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Abstract. In this paper, we establish the exploitation of a single population

modeled by the Beverton–Holt difference equation with periodic coefficients.

We begin our investigation with the harvesting of a single autonomous popu-
lation with logistic growth and show that the harvested logistic equation with

periodic coefficients has a unique positive periodic solution which globally at-

tracts all its solutions. Further, we approach the investigation of the optimal
harvesting policy that maximizes the annual sustainable yield in a novel and

powerful way; it serves as a foundation for the analysis of the exploitation of the

discrete population model. In the second part of the paper, we formulate the
harvested Beverton–Holt model and derive the unique periodic solution, which

globally attracts all its solutions. We continue our investigation by optimizing
the sustainable yield with respect to the harvest effort. The results differ from

the optimal harvesting policy for the continuous logistic model, which suggests

a separate strategy for populations modeled by the Beverton–Holt difference
equation.

1. Introduction. Beverton and Holt introduced their population model in the
context of fisheries in 1957 [4], and it still attracts interest in various fields such as
biology, economy and social sciences, see [3, 4, 19, 27]. Numerous authors, see [12,
16, 21, 22, 23, 25], investigated the Beverton–Holt equation and its characteristics.
In [22, 23], the authors discussed the dynamics of the Beverton–Holt model and in
[16] the Beverton–Holt equation with survival rate was introduced. The authors in
[25] presented two modifications of the classical Beverton–Holt model while in [21]
a special modification of the sigmoid Beverton–Holt equation was studied.

The Beverton–Holt model can be rewritten into a so-called logistic dynamic equa-
tion as introduced in [8, p. 30]. The classical logistic differential equation introduced
by Verhulst [29] is of the form

dx

dt
= αx

(
1− x

K

)
, (1)

where x represents the density of the resource population at time t and α, K are
positive constants representing the growth rate and the carrying capacity, respec-
tively. In order to reflect the reality more accurately, positive functions K(t) and
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α(t) were introduced to represent the coefficients. In [8], the authors introduced
the so-called logistic dynamic equation on time scales as a generalization of (1), as

x∆(t) = α(t)x(σ(t))

(
1− x(t)

K(t)

)
, t ∈ T,

where σ(t) = inf{s ∈ T : s > t}. In the discrete case, i.e., T = Z, the previous
equation becomes

∆xn = αnxn+1

(
1− xn

Kn

)
, n ∈ N0, (2)

where αn ∈ (0, 1) is the inherent growth rate, Kn ∈ R+ is the carrying capacity,
and xn is the population density for n ∈ N0.

The optimal management of renewable resources, which is directly related to
sustainable development, has been studied by various authors [5, 24, 28, 33]. In
1976, Clark started the discussion of economical and biological aspects of renewable
resources for the logistic growth model by including harvest effort [15]. Suppose
the population described in (1) is exposed to harvest by the catch-per-unit-effort
hypothesis. Then the model becomes

dx

dt
= αx

(
1− x

K

)
− Ex, (3)

where E denotes the harvest effort. Fan and Wang obtained in [17] some results
about the optimal harvesting policy for the model (3) under the assumption of a
one-periodic carrying capacity and one-periodic growth rate. It was proved that
(3) has a unique periodic solution which is globally attractive. The authors showed
that, if ∫ 1

0

(α(τ)− E(τ)) dτ > 0,

then the annual-sustainable yield

Y (E) =

∫ 1

0

E(t)x(t) dt

is maximal for

E(t) =
1

2
α(t)− K ′(t)

K(t)
. (4)

This result was obtained by a change of variable, which transforms the annual-
sustainable yield into

Ŷ (Z(t)) =

∫ 1

0

−
(

(Z′(t)+α(t)Z(t))K(t)
α(t)

)
Z(t)

dt.

Using integration by parts and introducing a new variable W (t) = (ln(Z(t)))′, the
problem is of the form of a variational calculus optimization problem, namely

Ỹ (W ) := −
∫ 1

0

F (t,W,W ′) dt.

The Euler–Lagrange equation

∂F

∂W
− d

dt

(
∂F

∂W ′

)
= 0

yields the optimum W ∗ = − 1
2α. Resubstitution gives the optimal harvest ef-

fort E∗ = 1
2α −

K′

K for which the harvest yield over one period is Y (E∗) =
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1
4

∫ 1

0
α(t)K(t)dt.

In [14], the authors discuss the maximum sustainable yield for a class of differ-
ential equations of the form

dN

dt
= g(N(t),K(t)),

where the function g satisfies particular conditions. The logistic growth model
satisfies these conditions and was therefore discussed as an example. In [14], the
optimal harvest effort for the continuous model

dN

dt
= g(N(t),K(t))− h(t)

is compared to periodic impulsive harvesting

∆N(τj + nω) = Ij(N(τj + nω)), 0 ≤ τ1 < τ2 < . . . < τm < ω, n ∈ N0,

where Ij : [0,∞)→ [0,∞) are continuous functions, j = 1, 2, . . . ,m. For the logistic
growth model, it reads as

dN

dt
= r(t)N(t)

(
1− N(t)

K(t)

)
,

N(τ+
k ) = (1− Ek)N(τk), k = 1, 2, . . . ,

where harvesting takes place at time τk for k = 1, 2, . . .. Maximizing the population
growth at each segment (τk, τk+1] yields the maximum sustainable yield (under a
particular condition). In Remark 2, we suggest a pulse harvesting for the logistic
dynamic equation for the discrete time setting. In [14], the authors prove that inde-
pendent of the impulsive strategy, the impulsive sustainable yield is not exceeding
the continuous sustainable yield, under specific conditions, which are satisfied for the
logistic growth model and the Gompertz model. The authors furthermore discuss
a modified model including a constant term that can be interpreted as pollution,
noise, or general harm.

Optimizing the sustainable yield has also been considered for diffusive models in
nonhomogeneous environments, see for example [1, 13]. To describe the dispersal
speed of the population, a diffusion term has been introduced to the model. The
model reads then as

∂u

∂t
= D∆u+ r(t, x)f(u,K(t, x))− E(t, x)u, (5)

where u = u(t, x) is a function of time t and space x. K represents the carrying
capacity, r the growth rate, E the harvest effort, and D the constant diffusion term.
For the time independent logistic growth, f(u,K) = u

(
1− u

K

)
, and the diffusion

term D
(

u
K(t,x)

)
, the authors show in [13] that, despite the diffusion term, the

optimal harvesting strategy is obtained for E∗(x) = r(x)
2 . Even if the coefficients

are time dependent and periodic, the optimal harvesting is given by

E∗(t, x) =
r(t, x)

2
− 1

K(t, x)

∂K(t, x)

∂t
,

under the assumption r(t, x) such that E∗ ≥ 0. Note the relation to the optimal

harvesting effort E∗ = r
2 −

K′

K for the continuous logistic growth model with har-
vesting. In Remark 3, we present a diffusive model and compare it briefly to the
model presented in [13].
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In this paper, we dedicate the first part to the analysis of (3). We will provide
the reader with an alternative, elementary technique to obtain the optimal harvest-
ing policy for single populations with periodic coefficients and extend the results
obtained in [17] to any period ω. This effective method provides the foundation for
the novel results regarding the maximum sustainable yield for a population modeled
by the discrete Beverton–Holt equation. First, we show that if the coefficients are
ω-periodic sequences, then the harvested Beverton–Holt difference equation has a
unique ω-periodic solution which globally attracts all positive solutions. The discus-
sion of the optimal harvest policy is initiated by considering first the special case of
constant coefficients. The final part focuses on the optimization of the harvest yield
for the Beverton–Holt equation with exploitation. In Example 3.14, we will discuss
an example of a population that follows a mixed continuous-discrete pattern.

2. The logistic growth model including exploitation. We consider the con-
tinuous logistic population model including harvesting given by

dx

dt
= α(t)x

(
1− x

K(t)

)
− E(t)x, (6)

where x represents the population density at time t ∈ R+
0 , α ∈ (0, 1) is the inherent

growth rate, K is the carrying capacity, and E is the harvest effort.

2.1. Existence and uniqueness of the logistic growth population model
with harvesting. The study of (6) can be simplified by applying the change of
variable u = 1

x which leads to the linear differential equation

du

dt
= −(α(t)− E(t))u+

α(t)

K(t)
(7)

with the solution

u(t) = e
−
∫ t
t0

(α(τ)−E(τ))dτ
u0 +

∫ t

t0

α(s)

K(s)
e−
∫ t
s

(α(τ)−E(τ))dτds,

where u(t0) = u0.

Theorem 2.1. Assume K ∈ C(R,R+), α ∈ C(R, (0, 1)), E ∈ C(R, (0, 1)) are ω-
periodic functions and E(t) < α(t) for all t ∈ R (to avoid extinction). Then the
unique ω-periodic solution of (6) is given by

x̄(t) = λ

(∫ t+ω

t

α(s)

K(s)
e−
∫ t
s

(α(τ)−E(τ))dτds

)−1

, (8)

where λ = e
∫ ω
0

(α(τ)−E(τ))dτ −1. In addition, x̄ is globally asymptotically stable, i.e.,

lim
t→∞

|x(t)− x̄(t)| = 0

for any solution x with x(t0) > 0.

Proof. We already introduced the relation between (6) and (7). Applying the peri-
odicity of the coefficient functions, we get

u(t+ ω) = e
−
∫ t+ω
t0

(α(τ)−E(τ))dτ
u0 +

∫ t+ω

t0

α(s)

K(s)
e−
∫ t+ω
s

(α(τ)−E(τ))dτ ds

= e−
∫ ω
0

(α(τ)−E(τ))dτe
−
∫ t
t0

(α(τ)−E(τ))dτ
u0
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+ e−
∫ ω
0

(α(τ)−E(τ))dτ

∫ t

t0

α(s)

K(s)
e−
∫ t
s

(α(τ)−E(τ))dτ ds

+ e−
∫ ω
0

(α(τ)−E(τ))dτ

∫ t+ω

t

α(s)

K(s)
e−
∫ t
s

(α(τ)−E(τ))dτ ds

= e−
∫ ω
0

(α(τ)−E(τ))dτu(t)

+ e−
∫ ω
0

(α(τ)−E(τ))dτ

∫ t+ω

t

α(s)

K(s)
e−
∫ t
s

(α(τ)−E(τ))dτ ds.

If ū is an ω-periodic solution of (7), then ū(t+ ω) = ū(t) so that

ū(t) =
(
e
∫ ω
0

(α(τ)−E(τ))dτ − 1
)−1

∫ t+ω

t

α(s)

K(s)
e−
∫ t
s

(α(τ)−E(τ))dτ ds. (9)

Conversely, if a solution to (7) is of the form (9), then it is easy to show that it is
ω-periodic. The unique ω-periodic solution x̄ of (6) is then

x̄(t) = (e
∫ ω
0

(α(τ)−E(τ))dτ − 1)

(∫ t+ω

t

α(s)

K(s)
e−
∫ t
s

(α(τ)−E(τ))dτ ds

)−1

.

Addressing the global attractivity of the periodic solution, let x be any solution of
(6) with x(t0) > 0. For simplicity define p := α− E. We have

|x(t)− x̄(t)|

=

∣∣∣∣∣∣ 1

e
−
∫ t
t0
p(τ)dτ

x0
+
∫ t
t0

α(s)e−
∫ t
s p(τ)dτ

K(s) ds
− 1

e
−
∫ t
t0
p(τ)dτ

x̄0
+
∫ t
t0

α(s)e−
∫ t
s p(τ)dτ

K(s) ds

∣∣∣∣∣∣
=

e
−
∫ t
t0
p(τ)dτ

∣∣∣ 1
x̄0
− 1

x0

∣∣∣∣∣∣∣( e− ∫ tt0 p(τ)dτ

x0
+
∫ t
t0

α(s)e−
∫ t
s p(τ)dτ

K(s) ds

)(
e
−
∫ t
t0
p(τ)dτ

x̄0
+
∫ t
t0

α(s)e−
∫ t
s p(τ)dτ

K(s) ds

)∣∣∣∣
≤

e
−
∫ t
t0
p(τ)dτ

∣∣∣ 1
x̄0
− 1

x0

∣∣∣(∫ t
t0

α(s)
K(s)e

−
∫ t
s
p(τ)dτds

)2 ≤ ||K||∞
e
−
∫ t
t0
p(τ)dτ

∣∣∣ 1
x̄0
− 1

x0

∣∣∣(∫ t
t0
α(s)e−

∫ t
s
p(τ)dτds

)2

≤ ||K||∞
e
−
∫ t
t0
p(τ)dτ(

1− e−
∫ t
t0
p(τ)dτ

)2

∣∣∣∣ 1

x̄0
− 1

x0

∣∣∣∣ ,
where the last terms tends to zero because e

−
∫ t
t0
p(τ)dτ → 0 as t → ∞. This

completes the proof.

2.2. Optimal harvesting policy for the logistic growth population model.
We are interested in maximizing the sustainable harvest yield without endangering
the modeled species. Maximizing the harvest yield over one period serves economical
aims, but the aspect of sustainable development of the population follows ecological
reasons. It is well known that, under the assumption of a constant inherent growth
rate and constant carrying capacity, the optimal harvest policy for a population
modeled by (3) is to keep a constant harvest effort of E = 1

2α [18]. A more realistic
model, such as introduced in (6), assumes a periodic inherent growth rate and
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periodic carrying capacity due to seasonality and has been studied in [17, 31]. The
optimization problem of the harvest yield over one period was discussed in [17]
under the assumption of one-periodic coefficients. The optimal harvest effort was

derived to be E∗ = 1
2α −

K′

K . In [17], the authors introduced transformations to
rewrite the optimization into a variational calculus problem as described in Section
1. In the following, we derive the optimal harvest effort for the logistic population
model with ω-periodic growth rate using an elementary technique, the weighted
Jensen inequality.

Theorem 2.2. If α ∈ C(R, (0, 1)), K ∈ C1(R,R+), E ∈ C(R, (0, 1)) are ω-periodic,
K′

K ≤ α
2 , and E < α, then the optimal harvest effort for (6) that maximizes the

harvest yield over one period is given by E∗ = 1
2α−

K′

K .

Proof. Let x̄ be the ω-periodic solution of (6) given by (8). We apply the weighted
integral form of Jensen’s inequality [26] (see also [2]) in the following way:

Y (E) =

∫ ω

0

E(t)x̄(t)dt =

∫ ω

0

E(t)
λ∫ t+ω

t
α(s)
K(s)e

−
∫ t
s

(α(τ)−E(τ))dτds
dt

= λ

∫ ω

0

E(t)
1∫ t+ω

t
α(s)
K(s)e

− 1
2

∫ t
s
α(τ)dτe−

∫ t
s

1
2 (α(τ)−E(τ))dτds

dt

≤ λ
∫ ω

0

E(t)

∫ t+ω
t

K(s)α(s)e−
1
2

∫ t
s
α(τ)dτe

∫ t
s

1
2 (α(τ)−E(τ))dτds(∫ t+ω

t
α(s)e−

1
2

∫ t
s
α(τ)dτds

)2 dt

=
λ

4
(
e

1
2

∫ ω
0
α(τ)dτ − 1

)2

∫ ω

0

∫ t+ω

t

E(t)K(s)α(s)e
∫ s
t
E(τ)dτdsdt

=
λ

4
(
e

1
2

∫ ω
0
α(τ)dτ − 1

)2

∫ ω

0

K(s)α(s)

∫ s

0

E(t)e
∫ s
t
E(τ)dτdtds

+
λ

4
(
e

1
2

∫ ω
0
α(τ)dτ − 1

)2

∫ 2ω

ω

K(s)α(s)

∫ ω

s−ω
E(t)e

∫ s
t
E(τ)dτdtds

=
λ

4
(
e

1
2

∫ ω
0
α(τ)dτ − 1

)2

∫ ω

0

K(s)α(s)
(
e
∫ s
0
E(τ)dτ − 1

)
ds

+
λ

4
(
e

1
2

∫ ω
0
α(τ)dτ − 1

)2

∫ 2ω

ω

K(s)α(s)
(
e
∫ s
s−ω E(τ)dτ − e

∫ s
ω
E(τ)dτ

)
ds

=
λ

4
(
e

1
2

∫ ω
0
α(τ)dτ − 1

)2

∫ ω

0

K(s)α(s)
(
e
∫ s
0
E(τ)dτ − 1

)
ds

+
λ

4
(
e

1
2

∫ ω
0
α(τ)dτ − 1

)2

∫ ω

0

K(s)α(s)
(
e
∫ s+ω
s

E(τ)dτ − e
∫ s+ω
ω

E(τ)dτ
)

ds
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=
λ

4
(
e

1
2

∫ ω
0
α(τ)dτ − 1

)2

∫ ω

0

K(s)α(s)
(
e
∫ s
0
E(τ)dτ − 1

+e
∫ ω
0
E(τ)dτ − e

∫ s
0
E(τ)dτ

)
ds

=
λ
(
e
∫ ω
0
E(τ)dτ − 1

)
4
(
e

1
2

∫ ω
0
α(τ)dτ − 1

)2

∫ ω

0

K(s)α(s)ds ≤ 1

4

∫ ω

0

K(s)α(s)ds,

where we have used the algebraic inequality(
e
∫ ω
0

(α(τ)−E(τ))dτ − 1
)(

e
∫ ω
0
E(τ)dτ − 1

)
(
e

1
2

∫ ω
0
α(τ)dτ − 1

)2 ≤ 1.

This is true because

(e
∫ ω
0

1
2α(τ)dτe

∫ ω
0
p(τ)dτ − 1)(e

∫ ω
0

1
2α(τ)dτe−

∫ ω
0
p(τ)dτ − 1) ≤

(
e
∫ ω
0

1
2α(τ)dτ − 1

)2

,

i.e.,

−e
∫ ω
0
p(τ)dτ − e−

∫ ω
0
p(τ)dτ ≤ −2,

i.e., (
e

1
2

∫ ω
0
p(τ)dτ − e− 1

2

∫ ω
0
p(τ)dτ

)2

≥ 0,

where p = 1
2α−E. This calculation provides an upper bound for the harvest yield;

that is, 1
4

∫ ω
0
K(s)α(s)ds. It is left to show that this supremum is achieved by

E∗ = 1
2α−

K′

K :

Y (E∗) =

∫ ω

0

E∗(t)x̄(t)dt

=

∫ ω

0

E∗(t)
e
∫ ω
0

(
α(τ)− 1

2α(τ)+
K′(τ)
K(τ)

)
dτ − 1∫ t+ω

t
α(s)
K(s)e

−
∫ t
s

(
α(τ)− 1

2α(τ)+
K′(τ)
K(τ)

)
dτ

ds

dt

=

∫ ω

0

E∗(t)

K(ω)
K(0) e

∫ ω
0

1
2α(τ)dτ − 1∫ t+ω

t
α(s)
K(s)e

−
∫ t
s

1
2α(τ)dτ K(s)

K(t) ds
dt

=

∫ ω

0

E∗(t)K(t)
e
∫ ω
0

1
2α(τ)dτ − 1∫ t+ω

t
α(s)e−

∫ t
s

1
2α(τ)dτds

dt

=
(
e
∫ ω
0

1
2α(τ)dτ − 1

)∫ ω

0

E∗(t)K(t)
1

2
(
e
∫ ω
0

1
2α(τ)dτ − 1

)dt

=
1

2

∫ ω

0

(
1

2
α(t)− K ′(t)

K(t)

)
K(t)dt

=
1

2

(
1

2

∫ ω

0

α(t)K(t)dt−K(ω) +K(0)

)
=

1

4

∫ ω

0

α(t)K(t)dt.

This completes the proof.
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Remark 1. The special case of constant coefficients yields in the previous theorem
E∗ = α

2 , which is consistent with the results discussed in [18].

3. The Beverton–Holt model including exploitation. The classical Bever-
ton–Holt model with periodic coefficients is of the form [10]

xn+1 =
νnKnxn

Kn + (νn − 1)xn
, (10)

where the sequence {xn} represents the population density, {Kn} the carrying ca-
pacity, and {νn}, νn > 1 for all n ∈ N0 is the inherent growth rate. While originally
introduced with constant coefficients by Ray Beverton and Sidney Holt in 1957 in
the context of fisheries [4], the model gains attention in a wide range of applications
in population models. Equation (10) and the quantum calculus analogue of (10)
were recently studied in [6, 9, 10, 11, 23]. In [10], the transformation α = ν−1

ν ,
0 < α < 1, was applied to the model (10) to obtain the discrete logistic growth
model introduced in [8]

∆xn = αnxn+1

(
1− xn

Kn

)
.

Consider now the discrete population model (10) and introduce exploitation, under
the catch-per-unit-effort hypothesis as

xn+1 =
νnKnxn

Kn + (νn − 1)xn
− hnxn+1, (11)

where we extend the classical model by a harvest effort h : N0 → R+
0 .

Similarly, let us define α := ν−1
ν to obtain an equivalent difference equation of

(11) that we will investigate instead:

xn+1 =
Knxn

(1− αn)Kn + αnxn
− hnxn+1. (12)

As before, x : N0 → R+ represents the density of the resource population, K :
N0 → R+ is the carrying capacity, 0 < αn < 1 for all n ∈ N0 represents the inherent
growth rate. To avoid extinction of the population, we require

0 ≤ hn <
αn

1− αn
for all n ∈ N0. (13)

This designed discrete population model with harvesting is related to the existing
continuous harvesting model as explicated in the following. By expanding (12), we
obtain

Knxn+1 − αnKnxn+1 + αnxnxn+1

= Knxn −Knhnxn+1 + αnKnhnxn+1 − αnhnxnxn+1,

i.e.,

Kn∆xn = αnKnxn+1(1 + hn)− αnxnxn+1(1 + hn)−Knhn(xn + ∆xn),

which is of the form

∆xn = αnxn+1

(
1− xn

Kn

)
− Enxn, (14)

where En = hn
1+hn

for all n ∈ N0. Using the relation between En and hn, condition

(13) can be rephrased to 0 < En < αn, which is the discrete analogue of the
continuous requirement E(t) < α(t) to avoid extinction.
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We now begin our discussion of the discrete Beverton–Holt population model
including harvesting by first investigating the existence and uniqueness of a periodic
solution.

3.1. Existence and uniqueness of the Beverton–Holt difference equation
with exploitation. Let us first introduce some necessary definitions and their
primary properties that assist us in the further analysis.

Definition 3.1 (See [8, Definition 1.38]). If c ∈ R and pn 6= −1 for all n ∈ N0,
then the unique solution of

∆xn = pnxn, xn = c

is denoted by ep(n, 0)c.

Note that ep(i, j) =
∏i−1
k=j(1 + pk) if j < i, ep(i, i) = 1, and ep(i, j) = 1

ep(j,i) if

i < j for i, j ∈ N0.

Lemma 3.2 (Properties of ep(i, j)). Assume pi 6= −1 for all i ∈ N0 and p is
ω-periodic. Then we have

a) ep(j, i) =
1

ep(i, j)
, (15)

b) ep(j + ω, j) = ep(ω, 0), (16)

c) ep(j + ω, i+ ω) = ep(j, i), (17)

d) ep(i, j) = ep(i,m)ep(m, j), (18)

e) e∆p
p

(i, j) =
pi
pj
, (19)

for all i, j,m ∈ N0.

Proof. For the proof of (15), see [7, Theorem 2.36]. [10, Lemma 2.2] provides the
proofs of (16) and (17). The equality (18) is true by [7, Theorem 2.39]. To realize
(19), note that for j < i

e∆p
p

(i, j) =

i−1∏
k=j

(
1 +

∆pk
pk

)
=

i−1∏
k=j

pk+1

pk
=
pi
pj
. (20)

For i < j, use (15) and (20) and for i = j, the equation is true, since e∆p
p

(i, i) =

1.

Theorem 3.3 (See [7, Theorem 2.44]). If the sequence {pn} satisfies pn > −1 for
all n ∈ N0, then ep(i, j) > 0 for all i, j ∈ N0.

To simplify upcoming notations, let us introduce the circle plus ⊕ and circle
minus 	 operations on Z.

Definition 3.4. Define the “circle plus” addition between two sequences {pn} and
{qn}, n ∈ N0 as

(p⊕ q)n = pn + qn + pnqn,

and the “circle minus” subtraction as [7, Definition 2.13]

(p	 q)n =
pn − qn
1 + qn

,

which is the additive inverse under the operation ⊕. (Z,⊕) is an Abelian group[7,
Theorem 2.7].
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Definition 3.5 (See [8, p. 18]). The circle dot multiplication � of a constant value
α and a function p : N0 → (−1,∞) is defined as

(α� p)n = αpn

∫ 1

0

(1 + hpn)α−1dh.

Example 3.6. Let p : N0 → (−1,∞) and α = 1
2 . Then(

1

2
� p
)
n

=
1

2

∫ 1

0

pn√
1 + hpn

dh =
√

1 + pn − 1 =
pn

1 +
√

1 + pn
.

Note that by the definition of the dot multiplication,(
1

2
� (−α)

)
⊕
(

1

2
� (−α)

)
= −α.

The following identities are not hard to show.

Corollary 1. Assume p, q : N0 → R, p 6= −1, and q 6= −1. Then

a) ep⊕q(i, j) = ep(i, j)eq(i, j) for all i, j ∈ N0, (21)

b) e	p(i, j) = ep(j, i) =
1

ep(i, j)
for all i, j ∈ N0. (22)

Lemma 3.7 (See [7, Theorem 2.39]). If p 6= −1, then

a)

m−1∑
i=n

piep(i, c) = ep(m, c)− ep(n, c), (23)

b)

m−1∑
i=n

piep(c, i+ 1) = ep(c, n)− ep(c,m), (24)

for all n < m; n,m, c ∈ N0.

We can now focus on the existence and uniqueness of a solution of the Beverton–
Holt equation with harvesting.

Theorem 3.8. Assume
K : N0 → R+ is ω-periodic,

α : N0 → R+ is ω-periodic and 0 < αn < 1 for all n ∈ N0,

h : N0 → R+ is ω-periodic and 0 < hn <
αn

1−αn for all n ∈ N0.

(25)

Then (12) has a unique ω-periodic solution which globally attracts all positive solu-
tions.

Proof. Using the relation of (12) and (14) and applying the substitution x = 1
u to

(14), we obtain the linear difference equation

∆un = −αnun +
αn
Kn

+
hn

1 + hn
un+1.

Realizing that un+1 = un + ∆un yields

∆un = (hn ⊕ (−αn))un +
αn(1 + hn)

Kn
. (26)
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Equation (26) is a nonhomogeneous linear difference equation which has the solution
given in [20, Theorem 3.1] by

un = eh⊕(−α)(n, 0)u0 +

n−1∑
j=0

eh⊕(−α)(n, j + 1)βj ,

where β = α(1+h)
K , and u0 > 0 is an initial condition. Any ω-periodic solution of

(26) satisfies ūn = ūn+ω for all n ∈ N0, so

ūn = ūn+ω = eh⊕(−α)(n+ ω, 0)ū0 +

n+ω−1∑
j=0

eh⊕(−α)(n+ ω, j + 1)βj

(16)
=

(18)
eh⊕(−α)(ω, 0)eh⊕(−α)(n, 0)ū0 +

n−1∑
j=0

eh⊕(−α)(ω, 0)eh⊕(−α)(n, j + 1)βj

+

n+ω−1∑
j=n

eh⊕(−α)(ω, 0)eh⊕(−α)(n, j + 1)βj

= eh⊕(−α)(ω, 0)ūn + eh⊕(−α)(ω, 0)

n+ω−1∑
j=n

eh⊕(−α)(n, j + 1)βj .

We get

ūn =
1

λ

n+ω−1∑
j=n

eh⊕(−α)(n, j + 1)βj , (27)

where

λ = eh⊕(−α)(0, ω)− 1 6= 0.

Conversely, if a solution of (26) is given by (27), then it is easy to show that the
solution is ω-periodic. This yields the unique ω-periodic solution of (12) as

x̄n = λ

n+ω−1∑
j=n

eh⊕(−α)(n, j + 1)βj

−1

, (28)

where β = α(1+h)
K . In order to prove the global attractivity of the ω-periodic

solution, let x be any solution of (12) with x0 > 0. Define F (n, j) := eh⊕(−α)(n, j+
1)βj . Then

|xn − x̄n| =

∣∣∣∣∣∣ 1
eh⊕(−α)(n,0)

x0
+
∑n−1
j=0 F (n, j)

− 1
eh⊕(−α)(n,0)

x̄0
+
∑n−1
j=0 F (n, j)

∣∣∣∣∣∣
=

∣∣∣ 1
x̄0
− 1

x0

∣∣∣ eh⊕(−α)(n, 0)∣∣∣[ eh⊕(−α)(n,0)

x0
+
∑n−1
j=0 F (n, j)

] [
eh⊕(−α)(n,0)

x̄0
+
∑n−1
j=0 F (n, j)

]∣∣∣
≤

∣∣∣ 1
x̄0
− 1

x0

∣∣∣ eh⊕(−α)(n, 0)[∑n−1
j=0 F (n, j)

]2 ≤ ‖K‖2∞

∣∣∣ 1
x̄0
− 1

x0

∣∣∣ eh⊕(−α)(n, 0)[∑n−1
j=0 eh⊕(−α)(n, j + 1)αj(1 + hj)

]2
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≤ ‖K‖2∞

∣∣∣ 1
x̄0
− 1

x0

∣∣∣ eh⊕(−α)(n, 0)

(eh⊕(−α)(n, 0)− 1)2
,

where we have used (24). The last term tends to zero as n → ∞ since h
1+h < α,

i.e., h⊕ (−α) ∈ (0, 1).

3.2. Optimal harvesting policy for the Beverton–Holt equation with con-
stant growth rate. We start our investigation of the optimal harvesting policy
for the model described in (12) with one-periodic, i.e., constant, growth rate and
carrying capacity.

Theorem 3.9. Consider the Beverton–Holt model with constant coefficients

xn+1 =
νKxn

K + (ν − 1)xn
− hxn+1. (29)

The optimal harvest effort that maximizes the harvest yield over one period is ob-
tained at h∗ = −1 + 1√

1−α , where α = ν−1
ν .

Proof. The one-periodic solution of (29) is given by (28) with ω = 1 as

x̄ =
eh⊕(−α)(0, 1)− 1

eh⊕(−α)(0, 1)α(1+h)
K

,

i.e.,

x̄ = K − K

α

(
h

1 + h

)
.

We wish to optimize the harvest yield over one period, that is, maximize

Y (h) = hx̄ = Kh− K

α

(
h2

1 + h

)
.

The critical values are

h = −1± 1√
1− α

.

The positive harvest effort that additionally satisfies Y
′′
(h∗) < 0 is

h∗ = −1 +
1√

1− α
,

which yields the suggested optimal harvest effort.

The obtained result can be related to the continuous optimal harvest effort as
the following discussion indicates. Recalling the relation E = h

1+h , the obtained
optimal discrete harvest effort is

E∗ = 1−
√

1− α =
α

1 +
√

1− α
= −

(
1

2
� (−α)

)
. (30)

Figure 1 visualizes the difference between the behavior of the optimal harvest effort
E∗ dependent on the inherent growth rate for the continuous case in which E∗ = α/2
and the discrete case E∗ = α

1+
√

1−α . The line in Figure 1 indicates the continuous

result and the dotted line the behavior of the optimal harvest effort in the discrete
case.

In Figure 1, we see that the harvesting effort E∗ for the logistic discrete model
is in fact higher than the continuous harvesting effort at any time t. At this point,
we like to remind the reader that impulsive harvesting for the logistic growth model
always yields a value below the continuous harvesting, as discussed in [14] and [32].
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Figure 1. The optimal harvest effort E∗ with respect to the in-
herent growth rate α.

3.3. Optimal harvesting policy for the Beverton–Holt equation with pe-
riodic growth rate. Let us bring our attention to the optimal harvesting policy
for a single discrete population with periodic coefficients. We aim to maximize
the economic profit due to harvest and at the same time guarantee the survival
of the species. We have seen that the harvested single population modeled by the
Beverton–Holt equation is of the form (11)

xn+1 =
νnxn

Kn + (νn − 1)xn
− hnxn+1.

The harvest at the end of the nth time unit is hnxn+1, which gives the yield over
one period as

Y (h) =

ω−1∑
n=0

hnx̄n+1,

where x̄ is the unique ω-periodic solution of (11).

Theorem 3.10. Assume (25) and (in order to guarantee a nonnegative harvest
effort)

K∆
n

Kn
≤ 1 +

√
1− αn+1

(1 +
√

1− αn)
√

1− αn+1
− 1. (31)

The optimal harvest effort for (12) is

h∗ = 	
(

1

2
� (−α)

)σ
	

(
1
2�(−α)

α

)∆

1
2�(−α)

α

	 K∆

K
,

and the maximal harvest yield over one period is

Y (h∗) =

ω−1∑
j=0

(
1
2 � (−αj)

)2
αj

Kj =

ω−1∑
j=0

(1−
√

1− αj)2

αj
Kj .

Proof. We essentially follow the same proof idea as in Theorem 2.2. We find an
upper bound for the harvest yield and show that this maximal value is obtained
for the suggested h∗. Let us realize that for p = 1

2 � (−α), p ⊕ p = −α, and p is
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ω-periodic. We apply the weighted Jensen inequality [30, Theorem 2.2] (see also
[2]) in the following way:

Y (h) =

ω−1∑
n=0

hnx̄n+1
(28)
=

ω−1∑
n=0

hnλ
1∑n+ω

j=n+1 eh⊕(−α)(n+ 1, j + 1)βj

(21)
= λ

ω−1∑
n=0

hn
1∑n+ω

j=n+1 ep(n+ 1, j + 1)ep(n+ 1, j + 1)
−pj
−pj eh(n+ 1, j)

αj
Kj

≤ λ

ω−1∑
n=0

hn

∑n+ω
j=n+1 ep(n+ 1, j + 1)(pj)

2e	h(n+ 1, j)e	p(n+ 1, j + 1)
Kj
αj(∑n+ω

j=n+1 ep(n+ 1, j + 1)(−pj)
)2

(22)
=

(24)
λ

ω−1∑
n=0

hn

∑n+ω
j=n+1 p

2
jeh(j, n+ 1)

Kj
αj

(ep(n+ 1, n+ ω + 1)− 1)
2

(16)
=

λ

(ep(0, ω)− 1)
2

ω−1∑
n=0

n+ω∑
j=n+1

hneh(j, n+ 1)p2
j

Kj

αj

=
λ

(ep(0, ω)− 1)
2


ω∑
j=1

p2
j

Kj

αj

j−1∑
n=0

hneh(j, n+ 1)

+

2ω∑
j=ω+1

p2
j

Kj

αj

ω−1∑
n=j−ω

hneh(j, n+ 1)


(24)
=

λ

(ep(0, ω)− 1)
2


ω∑
j=1

p2
j

Kj

αj
(eh(j, 0)− 1)

+

2ω∑
j=ω+1

p2
j

Kj

αj
(eh(j, j − ω)− eh(j, ω))


=

λ

(ep(0, ω)− 1)
2


ω∑
j=1

p2
j

Kj

αj
(eh(j, 0)− 1)

+

ω∑
j=1

p2
j+ω

Kj+ω

αj+ω
(eh(j + ω, j)− eh(j + ω, ω))


(16)
=

(17)

λ

(ep(0, ω)− 1)
2

ω∑
j=1

p2
j

Kj

αj
(eh(ω, 0)− 1)

=
λ(eh(ω, 0)− 1)

(ep(0, ω)− 1)
2

ω∑
j=1

p2
j

Kj

αj
≤

ω∑
j=1

p2
j

Kj

αj
=

ω∑
j=1

αj

(1 +
√

1− αj)2
Kj .

In the last inequality, we used the basic algebraic result

(eh⊕(−α)(0, ω)− 1)(eh(ω, 0)− 1)

(1− ep(0, ω))
2 ≤ 1.
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This is true because

(eh⊕p(0, ω)ep(0, ω)− 1)

(
ep(0, ω)

eh⊕p(0, ω)
− 1

)
≤ (1− ep(0, ω))

2
,

i.e.,

−eh⊕p(0, ω)ep(0, ω)− ep(0, ω)

eh⊕p(0, ω)
≤ −2ep(0, ω),

i.e., (√
eh⊕p(0, ω)− 1√

eh⊕p(0, ω)

)2

≥ 0.

We will now show that the maximal harvest yield is obtained for h∗ = 	pσ	 ( pα )
∆

p
α
	

K∆

K . Since p⊕ p = −α, we have p = −α	 p. Thus

Y (h∗) =

ω−1∑
n=0

h∗nx̄n+1
(28)
=

ω−1∑
n=0

h∗nλ
∗ 1∑n+ω

j=n+1 eh∗⊕(−α)(n+ 1, j + 1)βj

= λ∗
ω−1∑
n=0

h∗n
1∑n+ω

j=n+1 e	h∗(j, n+ 1)e−α(n+ 1, j + 1)
αj
Kj

= λ∗
ω−1∑
n=0

h∗n
1∑n+ω

j=n+1 epσ (j, n+ 1)
pj
αj

αn+1

pn+1

Kj
Kn+1

e−α(n+ 1, j + 1)
αj
Kj

= λ∗
ω−1∑
n=0

h∗n
Kn+1

pn+1

αn+1∑n+ω
j=n+1 ep(j + 1, n+ 2)pje−α(n+ 1, j + 1)

= λ∗
ω−1∑
n=0

h∗n
Kn+1

pn+1

αn+1

ep(n+ 1, n+ 2)
∑n+ω
j=n+1 pje−α	p(n+ 1, j + 1)

=

(
eh∗⊕(−α)(0, ω)− 1

)
(1− ep(0, ω))

ω−1∑
n=0

h∗nKn+1
pn+1(1 + pn+1)

αn+1

=
(e	pσ (0, ω)e−α(0, ω)− 1)

(1− ep(0, ω))

ω−1∑
n=0

(
h∗nKn+1

pn+1(1 + pn+1)

αn+1

+Kn+1
p2
n+1

αn+1
−Kn+1

p2
n+1

αn+1

)

= −
ω−1∑
n=0

Kn+1
pn+1

αn+1
(h∗n(pn+1 + 1) + pn+1) +

ω−1∑
n=0

Kn+1
p2
n+1

αn+1

= −
ω−1∑
n=0

Kn+1
pn+1

αn+1
(h∗n ⊕ pn+1) +

ω∑
n=1

Kn
p2
n

αn

= −
ω−1∑
n=0

Kn+1
pn+1

αn+1

	
(
pn
αn

)∆

(
pn
αn

) 	 K∆
n

Kn

+

ω−1∑
n=0

Kn
p2
n

αn



688 MARTIN BOHNER AND SABRINA STREIPERT

= −
ω−1∑
n=0

Kn+1
pn+1

αn+1

−
(
pn
αn

)∆

Kn(
pn+1

αn+1

)
Kn+1

− K∆
n

Kn+1

+

ω−1∑
n=0

Kn
p2
n

αn

=

ω−1∑
n=0

(
pn
αn

Kn

)∆

+

ω−1∑
n=0

Kn
p2
n

αn
=

ω−1∑
n=0

Kn
p2
n

αn
.

This proves that h∗ yields the upper bound for the harvest yield and is therefore
the optimal harvest effort.

If we pick the carrying capacity to be constant and the inherent growth rate to
be two-periodic, then the optimal harvest effort is given by

h∗ = 	
(

1

2
� (−α)

)σ
	

(
1
2�(−α)

α

)∆

1
2�(−α)

α

.

Example 3.11. Let

α0 = 0.5, α1 = 0.8, K = 200. (32)

The ω-periodic solution for the Beverton–Holt model without harvesting is x̄ = K =
200, while for the harvested model, the periodic solution x̄h obtains the following
values.

x̄h0 = 89.56, x̄h1 = 66.82, h∗0 = 0.89, h∗1 = 0.67.

Figure 2. The periodic solution for the Beverton–Holt equation
(with exploitation) in (32).

Figure 2 relates the periodic solution of the Beverton–Holt model to the unique
periodic solution to the harvested Beverton–Holt equation.

Example 3.12. If we additionally change the carrying capacity to be two-periodic,
such that a higher K corresponds to a higher α, then the solution changes. Take

α0 = 0.5, α1 = 0.8, K0 = 200, K1 = 300. (33)
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Then the corresponding values for the population without harvesting x̄ and the
periodic solution for the Beverton–Holt model with exploitation x̄h are as follows:

x̄0 = 284.21, x̄1 = 234.78, x̄h0 = 82.85, x̄h1 = 92.71.

The values for the optimal harvest effort are

h∗0 = 0.26, h∗1 = 1.5.

Figure 3 contains this information.

Figure 3. The periodic solution for the Beverton–Holt equation
(with exploitation) in (33).

Example 3.13. Let us now consider a seasonal dependence of the carrying capacity
and the inherent growth rate. Let α and K be 4-periodic, with the following values:{

α0 = 0.5, α1 = 0.8, α2 = 0.6, α3 = 0.3,

K0 = 200, K1 = 300, K2 = 300, K3 = 200.
(34)

The periodic solution for the classical Beverton–Holt model takes the following
values

x̄0 = 298.77, x̄1 = 224.83, x̄2 = 281.19, x̄3 = 292.18,

and the values for the harvested periodic solution x̄h with the corresponding harvest
effort h are

x̄h0 = 82.85, x̄h1 = 92.70, x̄h2 = 116.22, x̄h3 = 91.11,

h∗0 = 0.26, h∗1 = 0.78, h∗2 = 1.02, h∗3 = 0.31,

see Figure 4.

Note that in Examples 3.11–3.13, the assumptions of Theorem 3.10 were satisfied,
i.e., αn ∈ (0, 1) and

K∆
n

Kn
≤ 1 +

√
1− αn+1

(1 +
√

1− αn)
√

1− αn+1
− 1.
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Figure 4. The periodic solution for the Beverton–Holt equation
(with exploitation) in (34).

Example 3.14. Let us discuss the case of an ω-periodic population that follows
a continuous patter in the interval [0, T ], 0 < T < ω − 1, followed by a discrete
pattern for the rest of the period. The time scale that describes the time set is
T = [0, T ] ∪ {T + 1, . . . , ω − 1}. First, we recall that the discrete Beverton–Holt
model and the continuous logistic growth model are unified in the dynamic equation

x∆ = αxσ
(

1− x

K

)
+ (	h)x, (35)

where xσ = x+ µx∆, and

µ(t) =

{
0 if t ∈ R,
1 if t ∈ Z,

x∆(t) =

{
x′(t) if t ∈ R,
∆x(t) if t ∈ Z.

Therefore, (35) is equivalent to

x∆ = (1 + µ(t)h(t))α(t)xσ
(

1− x

K(t)

)
− h(t)xσ.

As before, the ω-periodic solution has the unified expression

x̄(t) = λ

[∫ t+ω

t

eh⊕(−α)(t, σ(s))
α(s)

K(s)
(1 + µ(s)h(s)) ∆s

]−1

,

where p = 1
2 � (−α). The sustainable yield is

Y (h) =

∫ ω

0

h(t)xσ(t) ∆t

=

∫ ω

0

h(t)
λ∫ σ(t+ω)

σ(t)
eh⊕(−α)(σ(t), σ(s)) α(s)

K(s) (1 + µ(s)h(s)) ∆s
∆t

=

∫ ω

0

h(t)
λ∫ σ(t+ω)

σ(t)
ep⊕p(σ(t), σ(s))eh(σ(t), s) α(s)

K(s) ∆s
∆t
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≤ λ
∫ ω

0

h(t)

∫ σ(t+ω)

σ(t)
eh(s, σ(t))p

2(s)K(s)
α(s) ∆s(∫ σ(t+ω)

σ(t)
ep(σ(t), σ(s))p(s) ∆s

)2 ∆t

=
λ

(ep(0, ω)− 1)
2

∫ ω

0

h(t)

∫ t+ω

t

eh(σ(s), σ(t))

(
p2K

α

)
(σ(s)) ∆s∆t

=
λ

(ep(0, ω)− 1)
2

{∫ T

0

∫ s

0

h(t)eh(s, t)

(
p2K

α

)
(s) dtds

+

ω−1∑
i=T

∫ T

0

h(t)eh(i+ 1, t)

(
p2K

α

)
(i+ 1) dt

+

ω−1∑
i=T

i∑
j=T

h(j)eh(i+ 1, j + 1)

(
p2K

α

)
(i+ 1)

+

∫ T+ω

ω

∫ T

s−ω
h(t)eh(s, t)

(
p2K

α

)
(s) dtds

+

2ω−1∑
i=T+ω

ω−1∑
j=i+1−ω

h(j)eh(i+ 1, j + 1)

(
p2K

α

)
(i+ 1)

+

∫ T+ω

ω

ω−1∑
j=T

h(j)eh(s, j + 1)

(
p2K

α

)
(s) ds


=

λ

(ep(0, ω)− 1)
2

{∫ T

0

(eh(s, 0)− 1)

(
p2K

α

)
(s) ds

+

∫ ω

T

(eh(σ(s), 0)− eh(σ(s), T ))

(
p2K

α

)
(σ(s)) ∆s

+

∫ ω

T

(eh(σ(s), T )− 1)

(
p2K

α

)
(σ(s)) ∆s

+

∫ T

0

(eh(ω, 0)− eh(s+ ω, T ))

(
p2K

α

)
(s) ds

+

∫ ω

T

(eh(ω, 0)− eh(σ(s), 0))

(
p2K

α

)
(σ(s))∆s

+

∫ T

0

(eh(s+ ω, T )− eh(s, 0))

(
p2K

α

)
(s) ds

}

=
λ

(ep(0, ω)− 1)
2

{∫ T

0

(eh(ω, 0)− 1)

(
p2K

α

)
(s) ds
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+

∫ ω

T

(eh(ω, 0)− 1)

(
p2K

α

)
(σ(s)) ∆s

}

=
λ (eh(ω, 0)− 1)

(ep(0, ω)− 1)
2

∫ ω

0

(
p2K

α

)
(σ(s)) ∆s ≤

∫ ω

0

(
p2K

α

)
(σ(s)) ∆s,

by the same argument as earlier, equality holds for

h∗ = 	
(

1

2
� (−α)

)σ
	

(
1
2�(−α)

α

)∆

1
2�(−α)

α

	 K∆

K
.

Note that this formula implies h∗ = α
2 −

K′

K for t ∈ [0, T ).
Let us take for example ω = 5 and T = 3,

α(t) =

{
1
6 t+ 1

12 if 0 ≤ t ≤ 3
1
3 if t = 4

and

K(t) =

{
100 if 0 ≤ t ≤ 3

90 if t = 4,

where α and K are 5-periodic. Note that these functions satisfy the conditions to
guarantee a nonnegative harvest effort. The optimal harvesting is then

h∗(t) =



1
12 t+ 1

24 if 0 ≤ t < 3

10
9

1+
√

2/3√
2/3
(

1+
√

5/12
) − 1 if t = 3

9
10

1+
√

11/12(
1+
√

2/3
)√

11/12
− 1 if t = 4

Figure 5 and 6 show the periodic solution for the harvested model and the optimal
harvesting strategy for this example. As expected, the harvest drops rapidly from
0.3343 at t = 3 to 0.0128 in t = 4, since the carrying capacity and the growth rate
are declining and causing a decline in the population. Furthermore, in order to
guarantee the periodicity at t = 5, the population needs to recover from the new
environment that is for example reflecting the winter period.

Note that we have a jump at t = 3, because the delta-operator is defined in
terms of σ(t) = inf{s > t : s ∈ T}. Since the discrete pattern starts at t = 3, the
derivative is replaced by the delta-operator.

We would like to finish the article by discussing two modifications of the model.
First, we address the model including pulse harvesting at time steps τk, k =
1, 2, . . . , q.

Remark 2. A similar approach, using the Jensen inequality, can be applied to a
model with impulsive harvesting. Comparing the set up for the continuous logistic
growth model and the dynamic logistic model for T = Z, we suggest the following
model describing impulsive harvesting:

dx

dt
= α(t)x

(
1− x

K(t)

)
, t 6= τk,

x(τk) = x(τ+
k )(1 + h(τk)), k = 1, 2, . . . , q,
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Figure 5. The periodic solution for the Beverton–Holt equation
with exploitation.

Figure 6. The optimal harvesting policy.

where h, α,K : R → R+ are ω-periodic functions and describe the harvest effort,
growth rate, and carrying capacity respectively. Impulsive harvesting is realized at
time steps τk, k = 1, 2, . . . , q. The sustainable yield of this model is then

Y (h) =

q∑
i=1

h(τi)x(τ+
i ).

We believe, that by applying the Jensen-inequality in a similar fashion, the optimal
impulsive harvesting strategy can be obtained.

Remark 3. Similar to the construction of the diffusive model presented in [13],
a diffusive model for the Beverton–Holt equation can be discussed. We suggest in
this case, that the diffusion term depends on the ratio

r1 · r2 =
x−K
K

· α

α	
(

1
2 � (−α)

) .
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The model reads then as

u∆t = D (r1 · r2) + r(t, x)uσt
(

1− u

K(t, x)

)
− E(t, x)uσt ,

where u∆t = u(t + 1, x) − u(t, x), and uσt = u(t + 1, x). If the functions are time
independent, i.e., u∆t = 0, then a similar argument as in [13, Theorem 1] can be
applied to argue that the optimal harvest strategy is obtained at

E = −
(

1

2
� (−α)

)
,

which is the same harvesting policy for the constant coefficient model discussed
earlier. We expect a similar behavior if the model is analyzed for time dependent
coefficients.

4. Conclusion. In this paper, we introduced the Beverton–Holt difference equa-
tion including exploitation using the catch-per-unit hypothesis. We proved the
existence of the unique periodic solution of the harvested Beverton–Holt equation
that is globally attracting positive solutions. The discussion of the optimal sus-
tainable yield was introduced by first considering the continuous logistic growth
model including exploitation. We provided a different proof to obtain the optimal
harvest effort that yields the maximum sustainable yield. The same technique was
then used to discuss the optimal sustainable yield for the harvested Beverton–Holt
difference equation. Future studies will include the discussion of the present value
of the annual sustainable yield for the Beverton–Holt difference equation including
exploitation, which is well studied for the logistic growth model by Clark [15]. The
example of the mixed, continuous-discrete pattern, can be generalized to a model,
that changes between the two pattern at finitely many time steps in one period.
For future work, it will be interesting to further discuss diffusive model, such as
suggested in Remark 3.
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