) bk = min{k, 11}. (b) bk = max{11− k, 0}+ 1.

Figure 4. The prevalence of Ik(t) versus t respect to different degree-

dependent birth bk for k = 1, 2, 11, 21, 31 and n.

Figure 5. The time series forI50(t) and I(t) versus t with different value of α.

From Theorem 4.2 and Theorem 4.5, we know that the endemic equilibrium of
system (3) (for example f(Θ(t)) = 1 + αΘ2(t)) is globally asymptotically stable
under some conditions (that is R0 > 1, λ > µ + γ and 0 < α ≤ 1/(2β); or R0 > 1
and 0 < α ≤ 1/β2), which is shown in Fig.1(b), Fig.2(b) and Fig.3(b). However, in
Fig.4, we choose n = 100, a = 0.85, σ = 0.75, ν = 0.01, α = 3, λ = 0.02, µ = 0.01,
γ = 0.02. Then R0 = 1.7184 > 1 and β =

〈
ϕ(k)

〉
/
〈
k
〉

= 0.6814. It is clear that
λ < µ + γ. Through simple computation, we have α − 1/(2β) = 1.0162 > 0 and
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α − 1/β2 = 0.8463 > 0. It follows from Fig.4 that the endemic equilibrium of
system (3) is also globally asymptotically stable only when R0 > 1, though the
rigorous analysis does not present in this paper. In addition, it is also found in
Fig.4 and Fig.2(b) that if R0 > 1 and bk is a monotone increasing function of
degree k or a degree-independent constant, the larger the degree number is, the
higher the endemic level will be, although degree-dependent birth bk cannot change
the epidemic threshold R0.

Finally, we investigate the effect of the nonlinear incidence rate on the spread of
a disease. Without loss of generality, we choose the saturation incidence rate, such
as f(Θ(t)) = 1 + αΘ(t), where the parameter α > 0 describes the inhibition effect
of the general public toward the infectivities (the same meaning as [18]). In this
case, we only study the effect of the parameter α on the disease transmission. In
Fig.5, the parameters are chosen as: λ = 0.3, µ = 0.01, γ = 0.2 and bk = 4, then
R0 = 1.4922 > 1. An interesting discovery shown in Fig.5 is that, when the disease
is endemic, the larger the value of parameter α is, the lower the endemic level will
be, although the parameter α cannot affect the epidemic threshold R0. This result
is consistent with that in [11, 23].

6. Discussion. The purpose of this paper is to study the global dynamics of a
newly proposed SIS epidemic model which incorporates a general nonlinear inci-
dence rate, as well as degree-dependent birth and natural death, on heterogeneous
networks. Some special cases of this model were studied in [3, 11, 17, 20, 22, 23]. We
analytically derive the expression for the epidemic threshold R0, which determines
not only the existence of endemic equilibrium but also the global dynamics of the
model. Interestingly, the epidemic threshold R0 is not dependent on the functional
form of the nonlinear incidence rate, but our simulations show that the nonlinear
incidence rate does affect the epidemic dynamics.

By constructing Lyapunov function, we show that when R0 < 1, the disease-free
equilibrium of system (3) is globally asymptotically stable, i.e., the disease will die
out. And when R0 > 1, the disease will persist on the network. Furthermore, by
applying an iteration scheme and the theory of cooperative system respectively, we
obtain sufficient conditions which ensure the globally asymptotical stability of the
endemic equilibrium of system (3) and offer partial answers to the open problems
in [11, 23]. We believe that the idea here can also be applied to study the global
dynamics of the model in [24]. In particular, the endemic equilibrium of system
(1) with bilinear incidence rate (i.e., f(Θ(t)) = 1) is globally asymptotically stable
when R0 > 1, which enriches the related result in [20, 26]. Hence, our results are
more general and richer.

At the same time, we have considered the effect of degree-dependent birth bk on
the epidemic spreading. The simulations illustrate that when the disease is endemic
and bk is a monotone increasing function of degree k or a degree-independent con-
stant, the larger the degree number is, the higher the endemic level will be, although
degree-dependent birth bk cannot change the epidemic threshold R0. In addition, if
bk is a degree-independent constant, from the expression of Θ(t), it follows that the
larger the value of bk, the lower the probability Θ(t) will be. And we can note from
(H1) that for Θ(t) small enough, the bilinear incidence rate dominates. Therefore,
according to Corollary 1, if bk is a degree-independent constant and becomes large
enough, the endemic equilibrium of system (3) is globally asymptotically stable
when R0 > 1.
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From Theorem 4.2 and Theorem 4.5, one can see that in order to obtain the
globally asymptotical stability of the endemic equilibrium of system (3), besides
the epidemic threshold R0 > 1, some additional conditions are required. That
is, if R0 > 1, we showed that the endemic equilibrium of system (3) is globally
asymptotically stable provided that (C1): λ > µ + γ and f ′(Θ) ≤ 1 or (C2):
f(Θ) ≥ Θf ′(Θ). Obviously, if f ′(Θ) ≤ 1, it follows from (H2) that f(Θ) ≥ f ′(Θ),
thus (C2) holds. In this case, the condition λ > µ+γ in (C1) can be ignored. What’s
more, from the numerical simulation results, we can obtain the endemic equilibrium
of system (3) is globally asymptotically stable only when R0 > 1. However, we could
not give a rigorous proof for the problem in this paper. We leave this for future
work.
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