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Abstract. The question of the effects of environmental toxins on ecological
communities is of great interest from both environmental and conservational

points of view. Mathematical models have been applied increasingly to pre-

dict the effects of toxins on a variety of ecological processes. Motivated by
the fact that individuals with different sizes may have different sensitivities to

toxins, we develop a toxin-mediated size-structured model which is given by a
system of first order fully nonlinear partial differential equations (PDEs). It

is very possible that this work represents the first derivation of a PDE model

in the area of ecotoxicology. To solve the model, an explicit finite difference
approximation to this PDE system is developed. Existence-uniqueness of the

weak solution to the model is established and convergence of the finite dif-

ference approximation to this unique solution is proved. Numerical examples
are provided by numerically solving the PDE model using the finite difference

scheme.

1. Introduction. The question of the effects of anthropogenic and natural environ-
mental toxins on ecological communities is of great interest from both environmental
and conservational points of view. Industrial toxins are one of the leading causes
of pollution worldwide. Industrial toxins may arise as a result of air emissions,
water releases, water seepage, air deposition or disposal and leaching of solid waste.
The US Environmental Protection Agency has designated 126 priority pollutants
[32] and the Canadian Council of Ministers of the Environment has a list of priority
chemicals of concern for the protection of aquatic life [31]. These priority substances
can cause toxic effects when released into aquatic ecosystems. The effect of a toxic
substance can, in principle, be exerted on all levels of the biological hierarchy, from
cells to organs to organisms to populations to entire ecosystems.

To protect ecological environments and aquatic species, it is necessary to assess
the risk of aquatic organisms exposed to toxins, and find relevant factors that deter-
mine the persistence and extirpation of organisms. Over the past several decades,
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mathematical models have been applied increasingly to predict the effects of tox-
ins on a variety of ecological processes. These models include population mod-
els (single-population abundance, life history, individual-based, and metapopula-
tion), ecosystem models (food-web, aquatic and terrestrial), landscape models, and
toxicity-extrapolation models [10, 12, 24, 25]. The selection of specific models for
addressing an ecological risk issue depends on the habitat, endpoints, and chemicals
of interest, the balance between model complexity and availability of data, the de-
gree of site specificity of available models, and the risk issue [24]. A comprehensive
review on the realism, relevance, and applicability of different types of models from
the perspective of assessing risks posed by toxic chemicals is provided in [10, 24].

Our search of the literature shows that toxin-dependent individual-based models
and matrix population models are widely used to evaluate the ecological significance
of observed or predicted effects of toxic chemicals on individual organisms and popu-
lation dynamics. Despite the nonlinear dynamical nature of population-toxin inter-
actions, relatively few differential equation models have been developed to describe
population-toxin interactions (but see [11, 13, 14, 15, 19, 20, 23, 28, 29]). For those
models that do exist, interactions are usually described by a system, which contains
components representing the population density, the concentration of toxin in an
organism, and the environmental concentration of toxin. Recently, we developed a
toxin-dependent model given by a system of differential equations, to describe the
impact of contaminants on fish population dynamics [16]. Because the concentration
of toxin in the environment is not affected significantly by mortality or metabolic
processes of population, our toxin-dependent model focused on the impact of toxin
on the population and ignores the influence of the population on the concentration
of toxin in the environment. The concentration of toxin in the environment hence
was treated as a parameter. The model was connected to literature-sourced exper-
imental data via model parameterization of the toxic effects of methylmercury on
rainbow trout (Oncorhynchus mykiss). The parameter estimates were then used to
illustrate the long-term behavior of rainbow trout population. The numerical results
provided threshold values of concentration of methylmercury in the environment to
maintain populations and prevent extirpation.

It is significant that all above-mentioned population models assume that all in-
dividuals in a population have the same vital rates (reproduction, growth, and
mortality rates) and the same sensitivity to toxins. However, in reality, different
individuals may have different vital rates, and intake and egestion of toxins may
depend on age, weight, and size. Motivated by these, in this work we extend the
toxin-dependent ordinary differential equation model in [16] to a size-structured
model with toxin effect. The model is given by a system of first order hyperbolic
partial differential equations (PDEs) that includes two governing equations: one
equation presents a generic description of the population growth under the influence
of contaminant, while the other equation is the balance equation for the concentra-
tion of contaminant contained in individuals of the population. To our knowledge,
this work presents the first derivation of a PDE model in the field of ecotoxicology.
Although our toxin-mediated population model is developed in terms of size, the
model and the results in this study are applicable to age- and weight-structured
populations.

We are concerned with the existence and uniqueness of the weak solution of the
system of PDEs. For this purpose, we develop an explicit finite difference approxi-
mation for the system in the spirit of the one initially used in [9, 27] for conservation
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laws and later extended to nonlocal first order hyperbolic initial-boundary value
problems arising in population ecology [1, 5, 6]. In general, explicit schemes are
computationally more practical and faster schemes for such problems (e.g., see [26]).
Such a scheme results in an important tool: a numerical method that can be easily
used for approximating solutions to this model, and for which convergence results
are established.

The rest of the paper is organized as follows. In Section 2, we develop a toxin-
mediated aquatic population model. In Section 3, we define a weak solution of
the system and develop an explicit finite difference approximation to the solution,
we prove the convergence of approximation and existence-uniqueness of the weak
solution. In section 4, we use the finite difference scheme to numerically solve the
PDE model. Finally, a discussion section completes the paper.

2. Model formulation. Since we are interested an aquatic environment, the pop-
ulation is measured by concentration of biomass, rather than number. The state
of the population is given by u(x, t), the size-distribution of the concentration of

population biomass at time t. The formal meaning of u is that
∫ b
a
u(x, t)dx is the

concentration of the biomass of individuals having size between a and b at time t.
If there is no toxin, the population dynamics can be represented by the following
McKendrick-vonFoerster equations [1, 5, 6, 22]:

ut + (g(x)u)x + µ(x)u = 0,

g(xmin)u(xmin, t) =

∫ xmax

xmin

β(x)u(x, t)dx,
(1)

with an appropriate initial condition. Here xmin and xmax denote the minimize size
and maximum size of the population, respectively. The function g represents the
growth rate of an individual of size x, µ denotes the mortality rate of an individual
of size x, and β is the reproduction rate of an individual of size x.

Taking the effect of a toxin on the population into account, we let I(x, t) be
the size-distribution of toxin in the population at time t. The formal meaning of I

is that
∫ b
a
I(x, t)dx is the concentration of the toxin in the individuals having size

between a and b at time t. Consider the rate of change of toxin in the population
from size x to size x+ ∆x, we have

Rate of change of toxin in the individuals over the size interval (x, x+ ∆x)
= (rate of toxin entering the interval)− (rate of toxin leaving the interval)
−(loss rate term)+(uptake rate term).

This balance equation yields

∂

∂t

∫ x+∆x

x

I(y, t)dy = g(x)I(x, t)− g(x+ ∆x)I(x+ ∆x, t)

−[σ(x, t) + µ(x)]I(x, t)∆x+ a(x, t)E(t)u(x, t)∆x.
(2)

The growth of size leads to the individuals with certain concentration of the toxin
enter and leave the small category. This leads to the terms I(x, t)g(x) and −I(x+
∆x, t)g(x+ ∆x, t). The function E(t) is the concentration of toxin the environment
at time t. The term aEu∆x represents the concentration of toxin uptaken by the
population from the environment, which is modeled according to the Law of Mass
Action, hence is proportional to both the concentration of toxin in the environment
and the concentration of population biomass (see [16, 28]), where a is the uptake co-
efficient. The term σI∆x represents the toxin elimination due to metabolic process
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of the population, where σ is per unit rate of toxin elimination. The term µI∆x
represents the loss of the toxin due to death.

Dividing (2) by ∆x and then letting ∆x→ 0, we obtain

It + (g(x)I)x + [σ(x, t) + µ(x)]I − a(x, t)E(t)u(x, t) = 0. (3)

Following [16, 28], we consider the direct impact of the toxin on the population
dynamics, which is realized by (body burden), given by I(x, t)/u(x, t) := v(x, t),
concentration of toxin per unit population biomass. Using (1) and (3), we obtain
the following equation for the body burden v:

vt =
1

u
It −

I

u2
ut

=
1

u
[−(gI)x − (σ + µ)I + aEu] +

I

u2
[(gu)x + µu]

=
1

u
[−(guv)x − (σ + µ)uv + aEu] +

v

u
[(gu)x + µu]

=
1

u
[−(gu)xv − guvx − (σ + µ)vu+ aEu] +

v

u
[(gu)x + µu]

= −gvx − σv + aE.

Let P (t) =
∫ xmax

xmin
u(x, t)dx be the total population biomass. We assume that the

individual vital rates (reproduction, growth, and mortality rates) depend on the to-
tal population biomass due to competition for resources. Taking the effects of body
burden on population vital rates into account, we consider the following nonlinear,
nonlocal, hyperbolic PDE system that describes the dynamics of a population living
in a polluted environment:

ut + (g(x, P (t))u)x + µ(x, P (t), v(x, t))u = 0, (x, t) ∈ (xmin, xmax)× (0, T ),

vt + g(x, P (t))vx + σ(x, t)v − a(x, t)E(t) = 0, (x, t) ∈ (xmin, xmax)× (0, T ),

g(xmin, P (t))u(xmin, t) =

∫ xmax

xmin

β(x, P (t), v(x, t))u(x, t)dx, t ∈ (0, T ),

v(xmin, t) = 0, t ∈ (0, T ),

u(x, 0) = u0(x), x ∈ [xmin, xmax],

v(x, 0) = v0(x), x ∈ [xmin, xmax].

(4)

In the absence of toxin, model (4) reduces to a classical size-structured population
model of form (1), which has been well studied (see [1, 6, 22] and references therein).

3. Finite difference approximation and existence-uniqueness. In this sec-
tion we establish the existence and uniqueness of weak solution to model (4). This
is done through the following series of steps: 1) We construct a finite difference
approximation for model (4). 2) We establish some estimates for the solutions to
the difference approximation. 3) These estimates are then used to show that a set
of functions generated from the difference approximation is compact in L1 topology,
which allows us to pass to the limit along a subsequence. This leads to the existence
of a weak solution. 4) Finally, we prove uniqueness of the weak solution, and hence
establish convergence of the difference approximation.
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3.1. Weak solution and finite difference approximation. Throughout the
discussion we let D1 = [xmin, xmax] × [0,∞), D2 = [xmin, xmax] × [0,∞] × [0,∞],
D3 = [xmin, xmax] × [0, T ], and ω be a sufficiently large positive constant. We
assume that the parameters in (4) satisfy the following assumptions:

(A1) g : D1 → R is a Lipschitz continuous function with Lipschitz constant L
and satisfies sup(x,P )∈D1

g(x, P ) ≤ ω. Furthermore, g(x, P ) > 0 for x ∈
[xmin, xmax) and g(xmax, P ) = 0, and gx(x, P ) is Lipschitz continuous with
respect to x and P for constant L.

(A2) µ : D2 → R is a nonnegative Lipschitz continuous function with Lipschitz
constant L. Furthermore, supµ(x,P,v)∈D2

µ(x, P, v) ≤ ω.
(A3) β : D2 → R is a nonnegative Lipschitz continuous function with Lipschitz

constant L. Furthermore, supβ(x,P,v)∈D2
β(x, P, v) ≤ ω.

(A4) σ : D3 → R is a nonnegative continuous function. Furthermore,
sup(x,t)∈D3

σ(x, t) ≤ ω.
(A5) a : D3 → R is a nonnegative continuous function. Furthermore,

supβ(x,v)∈D3
a(x, t) ≤ ω.

(A6) E : [0, T ]→ R is nonnegative continuous function with upper bound ω.
(A7) u0 ∈ BV [xmin, xmax] and u0(x) ≥ 0.
(A8) v0 ∈ BV [xmin, xmax] and v0(x) ≥ 0.

Multiplying the first and second equations in (4) by ϕ(a, t) and ψ(x, t), respec-
tively, and then formally integrating by parts and utilizing the initial and boundary
conditions, we define a weak solution of (4) as follows:

Definition 3.1. A set (u, v) ∈ BV ([xmin, xmax]× [0, T ])×BV ([xmin, xmax]× [0, T ])
is called a weak solution to problem (4) if this set satisfies the following:∫ xmax

xmin

u(x, t)ϕ(x, t)dx−
∫ xmax

xmin

u0(x)ϕ(x, 0)dx

=

∫ t

0

∫ xmax

xmin

u(ϕs + gϕx − µϕ)dxds+

∫ t

0

ϕ(0, s)

∫ xmax

xmin

βudxds,∫ xmax

xmin

v(x, t)ψ(x, t)dx−
∫ xmax

xmin

v0(x)ψ(x, 0)dx

=

∫ t

0

∫ xmax

xmin

[vψs + v(gψ)x − σvψ + aEψ]dxds

(5)

for every test function ϕ,ψ ∈ C1((0, amax)× (0, T )).

We divide the intervals [xmin, xmax] and [0, T ] into n and l subintervals, re-
spectively. The following notation will be used throughout this paper: ∆x =
(xmax − xmin)/n and ∆t = T/l denote the size and time mesh lengths, respec-
tively. The mesh points are given by: xj = xmin + j∆x, j = 0, 1, · · · , n, tk = k∆t,

k = 0, 1, · · · , l. We denote by ukj and vkj , the finite difference approximation of
u(xj , tk) and v(xj , tk), respectively, and let

gkj = g(xj , P (tk)), µkj = µ(xj , P (tk), v(xj , tk)), βkj = β(xj , P (tk), v(xj , tk)),

akj = a(xj , tk), σkj = σ(xj , tk), Ek = E(tk).

We define the difference operators

D−∆x(ukj ) =
ukj − ukj−1

∆x
, D−∆x(vkj ) =

vkj − vkj−1

∆x
, 1 ≤ j ≤ n,
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and the `1 and `∞ norms of uk and vk by

‖uk‖1 =

n∑
j=1

|ukj |∆x, ‖vk‖1 =

n∑
j=1

|vkj |∆x,

‖uk‖∞ = max
0≤j≤n

|ukj |, ‖vk‖∞ = max
0≤j≤n

|vkj |.

We then discretize PDE system (4) using the following finite difference approxima-
tion

uk+1
j − ukj

∆t
+
gkj u

k
j − gkj−1u

k
j−1

∆x
+ µkju

k
j = 0, 0 ≤ k ≤ l − 1, 1 ≤ j ≤ n,

vk+1
j − vkj

∆t
+ gkj

vkj − vkj−1

∆x
+ σkj v

k
j − akjEk = 0, 0 ≤ k ≤ l − 1, 1 ≤ j ≤ n,

gk+1
0 uk+1

0 =

n∑
j=1

βk+1
j uk+1

j ∆x, vk+1
0 = 0, 0 ≤ k ≤ l − 1,

(6)

with the initial conditions

u0
0 = u0(0), u0

j =
1

∆x

∫ j∆x

(j−1)∆x

u0(x)dx, j = 1, 2, · · · , n.

v0
0 = v0(0), v0

j =
1

∆x

∫ j∆x

(j−1)∆x

v0(x)dx, j = 1, 2, · · · , n.

The following condition concerning ∆t and ∆x is imposed throughout the paper:

(A9) Assume that ∆t and ∆x are chosen such that

ω∆t(
1

∆x
+ 1) ≤ 1.

We can equivalently write (6) as the following system of linear equations:

uk+1
j =

∆t

∆x
gkj−1u

k
j−1 + (1− ∆t

∆x
gkj −∆tµkj )ukj , 0 ≤ k ≤ l − 1, 1 ≤ j ≤ n,

vk+1
j =

∆t

∆x
gkj v

k
j−1 + (1− ∆t

∆x
gkj −∆tσkj )vkj + akjE

k∆t, 0 ≤ k ≤ l − 1, 1 ≤ j ≤ n,

gk+1
0 uk+1

0 =

n∑
j=1

βk+1
j uk+1

j ∆x, vk+1
0 = 0, 0 ≤ k ≤ l − 1,

(7)
Since u0

j , v
0
j ≥ 0, j = 0, 1, · · ·, n, from the first two equations of (7), one can easily

see that under the assumption (A9), uk+1
j , vk+1

j ≥ 0, j = 1, 2, · · · , n, k = 0, 1, · · · , l−
1. Thus, from the third equation of (7), we find uk+1

0 ≥ 0. That is, the difference

system (7) has a unique solution satisfying [uk0 , u
k
1 , · · · , ukn, vk0 , vk1 , · · · , vkn] ≥ −→0 , k =

1, 2, · · · , l.
From a biological point of view, it is very important that the numerical approx-

imation preserves the nonnegativity of the solution.

3.2. Estimates for the difference approximations. We first show that the
difference approximation is bounded in `1 norm.

Lemma 3.2. There exist positive constants M1 and M2 such that

‖uk‖1 ≤M1, ‖vk‖1 ≤M2.
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Proof. Multiplying the first equation of (7) by ∆x, summing over j = 1, 2, · · · , n,
and noticing that gkn = 0, we have

‖uk+1‖1 = ‖uk‖1 + ∆tgk0u
k
0 −∆t

n∑
j=1

µkju
k
j∆x.

Using the boundary condition given in the third equation of (7) and assumption
(A3), we get

‖uk+1‖1 ≤ (1 + ω∆t)‖uk‖1,
which implies the first estimate.

Treating the second equation of (7) similarly, and by the assumptions (A1) and
(A5)-(A6), we find

‖vk+1‖1 ≤ ‖vk‖1 + ∆t
n∑
j=1

gkj v
k
j−1∆x+ ∆t

n∑
j=1

akjE
k∆x

≤ (1 + ω∆t)‖vk‖1 + ∆tω2(xmax − xmin).

which implies the second estimate.

We then establish `∞ bound on the difference approximation.

Lemma 3.3. The following estimates hold:

‖uk‖∞ ≤ max{ωM1, (1 + L∆t)l‖v0‖∞},

‖vk‖∞ ≤ ‖v0‖∞ + ω2T.

Proof. If uk+1
0 = max

0≤j≤n
uk+1
j , then from the third equation of (7) and the assumption

(A3) we get

uk+1
0 =

n∑
j=1

βk+1
j uk+1

j ∆x ≤ ω1‖uk+1‖1 ≤ ω1M1. (8)

Otherwise, suppose that for some 1 ≤ i ≤ n, uk+1
i = max

0≤j≤n
uk+1
j , then from the first

equation of (7) and (A1) we have

uk+1
i ≤

(
1− ∆t

∆x
gki

)
max

0≤j≤n
ukj +

∆t

∆x
gki−1 max

0≤j≤n
ukj

=

[
1 +

∆t

∆x
(g(xi−1, P

k)− g(xi, P
k))

]
‖uk‖∞

≤ (1 + L∆t)‖uk‖∞.

(9)

A combination of (8) and (9) then yields

‖uk‖∞ ≤ max{ω1M1, (1 + L∆t)l‖u0‖∞}.

Since vk0 = 0, k = 0, 1, · · · , l, we suppose that for some 1 ≤ j ≤ n, vk+1
r =

max
0≤j≤n

vk+1
r , then from the second equation of (7) and the assumptions (A5)-(A6),

we get

vk+1
r ≤

(
1− ∆t

∆x
gkr

)
max

0≤j≤n
vkj +

∆t

∆x
gkr max

0≤j≤n
vkj + akjE

k∆t

≤ ‖vk‖∞ + ω2∆t,

(10)

This leads to the desired result.
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The next lemma shows that the approximations vkj has bounded total variation.

Lemma 3.4. There exists a positive constant M3 such that ‖D−∆x(vk)‖1 ≤M3.

Proof. Set ηkj = D−∆x(vkj ) and apply the operator D−∆x to the second equation of
(7) to get

ηk+1
j = ηkj −

∆t

∆x

[
D−∆x(gkj v

k
j )−D−∆x(gkj v

k
j−1)

]
−∆tD−∆x(σkj v

k
j ) + ∆tEkD−∆x(akj )

= ηkj −
∆t

∆x

[
D−∆x(gkj )vkj + gkj−1D

−
∆x(vkj )−D−∆x(gkj )vkj−1 − gkj−1D

−
∆x(vkj−1)

]
−∆tD−∆x(σkj v

k
j ) + ∆tEkD−∆x(akj )

=

(
1− ∆t

∆x
gkj−1

)
ηkj +

∆t

∆x
gkj−1η

k
j−1 −

∆t

∆x
(gkj − gkj−1)ηkj

−∆tD−∆x(σkj v
k
j ) + ∆tEkD−∆x(akj )

=

(
1− ∆t

∆x
gkj

)
ηkj +

∆t

∆x
gkj−1η

k
j−1 + ∆tD−∆x(σkj v

k
j ) + ∆tEkD−∆x(akj ),

2 ≤ j ≤ n

By the assumption (A9), we have

|ηk+1
j | ≤

(
1− ∆t

∆x
gkj

)
|ηkj |+

∆t

∆x
gkj−1|ηkj−1|+ ∆t|D−∆x(σkj v

k
j )|

+ ∆tEk|D−∆x(akj )|, 2 ≤ j ≤ n.

Multiplying the above equation by ∆x, and summing over the indices j = 2, 3, · · · , n,
we get

n∑
j=2

|ηk+1
j |∆x ≤

n∑
j=2

|ηkj |∆x+ ∆tgk1 |ηk1 |+ ∆t

n∑
j=2

|D−∆x(σkj v
k
j )|∆x

+ ∆t

n∑
j=2

Ck|D−∆x(akj )|∆x.
(11)

For j = 1, using the second and fourth equations of (7) and (A9) we have

|ηk+1
1 |∆x = |vk+1

1 − vk+1
0 | = vk+1

1 =
∆t

∆x
gk1v

k
0 +

(
1− ∆t

∆x
gk1 −∆tσk1

)
vk1 + ak1E

k∆t

≤
(

1− ∆t

∆x
gk1

)
|ηk1 |∆x+ ak1E

k∆t.

(12)

Adding (11) and (12) we get

‖ηk+1‖1 ≤ ‖ηk‖1 + ∆t

 n∑
j=2

|D−∆x(σkj v
k
j )|∆x+

n∑
j=2

Ck|D−∆x(akj )|∆x+ ak1E
k

 .

(13)
Furthermore, we find

n∑
j=2

|D−∆x(σkj v
k
j )|∆x+

n∑
j=2

Ck|D−∆x(akj )|∆x+ ak1E
k
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=

n∑
j=2

|σkj vkj − σkj−1v
k
j−1|+ Ek

n∑
j=2

|akj − akj−1|+ ak1E
k

=

n∑
j=2

|σkj (vkj − vkj−1) + (σkj − σkj−1)vkj−1|+ Ck
n∑
j=2

|akj − akj−1|+ ak1E
k

≤ max
j
σkj ‖ηk‖1 + ‖vk‖∞

n∑
j=2

L∆x+ Ek
n∑
j=2

L∆x+ ak1E
k.

By Lemma 3.3 and the assumptions (A4)-(A6), there exists a positive constant c1
such that

n∑
j=2

|D−∆x(σkj v
k
j )|∆x+

n∑
j=2

Ck|D−∆x(akj )|∆x+ ak1E
k ≤ ω‖ηk‖1 + c1.

Applying the above inequality to (13), we arrive at

‖ηk+1‖1 ≤ (1 + ω∆t)‖ηk‖1 + c1∆t,

which implies the estimate.

The next lemma is necessary to show that the approximations ukj have bounded
total variation.

Lemma 3.5. There exists a positive constant M4 such that |uk+1
0 − uk0 |/∆t ≤M4.

Proof. We have from the second and third equations of (7) that

uk+1
0 − uk0 =

n∑
j=1

(βk+1
j uk+1

j − βkj ukj )∆x

=

n∑
j=1

βk+1
j (uk+1

j − ukj )∆x+

n∑
j=1

(βk+1
j − βkj )ukj∆x

=

n∑
j=1

βk+1
j [(gkj−1u

k
j−1 − gkj ukj )− µkjukj∆x]∆t+

n∑
j=1

(βk+1
j − βkj )ukj∆x.

(14)

Using gkn = 0 and the assumption (A3), we get

n∑
j=1

βk+1
j (gkj−1u

k
j−1 − gkj ukj )

= βk+1
1 gk0u

k
0 − βk+1

1 gk1u
k
1 +

n∑
j=2

βk+1
j gkj−1u

k
j−1 −

n−1∑
j=2

βk+1
j gkj u

k
j

= βk+1
1 gk0u

k
0 +

n−1∑
j=1

(βk+1
j+1 − β

k+1
j )gkj u

k
j

= βk+1
1 gk0u

k
0 +

n−1∑
j=1

[
β(xj+1, P

k+1, vk+1
j+1 )− β(xj , P

k+1, vk+1
j+1 )

+β(xj , P
k+1, vk+1

j+1 )− β(xj , P
k+1, vk+1

j )
]
gkj u

k
j
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≤ βk+1
1 gk0‖uk‖∞ + max

j
gkj

n−1∑
j=1

(L∆x+ L|vk+1
j+1 − v

k+1
j |)ukj

≤ βk+1
1 gk0‖uk‖∞ + max

j
gkj (L‖uk‖1 + ‖uk‖∞‖D−∆x(vk+1)‖1.

Thus, by Lemmas 3.2-3.4 and the assumptions (A1) and (A3), there exists a constant
c2 > 0 such that

n∑
j=1

βk+1
j (gkj−1u

k
j−1 − gkj ukj ) ≤ c2.

Moreover, using the assumption (A3), we find
n∑
j=1

(βk+1
j − βkj )ukj∆x

=

n∑
j=1

[β(xj , P
k+1, vk+1

j )− β(xj , P
k, vk+1

j ) + β(xj , P
k, vk+1

j )− β(xj , P
k, vkj )]ukj∆x

≤
n∑
j=1

(L|P k+1 − P k|+ L|vk+1
j − vkj |)ukj∆x

≤ L‖uk‖1|P k+1 − P k|+ L‖uk‖∞
n∑
j=1

|vk+1
j − vkj |∆x.

Hence, ∣∣∣∣∣uk+1
0 − uk0

∆t

∣∣∣∣∣ ≤ c1 + max
j
βk+1
j max

j
µkj ‖uk‖1 + L‖uk‖1

∣∣∣∣P k+1 − P k

∆t

∣∣∣∣
+ L‖uk‖∞

n∑
j=1

|vk+1
j − vkj |∆x

∆t
.

(15)

Furthermore, ∣∣∣∣P k+1 − P k

∆t

∣∣∣∣ =

∣∣∣∣∣
∑n
j=1(uk+1

j − ukj )∆x

∆t

∣∣∣∣∣
=

∣∣∣∣∣∣
n∑
j=1

(gkj−1u
k
j−1 − gkj ukj − µkjukj∆x)

∣∣∣∣∣∣
=

∣∣∣∣∣∣gk0uk0 −
n∑
j=1

µkju
k
j∆x

∣∣∣∣∣∣
≤ gk0‖uk‖∞ + max

j
µkj ‖uk‖1.

Thus, by Lemmas 3.2-3.3 and the assumptions (A1)-(A2), there exists a constant
c2 > 0 such that

|Qk+1 −Qk|
∆t

≤ c2. (16)

Simple calculations yield
n∑
j=1

|vk+1
j − vkj |∆x

∆t
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=

∣∣∣∣∣∣
n∑
j=1

(gkj v
k
j−1 − gkj vkj − σkj vkj∆x+ akjE

k∆x)

∣∣∣∣∣∣
≤ max

j
gkj ‖D−∆x(vk)‖1 + max

j
σkj ‖vk‖1 + max

j
akjE

k(xmax − xmin).

Thus, by Lemmas 3.2 and 3.4 and the assumptions (A1) and (A4)-(A6), there exists
a constant c3 > 0 such that

n∑
j=1

|vk+1
j − vkj |∆x

∆t
≤ c3. (17)

Applying the bounds (16) and (17) to (15), we conclude that there exists a positive

constant M4 such that |uk+1
0 − uk0 |/∆t ≤M4 for each k.

With the help of the above lemmas, we will show that approximations ukj have
bounded total variation as well. The total variation bound plays an important role
in establishing the sequential convergence of the difference approximation (6) to a
weak solution of (5).

Lemma 3.6. There exists a positive constant M5 such that ‖D−∆x(uk)‖1 ≤M5.

Proof. Set ξkj = D−∆x(ukj ) and apply the operator D−∆x to the first equation of (7)
to get

ξk+1
j = ξkj −

∆t

∆x

[
D−∆x(gkj u

k
j )−D−∆x(gkj−1u

k
j−1)

]
−∆tD−∆x(µkju

k
j )

= ξkj −
∆t

∆x

[
D−∆x(gkj )ukj + gkj−1D

−
∆x(ukj )−D−∆x(gkj−1)ukj−1 − gkj−2D

−
∆x(ukj−1)

]
−∆tD−∆x(µkju

k
j )

=

(
1− ∆t

∆x
gkj−1

)
ξkj +

∆t

∆x
gkj−2ξ

k
j−1 −

∆t

∆x

[
D−∆x(gkj )ukj −D−∆x(gkj−1)ukj−1

]
−∆tD−∆x(µkju

k
j ), 2 ≤ j ≤ n.

By the assumption (A9), we have

|ξk+1
j | ≤

(
1− ∆t

∆x
gkj−1

)
|ξkj |+

∆t

∆x
gkj−2|ξkj−1|+

∆t

∆x
|D−∆x(gkj )ukj −D−∆x(gkj−1)ukj−1|

+ ∆t|D−∆x(µkjA
k
j )|, 2 ≤ j ≤ n.

Multiplying the above equation by ∆x, and summing over the indices j = 2, 3, · · · , n,
we get

n∑
j=2

|ξk+1
j |∆x ≤

n∑
j=2

|ξkj |∆x+ ∆t(gk0 |ξk1 | − gkn−1|ξkn|)

+ ∆t

n∑
j=2

|D−∆x(gkj )ukj −D−∆x(gkj−1)ukj−1|

+ ∆t

n∑
j=2

|D−∆x(µkju
k
j )|∆x.

(18)
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For j = 1, using the first equation of (7) and the assumption (A9), we have

|ξk+1
1 |∆x = |uk+1

1 − uk+1
0 | =

∣∣∣∣∆t

∆x
gk0u

k
0 +

(
1− ∆t

∆x
gk1 −∆tµk1

)
uk1 − uk+1

0

∣∣∣∣
=

∣∣∣∣(1− ∆t

∆x
gk0

)
(uk1 − uk0)− ∆t

∆x
(gk1 − gk0 )uk1 −∆tµk1u

k
1 + uk0 − uk+1

0

∣∣∣∣
≤
(

1− ∆t

∆x
gk0

)
|uk1 − uk0 |+ ∆t

[
|D−∆x(gk1 )|uk1 + µk1u

k
1 +

∣∣∣∣∣uk+1
0 − uk0

∆t

∣∣∣∣∣
]

= |ξk1 |∆x−∆tgk0 |ξk1 |+ ∆t

[
|D−∆x(gk1 )|uk1 + µk1u

k
1 +

∣∣∣∣∣uk+1
0 − uk0

∆t

∣∣∣∣∣
]
.

(19)

Adding (18) and (19), we get

‖ξk+1‖1 ≤ ‖ξk‖1 −∆tgkn−1|ξkn|+ ∆t

 n∑
j=2

|D−∆x(gkj )ukj −D−∆x(gkj−1)ukj−1|

+

n∑
j=2

|D−∆x(µkju
k
j )|∆x+ |D−∆x(gk1 )|uk1 + µk1u

k
1 +

∣∣∣∣∣uk+1
0 − uk0

∆t

∣∣∣∣∣
 .

(20)

By Lemma 3.2, we get

n∑
j=2

|D−∆x(gkj )ukj −D−∆x(gkj−1)ukj−1|

=

n∑
j=2

|D−∆x(gkj )(ukj − ukj−1) +D−∆x(gkj − gkj−1)ukj−1|

≤ max
j
|D−∆x(gkj )‖ξk‖1 +

n∑
j=2

∣∣∣∣∣
(
gkj − gkj−1

∆x
−
gkj−1 − gkj−2

∆x

)
ukj−1

∣∣∣∣∣
≤ L‖ξk‖1 +

n∑
j=2

|(gx(x̄j , P
k)− gx(x̄j−1, P

k))ukj−1|

≤, L‖ξk‖1 + L‖uk‖1 ≤ L‖ξk‖1 + LM1,

(21)

where x̄j ∈ [xj−1, xj ], and x̄j−1 ∈ [xj−2, xj−1].
Moreover,

n∑
j=2

|D−∆x(µkju
k
j )|∆x+ |D−∆x(gk1 )|uk1 + µk1u

k
1

=

n∑
j=2

|D−∆x(µkj )ukj + µkj−1D
−
∆x(ukj )|∆x+ |D−∆x(gk1 )|uk1 + µk1u

k
1

≤ ‖uk‖∞
n∑
j=2

|µkj − µkj−1|+ max
j

(µkj−1)‖ξk‖1 + |D−∆x(gk1 )|‖uk‖∞ + µk1‖uk‖∞

≤ ‖uk‖∞
n∑
j=2

|µ(xj , P
k, vkj )− µ(xj−1, P

k, vkj ) + µ(xj−1, P
k, vkj )
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− µ(xj−1, P
k, vkj−1)|+ max

j
(µkj−1)‖ξk‖1 + |D−∆x(gk1 )|‖uk‖∞ + µk1‖uk‖∞

≤ ‖uk‖∞

 n∑
j=2

L∆x+ L‖D−∆x(vk)‖1

+ ω‖ξk‖1 + L‖uk‖∞ + ω‖uk‖∞.

Therefore, by Lemmas 3.3-3.4, there exist positive constants c4 and c5 such that

n∑
j=2

|D−∆x(µkju
k
j )|∆x+ |D−∆x(gk1 )|uk1 + µk1u

k
1 ≤ c4‖ξk‖1 + c5. (22)

applying (21) and (22) to (20), we obtain

‖ξk+1‖1 ≤ [1 + ∆t(L+ c4)]‖ξk‖1 + ∆t(LM1 + c5).

The result now follows from the above inequality.

The next result shows that the difference approximations satisfy a Lipschitz-type
condition in t.

Lemma 3.7. There exist positive constants M6 and M7 such that for any q > p,
we have

n∑
j=1

∣∣∣∣∣u
q
j − u

p
j

∆t

∣∣∣∣∣∆x ≤M6(q − p),
n∑
j=1

∣∣∣∣∣v
q
j − v

p
j

∆t

∣∣∣∣∣∆x ≤M7(q − p).

Proof. Summing the first equation in (7) over j and multiplying by ∆x, we obtain

n∑
j=1

∣∣∣∣∣u
k+1
j − ukj

∆t

∣∣∣∣∣∆x =

n∑
j=1

∣∣∣∣∣gkj ukj − gkj−1u
k
j−1

∆x
+ µkju

k
j

∣∣∣∣∣∆x
=

n∑
j=1

∣∣∣∣∣
(
gkj − gkj−1

∆x
+ µkj

)
ukj + gkj−1

ukj − ukj−1

∆x

∣∣∣∣∣∆x
≤ (max

j
|D−∆x(gkj )|+ max

j
µkj )‖uk‖1 + max

j
gkj−1‖D−∆x(uk)‖1.

By Lemmas 3.2 and 3.6, and the assumptions (A1)-(A2), there exists a positive
constant M6 such that

n∑
j=1

∣∣∣∣∣u
k+1
j − ukj

∆t

∣∣∣∣∣∆x ≤M6.

Thus,

n∑
j=1

∣∣∣∣∣u
q
j − u

p
j

∆t

∣∣∣∣∣∆x ≤
q−1∑
k=p

n∑
j=1

∣∣∣∣∣u
k+1
j − ukj

∆t

∣∣∣∣∣∆x ≤M6(q − p).

Similarly, by virtue of (17), we obtain

n∑
j=1

∣∣∣∣∣v
q
j − v

p
j

∆t

∣∣∣∣∣∆x ≤
q−1∑
k=p

n∑
j=1

∣∣∣∣∣v
k+1
j − vkj

∆t

∣∣∣∣∣∆x ≤M7(q − p).
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3.3. Convergence of difference approximation and existence of a weak
solution. Following [27] we define a family of functions {U∆x,∆t} and {V∆x,∆t} by

U∆x,∆t(x, t) = ukj , V∆x,∆t(x, t) = vkj

for x ∈ [xj−1, xj), t ∈ [tk−1, tk), j = 1, · · · , n, k = 1, · · · , l. Then by Lemmas
3.2-3.7 the set of functions ({U∆x,∆t}, {V∆x,∆t}) is compact in the topology of

L1((xmin, xmax) × (0, T )) × L1((xmin, xmax) × (0, T )), respectively, and hence as in
the proof of Lemma 16.7 on page 276 of [27], we have the following lemma.

Lemma 3.8. There exists a sequence of functions ({U∆xi,∆ti}, {V∆xi,∆ti}) ⊂
({U∆x,∆t}, {V∆x,∆t}) which converge to a function (u, v) ∈ BV ([xmin, xmax]×[0, T ])
×BV ([xmin, xmax]× [0, T ]), in the sense that for all t > 0∫ xmax

xmin

|U∆xi,∆ti(x, t)− u(x, t)| dx→ 0,∫ xmax

xmin

|V∆xi,∆ti(x, t)− v(x, t)| dx→ 0,∫ T

0

∫ xmax

xmin

|U∆xi,∆ti(x, t)− u(x, t)| dxdt→ 0,∫ T

0

∫ xmax

xmin

|V∆xi,∆ti(x, t)− v(x, t)| dxdt→ 0,

as i → ∞ (i.e., ∆xi,∆ti → 0). Furthermore, there exist constants M8 and M9

(dependent on ‖u0‖BV [xmin,xmax] and ‖v0‖BV [xmin,xmax]) such that the limit functions
satisfy

‖u‖BV ([xmin,xmax]×[0,T ]) ≤M8, ‖v‖BV ([xmin,xmax]×[0,T ]) ≤M9.

The next theorem shows that the set of limit functions u(x, t), v(x, t) constructed
via our difference scheme is actually a weak solution of problem (4).

Theorem 3.9. The set of limit functions u(x, t) and v(x, t) defined in Lemma 3.8
is a weak solution of (4) and satisfies

P (t) ≤ eωT ‖u0‖1,

‖u‖L∞((xmin,xmax)×(0,T )) ≤ max
{
ωeωT ‖u0‖1, eLT ‖v0‖∞

}
,

and

‖v‖L∞((xmin,xmax)×(0,T )) ≤ ‖v0‖∞ + ω2T.

Proof. Let ϕ ∈ C1((xmin, xmax) × (0, T )) and denote the finite difference approxi-
mations ϕ(xj , tk) by ϕkj . Multiplying the first equation of the difference scheme (7)

by ϕk+1
j , we have

uk+1
j ϕk+1

j = ukjϕ
k+1
j +

∆t

∆x
(gkj−1u

k
j−1 − gkj ukj )ϕk+1

j −∆tµkju
k
jϕ

k+1
j .

Hence,

uk+1
j ϕk+1

j − ukjϕkj =ukj (ϕk+1
j − ϕkj ) +

∆t

∆x

[
gkj−1u

k
j−1(ϕk+1

j − ϕk+1
j−1)

+(gkj−1u
k
j−1ϕ

k+1
j−1 − g

k
j u

k
jϕ

k+1
j ) ]−∆tµkju

k
jϕ

k+1
j .
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Multiplying the above equation by ∆x, summing over k = 0, 1, · · · , l − 1 and j =
1, 2, · · · , n, and using gkn = 0 and the third equation of (7), we have

n∑
j=1

(uljϕ
l
j − u0

jϕ
0
j )∆x =

l−1∑
k=0

n∑
j=1

[ukj (ϕk+1
j − ψkj )∆x+ gkj−1u

k
j−1(ϕk+1

j − ϕk+1
j−1)∆t

−µkjukjϕk+1
j ∆x∆t] +

l−1∑
k=0

(gk0u
k
0ϕ

k+1
0 − gknuknϕk+1

n )∆t

=

l−1∑
k=0

n∑
j=1

(ukj
ϕk+1
j − ϕkj

∆t
+ gkj−1u

k
j−1

ϕk+1
j − ϕk+1

j−1

∆x

−µkjukjϕk+1
j )∆x∆t+

l−1∑
k=0

n∑
j=1

βkj u
k
jϕ

k+1
0 ∆x∆t.

(23)
On the other hand, let ψ ∈ C1((xmin, xmax)×(0, T )) and denote the finite difference

approximations ψ(xj , tk) by ψkj . Multiply the second equation of (7) by ψk+1
j to

find

vk+1
j ψk+1

j = vkj ψ
k+1
j +

∆t

∆x
gkj (vkj−1 − vkj )ψk+1

j − σkj vkj ψk+1
j ∆t+ akjE

kψk+1
j ∆t.

Hence,

vk+1
j ψk+1

j − vkj ψkj =vkj (ψk+1
j − ψkj ) +

∆t

∆x
gkj (vkj−1 − vkj )ψk+1

j − σkj vkj ψk+1
j ∆t

+ akjE
kψk+1

j ∆t.

Multiplying the above equation by ∆x , summing over k = 0, 1, · · · , l − 1 and
j = 1, 2, · · · , n, and using gkn = 0 and vk0 = 0, we have

n∑
j=1

(vljψ
l
j − v0

jψ
0
j )∆x

=

l−1∑
k=0

n∑
j=1

[vkj (ψk+1
j − ψkj ) +

∆x

∆t
gkj (vkj−1 − vkj )ψk+1

j − σkj vkj ψk+1
j ∆t

+ akjE
kψk+1

j ∆t]∆x

=

l−1∑
k=0

n∑
j=1

[vkj
ψk+1
j − ψkj

∆t
+ vkj−1

gkj ψ
k+1
j − gkj−1ψ

k+1
j−1

∆x
− σkj vkj ψk+1

j

+ akjE
kψk+1

j ]∆x∆t+

l−1∑
k=0

(gk0v
k
0ψ

k+1
0 − gknvknψk+1

n )∆t

=

l−1∑
k=0

n∑
j=1

[vkj
ψk+1
j − ψkj

∆t
+ vkj−1

gkj ψ
k+1
j − gkj−1ψ

k+1
j−1

∆x
− σkj vkj ψk+1

j

+ akjE
kψk+1

j ]∆x∆t.

(24)

Using (23) and (24) and following an argument similar to that used in the proof of
Lemma 16.9 on page 280 of [27] we obtain, by letting n, l→∞, that the limit of the
difference approximations defined in Lemma 3.8 is a weak solution of (4). Taking
the limit in the bounds obtained in Lemmas 3.2-3.3, we get the bounds on P (t),
‖u‖L∞((xmin,xmax)×(0,T )) and ‖v‖L∞((xmin,xmax)×(0,T )).
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3.4. Uniqueness of the weak solution. The following theorem guarantees the
continuous dependence of the solution ukj and vkj of (7) with respect to the initial

condition u0
j and v0

j .

Theorem 3.10. Let {ukj , vkj } and {ûkj , v̂kj } be the solutions of (7) corresponding to

the initial conditions {u0
j , v

0
j } and {û0

j , v̂
0
j }, respectively. Then there exists positive

constants γ such that

‖uk+1 − ûk+1‖1 + ‖vk+1 − v̂k+1‖1 ≤ (1 + γ∆t)(‖uk − ûk‖1 + ‖vk − v̂k‖1)

for all k ≥ 0.

Proof. Let wkj = ukj − ûkj , zkj = vkj − v̂kj for j = 0, 1, · · · , n and k = 0, 1, · · · , l. Then

wkj , z
k
j satisfy the following:

wk+1
j =

∆t

∆x
(gkj−1u

k
j−1 − ĝkj−1û

k
j−1) + wkj −

∆t

∆x
(gkj u

k
j − ĝkj ûkj )−∆t(µkju

k
j − µ̂kj ûkj ),

zk+1
j =

∆t

∆x
(gkj v

k
j−1 − ĝkj v̂kj−1) + zkj −

∆t

∆x
(gkj v

k
j − ĝkj v̂kj )−∆tσkj z

k
j ,

gk0u
k
0 − ĝk0 ûk0 =

n∑
j=1

βkj u
k
j∆x−

n∑
j=1

β̂kj û
k
j∆x,

zk0 = 0,
(25)

where ĝki = g(xj , P̂
k) and similar notations are used for the rest of the parameters.

Using the first equation of (25) and the assumption (A9), we obtain∣∣wk+1
j

∣∣ =

∣∣∣∣∆t

∆x
[gkj−1(ukj−1 − ûkj−1) + (gkj−1 − ĝkj−1)ûkj−1] + wkj

−∆t

∆x

[
gkj (ukj − ûkj ) + (gkj − ĝkj )ûkj

]
−∆t

[
µkj (ukj − ûkj ) + (µkj − µ̂kj )ûkj

]∣∣∣∣
=

∣∣∣∣(1− ∆t

∆x
gkj −∆tµkj

)
wkj +

∆t

∆x
gkj−1w

k
j−1 +

∆t

∆x
(gkj−1 − ĝkj−1)ûkj−1

−∆t

∆x
(gkj − ĝkj )ûkj −∆t(µkj − µ̂kj )ûkj

∣∣∣∣
≤
(

1− ∆t

∆x
gkj −∆tµkj

)
|wkj |+

∆t

∆x
gkj−1|wkj−1|+ ∆t|D−∆x((gkj − ĝkj )ûkj )|

+ ∆t|µkj − µ̂kj ||ûkj |.
Multiplying the above inequality by ∆x, summing over the indices j = 2, 3, · · · , n
and noticing that gkn = 0, we get

n∑
j=2

|wk+1
j |∆x ≤

n∑
j=2

(1−∆tµkj )|wkj |∆x+ ∆tgk1 |wk1 |

+ ∆t

n∑
j=2

[
|D−∆x((gkj − ĝkj )ûkj )|+ |µkj − µ̂kj ||ûkj |

]
∆x.

(26)

For j = 1, by the second and fourth equations of (25) and the assumption (A9), we
find

|wk+1
1 | =

∣∣∣∣∆t

∆x
(gk0u

k
0 − ĝk0 ûk0 + wk1 −

∆t

∆x

[
gk1 (uk1 − ûk1) + (gk1 − ĝk1 )ûk1

]
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−∆t
[
µk1(uk1 − ûk1) + (µk1 − µ̂k1)ûk1

]∣∣
= |∆t

∆x
(gk0u

k
0 − ĝk0 ûk0) +

(
1− ∆t

∆x
gk1 −∆tµk1

)
wk1 −

∆t

∆x

(
gk1 − ĝk1

)
ûk1

−∆t(µk1 − µ̂k1)ûk1

≤ ∆t

∆x

∣∣gk0uk0 − ĝk0 ûk0∣∣+

(
1− ∆t

∆x
gk1 −∆tµk1

)
|wk1 |+

∆t

∆x

∣∣gk1 − ĝk1 ∣∣ |ûk1 |
+ ∆t

∣∣µk1 − µ̂k1∣∣ |ûk1 |.
Thus,

|wk+1
1 |∆x ≤∆t|gk0uk0 − ĝk0 ûk0 |+ (1−∆tµk1)|wk1 |∆x−∆tgk1 |wk1 |

+ ∆t|gk1 − ĝk1 ||ûk1 |+ ∆t|µk1 − µ̂k1 ||ûk1 |∆x.
(27)

Adding (26) and (27), we get

‖wk+1‖1 ≤ ‖wk‖1 + ∆t|gk0uk0 − ĝk0 ûk0 |+ ∆t

 n∑
j=2

|D−∆x((gkj − ĝkj )ûkj )|∆x

+

n∑
j=1

|µkj − µ̂kj ||ûkj |∆x+ |gk1 − ĝk1 ||ûk1 |

 .
(28)

Moreover, by the assumption (A3) , we have

|gk0uk0 − ĝk0 ûk0 |

= |
n∑
j=1

(βkj u
k
j − β̂kj ûkj )∆x| =

∣∣∣∣∣∣
n∑
j=1

[βkj (ukj − ûkj ) + (βkj − β̂kj )ûkj ]∆x

∣∣∣∣∣∣
≤

n∑
j=1

βkj |wkj |∆x+

n∑
j=1

|β(xj , P
k, vkj )− β(xj , P̂

k, vkj ) + β(xj , P̂
k, vkj )

− β(xj , P̂
k, v̂kj )||µ̂kj |∆x

≤ max
j
βkj ‖wk‖1 +

n∑
j=1

(L|P k − P̂ k|+ L|vkj − v̂kj |)|µ̂kj |∆x

+ ω‖wk‖1 + L

n∑
j=1

|P k − P̂ k|∆x+ L‖µ̂k‖∞‖zk‖1.

Note that

|P k − P̂ k| =

∣∣∣∣∣
m∑
i=1

(Jki − Ĵki )∆a

∣∣∣∣∣ ≤
m∑
i=1

|uki |∆a = ‖wk‖1,

Therefore, by the Lemma 3.3, there exists a positive constant c6 such that

|gk0uk0 − ĝk0 ûk0 | ≤ c6(‖wk‖1 + ‖zk‖1). (29)

Furthermore,

n∑
j=2

|D−∆x((gkj − ĝkj )ûkj )|∆x+

n∑
j=1

|µkj − µ̂kj ||ûkj |∆x+ |gk1 − ĝk1 ||ûk1 |



714 QIHUA HUANG AND HAO WANG

=

n∑
j=2

|D−∆x(gkj − ĝkj )ûkj + (gkj−1 − ĝkj−1)D−∆x(ûkj )|∆x+

n∑
j=1

|µkj − µ̂kj ||ûkj |∆x

+ |gk1 − ĝk1 ||ûk1 |

=

n∑
j=2

∣∣∣∣∣gkj − gkj−1 − (ĝkj − ĝkj−1)

∆x
ûkj + (gkj−1 − ĝkj−1)D−∆x(ûkj )

∣∣∣∣∣∆x
+

n∑
j=1

|µ(xj , P
k, vkj )− µ(xj , P̂

k, vkj ) + µ(xj , P̂
k, vkj )− µ(xj , P̂

k, v̂kj )||ûkj |∆x

+ |gk1 − ĝk1 ||ûk1 |

=

n∑
j=2

|gx(x̃j , P
k)− gx(x̂j , P̂

k)||ûkj |∆x+

n∑
j=2

L|P k − P̂ k||D−∆x(ûkj )|∆x

+

n∑
j=1

(L|P k − P̂ k|+ L|vkj − v̂kj |)|ûkj |∆x+ L|P k − P̂ k|‖ûk‖∞

≤ L|P k − P̂ k|(‖ûk‖1 + ‖D−∆x(ûk)‖1 + ‖ûk‖1 + ‖ûk‖∞) + L‖ûk‖∞‖zk‖1.

(30)

where x̃j , x̂j ∈ [xj−1, xj ].

Therefore, by Lemmas 3.2-3.3 and 3.6, and noticing that |P k − P̂ k| ≤ ‖wk‖1
there exists a positive constant c7 such that

n∑
j=2

|D−∆x((gkj − ĝkj )ukj )|∆x+

n∑
j=1

|µkj − µ̂kj ||ûkj |∆x+ |gk1− ĝk1 ||ûk1 | ≤ c7(‖wk‖1 +‖zk‖1).

(31)
Applying (29) and (31) to (28), we have

‖wk+1‖1 ≤ ‖wk‖1 + ∆t(c6 + c7)(‖wk‖1 + ‖zk‖1). (32)

On the other hand, using the second equation of (25) and the assumption (A9), we
have

|zk+1
j | =

∣∣∣∣∆t

∆x

[
gkj (vkj−1 − v̂kj−1) + (gkj − ĝkj )v̂kj−1 − gkj (vkj − v̂kj )− (gkj − ĝkj )v̂kj

]
+(1−∆tσkj )zkj

∣∣
≤
(

1− ∆t

∆x
gkj −∆σkj

)
|zkj |+

∆t

∆x
gkj
∣∣zkj−1

∣∣+
∆t

∆x

∣∣gkj − ĝkj ∣∣ ∣∣v̂kj−1 − v̂kj
∣∣

≤
(

1− ∆t

∆x
gkj

)
|zkj |+

∆t

∆x
gkj−1|zkj−1|+

∆t

∆x
(gkj − gkj−1)|zkj−1|

+
∆t

∆x
|gkj − ĝkj ||v̂kj−1 − v̂kj |.

Multiplying the above equation by ∆x, summing over the indices j = 1, 2, · · · , n,
and noticing that gkn = 0 and zk0 = 0, we have

‖zk+1‖1 ≤ ‖zk‖1 + ∆t

 n∑
j=1

(gkj − gkj−1)|zkj−1|+
n∑
j=1

|gkj − ĝkj ||v̂kj−1 − v̂kj |

 (33)
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Using the assumption (A1), we find
n∑
j=1

(gkj − gkj−1)|zkj−1|+
n∑
j=1

|gkj − ĝkj ||v̂kj−1 − v̂kj |

≤ L
n∑
j=1

|zkj−1|∆x+ L|P k − P̂ k|‖D−∆x(v̂kj )‖1.
(34)

Therefore, by the Lemmas 3.4, and noticing that |P k − P̂ k| ≤ ‖wk‖1, there is a
positive constant c8 such that

n∑
j=1

(gkj − gkj−1)|zkj−1|+
n∑
j=1

|gkj − ĝkj ||v̂kj−1 − v̂kj | ≤ c8(‖wk‖1 + ‖zk‖1).

Applying the above inequality to (33), we arrive at

‖zk+1‖1 ≤ ‖zk‖1 + ∆tc8(‖wk‖1 + zk‖1). (35)

Adding (32) and (35), and setting γ = c6 + c7 + c8, we establish the result.

Next, we prove that the BV solution defined in Lemma 3.8 and Theorem 3.9 is
unique.

Theorem 3.11. Suppose that {u, v} and {û, v̂} are bounded variation weak solu-
tions of problem (4) corresponding to the initial conditions {u0, v0} and {û0, v̂0},
respectively, then there exist positive constant ρ and λ such that

‖u(·, t)− û(·, t)‖1 + ‖v(·, t)− v̂(·, t)‖1 ≤ ρeλt[‖u(·, 0)− û(·, 0)‖1 + ‖v(·, 0)− v̂(·, 0)‖1].

Proof. Assume that P and B are given Lipschitz continuous functions and consider
the following initial-boundary value problem:

ut + (g(x, P (t))u)x + µ(x, P (t), v(x, t))u = 0, (x, t) ∈ (xmin, xmax)× (0, T ),

vt + g(x, P (t))vx + σ(x, t)v − a(x, t)E = 0, (x, t) ∈ (xmin, xmax)× (0, T ),

g(xmin, P (t))u(xmin, t) = B(t), t ∈ (0, T ),

v(xmin, t) = 0, t ∈ (0, T ),

u(x, 0) = u0(x), x ∈ [xmin, xmax],

v(x, 0) = v0(x), x ∈ [xmin, xmax].
(36)

Since (36) is a linear problem with local boundary conditions, it has a unique
weak solution. Actually, a weak solution can be defined as a limit of the finite
difference approximation with the given numbers P k = P (tk) and Bk = B(tk),
and the uniqueness can be established by using similar techniques as in [27]. In
addition, as in the proof of Theorem 3.10, we can show that if {ukj , vkj } and {ûkj , v̂kj }
are solutions of the difference scheme corresponding to given functions {P k, Bk}
and {P̂ k, B̂k}, respectively, then there exist positive constants c9, c10 such that

‖wk+1‖1 + ‖zk+1‖1
≤ (1 + c9∆t)(‖wk‖1 + ‖zk‖1) + (|Bk − B̂k|+ c10|P k − P̂ k|)∆t,

(37)

where wk = uk−ûk, zk = vk−v̂k. In fact, here gk0u
k
0 = B(tk) = Bk, ĝk0 û

k
0 = B̂(tk) =

B̂k, so by (28) and (30), and letting c11 = 2‖ûk‖1 + ‖D−∆x(ûk)‖1 + ‖ûk‖∞, we have

‖wk+1‖1 ≤ ‖wk‖1 + ∆t(|Bk − B̂k|+ c11|P k − P̂ k|+ L‖ûk‖∞‖zk‖1). (38)
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On the other hand, from (33)-(34), we find

‖zk+1‖1 ≤ ‖zk‖1 + ∆t(L‖zk‖1 + L‖D−∆x(v̂kj )‖1|P k − P̂ k|). (39)

Adding (38) and (39), and letting c9 = L+ L‖ûk‖∞, c10 = c11 + L‖D−∆x(v̂kj )‖1, we
obtain (37). Furthermore, (37) is equivalent to

‖wk‖1 + ‖zk‖1 ≤ (1 + c9∆t)k(‖w0‖1 + ‖z0‖1)

+

k−1∑
r=0

(1 + c9∆t)r
(
|Bk−1−r − B̂k−1−r|+ c10|P k−1−r − P̂ k−1−r|

)
∆t.

Hence,

‖wk‖1 + ‖zk‖1 ≤(1 + c9∆t)k

[
‖w0‖1 + ‖z0‖1 +

k−1∑
r=0

(|Bk−1−r − B̂k−1−r|

+c10|P k−1−r − P̂ k−1−r|)∆t
]
.

(40)

Now, from Theorem 3.9 we can take the limit in (40) to obtain

‖w(t)‖1 + ‖z(t)‖1 ≤ ec9T
[
‖w(0)‖1 + ‖z(0)‖1 +

∫ t

0

(
|B(s)− B̂(s)|

+ c10|P (s)− P̂ (s)|
)
ds
]
,

(41)

where w(t) = u(·, t) − û(·, t), z(t) = v(·, t) − v̂(·, t), {J(·, t), A(·, t)} and {Ĵ(·, t),
Â(·, t)} are the unique solutions of (36) with any set of given functions {P (t), B(t)}
and {P̂ (t), B̂(t)}, respectively.

We then apply the estimate given in (41) for the corresponding solutions of (36)

with two specific sets of functions {P (t), Q(t), B(t)} and {P̂ (t), Q̂(t), B̂(t)} which
are constructed using the limits obtained in Lemma 3.8 as follows:

P (t) =

∫ xmax

xmin

u(x, t)dx, P̂ (t) =

∫ xmax

xmin

û(x, t)dx,

B(t) =

∫ xmax

xmin

β(x, P (t), v(x, t))u(x, t)dx, B̂(t) =

∫ xmax

xmin

β(x, P̂ (t), v̂(x, t))û(x, t)dx.

Thus, we get

|P (s)− P̂ (s)| =
∣∣∣∣∫ xmax

xmin

[u(x, s)− û(x, s)] dx

∣∣∣∣ ≤ ∫ xmax

xmin

|u(x, s)|dx = ‖u(s)‖1,

|B(s)− B̂(s)|

=

∣∣∣∣∫ xmax

xmin

β(x, P (s), v(x, s))u(x, s)ds−
∫ xmax

xmin

β(x, P̂ (s), v̂(x, s))û(x, s)ds

∣∣∣∣
≤
∫ xmax

xmin

|β(x, P (s), v(x, s))[u(x, s)− û(x, s)] + [β(x, P (s), v(x, s))

−β(x, P̂ (s), v(x, s)) + β(x, P̂ (s), v(x, s))− β(x, P̂ (s), v̂(x, s))]û(x, s)
∣∣∣ dx

≤ sup
(x,t,Q)∈D2

β‖w(s)‖1 + [L(xmax − xmin)|P (s)− P̂ (s)|

+ L

∫ xmax

xmin

|z(x, s)|dx]‖û‖L∞((xmin,xmax)×(0,T ))
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≤ [ω + [(xmax − xmin)‖w(s)‖1 + ‖z(s)‖1]L‖û‖L∞((xmin,xmax)×(0,T ))

≤ c12(‖w(s)‖1 + ‖z(s)‖1),

where
c12 = ω + L‖û‖L∞((xmin,xmax)×(0,T ))(xmax − xmin + 1).

Therefore,

‖w(t)‖1 + ‖z(t)‖1

≤ ec9T
[
‖w(0)‖1 + ‖z(0)‖1 + (c10 + c12)

∫ t

0

(‖w(s)‖1 + ‖z(s)‖1)ds

]
.

Using Gronwall’s inequality, we find

‖w(t)‖1 + ‖z(t)‖1 ≤ exp{c9T + (c10 + c12)ec9T t}(‖w(0)‖1 + ‖z(0)‖1).

Letting ρ = ec9T , λ = (c10 + c12)ec9T , we obtain

‖u(·, t)−û(·, t)‖1+‖v(·, t)−v̂(·, t)‖1 ≤ ρeλt [‖u(·, 0)− û(·, 0)‖1 + ‖v(·, 0)− v̂(·, 0)‖1] .

4. Numerical examples. In this section, we use the finite difference scheme (7)
to numerically solve model (4). As an example, we let xmin = 0 and xmax = 1. We
choose the following initial distributions of population biomass and body burden

u0(x) = 100 exp(−2(x− 0.25)2), v0(x) = ln
1 + x

10 + x
, (42)

and the following functions for the population vital rates

g(x, P ) = 1.5(1− x) exp(−0.01P ),

β(x, t, P, v) =
3x exp(−0.005P ) sin(2πt+ 1)

1 + 5v
,

µ(x, P, v) = 0.1 exp(2x+ 0.001P )(1 + 10v).

(43)

With these choices, we present the three-dimensional dynamics of the solution of
model (4) in Figure 1. Unlike unstructured models, our size-structured toxin-
dependent population model describes how the individual and toxin distributions
vary over size as time evolves. This variation is determined by the dependence of
initial distributions of population biomass and body burden, and vital rates on indi-
vidual size. The bottom panel of Figure 1 indicates that the body burden increases
as the size increases. This is because the toxin transfers from individuals with small
size to individuals with large size when individuals grow. The larger individual size,
the more the pollutants that are stored. This build-up of toxic pollutants is referred
to as bioaccumulation [7, 21].

We then investigate how the concentration of toxin in the environment E affects
the population biomass and body burden. To this end, we choose the same model
parameters, except E, and the same initial conditions as those in Figure 1. We
compare the levels of total population biomass and the body burden of individuals
having size 0.5 under the conditions of three different toxin levels in the environment,
E = 1, 4, 10 (Figure 2).

From Figure 2, we see that as the concentration of toxin in the environment
E increases, the individual body burden increases, which reduces the population
biomass. When E is very high (E = 10), the population will eventually become
extirpated. Note that P (t) =

∫ xmax

xmin
u(x, t)dx, which corresponds to the population
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Figure 1. The three-dimensional dynamics of the solutions u(x, t)
and v(x, t). Other parameters: a = 0.05, σ = 0.01, E = 2.

biomass in the unstructured population model in [16]. If data on the effects of a
target toxin on the vital rates of a specific population is available, one can consider
acute and chronic guideline developments by numerically solving model (4) using
the finite difference scheme (7). We expect that our structured model developed in
this work would produce more precise quantitative results than the unstructured
model in [16].

5. Discussion. Mathematical models are useful tools for evaluating the ecological
significance of observed or predicted effects of toxic chemicals on individual organ-
isms and population dynamics. Traditional ecotoxicological models assume that all
individuals take up and excrete toxins in the same way and ignore the toxin trans-
fer between individuals due to reproduction and growth. Motivated by the fact
that depending on age, weight, and/or size, different individuals may have different
sensitivities to toxins, we developed a toxin-mediated size-structured model that is
given by a system of first order fully nonlinear hyperbolic PDEs. It is very likely
that this model is the first derivation of PDE model in the area of ecotoxicology.
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Figure 2. Comparison of total population biomass, P (t) (top
panel) and body burden of individuals having size 0.5, v(0.5, t)
(bottom panel) between different toxin levels. Solid lines (E = 1),
dashed lines (E = 4), dot lines (E = 10). Other parameters and
initial conditions are the same as those in Figure 1.

Although our toxin-mediated model is based on an aquatic environment, the model
and the results in this study are applicable to populations in terrestrial ecosystems.

To facilitate model analysis, we defined a weak solution and constructed an
explicit finite difference approximation for the model. We proved the existence-
uniqueness of the weak solution and the convergence of the finite difference approx-
imation to the unique solution. This allows us to numerically solve the model using
the finite difference scheme. The numerical solutions are then used to investigate
the effects of toxins on the population dynamics. It is worth pointing out that the
existing PDE solvers (such as pdepe and hpde in Matlab) can not be used to solve
the nonlocal, fully nonlinear hyperbolic PDEs of form (4). Hence, the finite differ-
ence scheme we developed here provides an important numerical tool that can be
used to approximate solutions of systems of nonlinear first order hyperbolic PDEs.

Model (4) assumed that the population vital rates g, µ, and β depend on P (t), the
total population biomass at time t. If we assume that g, µ, and β are independent
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of P (t) and µ, β are independent of v, then model (4) reduces to a first-order
linear system which can be solved using the method of characteristics. However,
we are not interested in such a simplified version as it ignores the effects of toxin
on population dynamics. If there is no toxin, model (4) reduces to a classical size-
structured population model which have been well studied in the literature. For
example, a semilinear form of size-structured model (where g = g(x, t), β = β(x, t),
and µ = µ(x, t, P (t))) was studied in [2, 3]. Therein, monotone approximations were
developed, and upon passing to the limit a solution to the problem was obtained,
whereas uniqueness was obtained via comparison results. For the quasilinear case
(where g = g(x, P (t)), β = β(x, P (t)), and µ = µ(x, P (t))), the well-posedness was
discussed in [8], wherein the method of characteristics together with a fixed point
argument was employed to establish the existence and uniqueness of the solution to
the model. It would be interesting to investigate whether or not above-mentioned
methods are applicable to our toxin-mediated model (4).

Steps toward further research include the following: 1) Studying the asymptotic
behavior of the model, that is, the existence and stability of equilibrium solutions,
as shown by Figure 2. 2) Connecting the model to data by choosing a represen-
tative species and a representative toxin. In particular, applying the data on the
effects of toxins on reproduction, growth, and survival of individuals to predict how
different toxin levels affect the long-term behavior of the population. 3) Our nu-
merical examples assume that concentration of the toxin in the environment is a
constant. In reality, the toxin concentration may vary over time due to a variety
of factors, it would be interesting to study how time-dependent toxins affect the
population dynamics. 4) In practice, contaminant-induced changes in individuals’
behavior may also lead to the change of population abundance. We expect that
the main results we obtained in this study are robust, even though the details will
certainly change if we include this factor in the model. 5) Extending our single
population model to interacting population model by considering the interactions
between species such as competition, cooperation and predation [19, 23]. 6) Sto-
chastic models are generally more realistic than their deterministic counterparts,
hence it might be worth extending model (4) to its stochastic counterparts to study
the effects of environmental stochasticity [17, 18, 30] or demographic stochasticity
[4] on population dynamics in a polluted environment.
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