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Abstract. We develop statistical and mathematical based methodologies for

determining (as the experiment progresses) the amount of information required
to complete the estimation of stable population parameters with pre-specified

levels of confidence. We do this in the context of life table models and data
for growth/death for three species of Daphniids as investigated by J. Stark

and J. Banks [17]. The ideas developed here also have wide application in the

health and social sciences where experimental data are often expensive as well
as difficult to obtain.

1. Introduction. Pesticides protect crops and improve their productivity by killing
or repelling pest species. However, they also present a risk to nontarget species and
ecosystems. For example, processes such as spray-drift, leaching, and runoff can
contaminate aquatic ecosystems [14]. Thus an ecological risk assessment (ERA) is
often used to evaluate the effects of a chemical on the environment. These ERAs are
mainly based on measurements of individuals, such as acute mortality, even though
the goals for protecting the environment are often in terms of a population [13, 15].
Thus some ecotoxicologists are proposing and presenting supporting research for
the use of demographic data with the population growth rate as the endpoint of
interest [10, 11, 12, 13]. However, the collection of demographic data can be both
time-consuming and costly. Therefore an important question is whether partial de-
mographic data can be used instead of full demographic data while still providing
an accurate picture of the impact of a toxicant on a population. This question was
recently investigated by Stark and Banks [17] using life table data for three species
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of Daphniids, Ceriodaphnia dubia, Daphnia magna, and D. pulex. Life tables were
developed weekly, and several population endpoints, including the stable population
growth rate [9] (λ), were compared. The authors statistically compared the popu-
lation growth rate for each week to the population growth rate calculated from the
complete life table to determine the earliest time that gave statistically insignificant
additional results.

We approach this problem from a modeling perspective in order to develop an
adaptive feedback mathematical methodology to determine the minimum amount
of data needed to estimate stable model parameters with pre-specified confidence
levels. We first present the parameter estimation or inverse problem methodology
that we use in our analysis in Section 2. In Section 3, we investigate the problem and
explain our ideas using the classic and well-known Verhulst-Pearl logistic growth
model. Using our approach developed and illustrated with this simple example,
we then in Section 4 consider the data used by Stark and Banks [17]. Finally, in
Section 5 we present our conclusions and directions for further research.

2. Inverse problem methodology. We first describe the mathematical and sta-
tistical model used in the inverse problem (See [8, 7] for further details). Let x
represent the N -dimensional vector of state variables and let θθθ = [q,x0] (assuming
initial conditions x0 are unknown) represent the parameters to be estimated in the
mathematical model

dx

dt
= g(t,x(t),q) (1)

x(t0) = x0. (2)

We now consider n longitudinal data {yj}nj=1, collected at discrete time points
{tj}nj=1. Since it is possible for a state variable to not be observed in the collected
data, we define the m-dimensional observation process f(t;θθθ) = Cx(t;θθθ), with m ≤
N . Then f(tj ;θθθ) = Cx(tj ;θθθ), for j = 1, . . . , n. It should be noted that the data
{yj} will not be exactly f(tj ;θθθ) since measurement procedures contain error or
uncertainty. Thus it is necessary to discuss the statistical model as well as the
mathematical model.

We consider an absolute error statistical model

Yj = f(tj , θθθ0) + Ej , j = 1, . . . , n (3)

with realization

yj = f(tj , θθθ0) + εεεj , j = 1, . . . , n.

The vector θθθ0 represents the p×1 “true” or “nominal” parameter vector that gener-
ates the observations Yj and we assume this “true” or “nominal” parameter vector
exists. The random error (or measurement/observational error) is represented by
the m × 1 random vector Ej . We assume Ej , for j = 1, . . . , n, are independent
and identically distributed with zero mean and covariance matrix given by V0 =
Var(Ej) = diag(σ2

1 , . . . , σ
2
m), for j = 1, . . . , n.

In order to estimate the “true” parameter vector from a set Ωθ of possible pa-
rameters, since we are assuming absolute error, we use an ordinary least squares
(OLS) approach and minimize the OLS cost functional

Jn(Ȳ, θθθ) =

n∑
j=1

[Yj − f(tj , θθθ)]
TV −1

0 [Yj − f(tj , θθθ)],
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where Ȳ = [Y1, ...,Yn]. Since {Yj}nj=1 are random vectors, θθθn = arg min
θθθ∈Ωθ

Jn(Ȳ, θθθ),

is also a random vector. Thus we define the realization of θθθn

θ̂θθ
n

= arg min
θθθ∈Ωθ

Jn(ȳ, θθθ).

Since the models we will discuss in this paper are scalar (N = 1) and to simplify
notation, we present the remaining methodology in the scalar case. The scalar OLS
cost functional simplifies to

Jn(Y, θθθ) =

n∑
j=1

[Yj − f(tj , θθθ)]
2.

From asymptotic theory [7, 8], as n→∞,

θθθn ∼ N (θθθ0,Σ
n
0 ) ≈ N (θθθ0, σ

2
0 [Fnθθθ (θθθ0)TFnθθθ (θθθ0)]−1),

where Fnθθθ (θθθ) is the n× p sensitivity matrix defined by

(Fnθθθ )jk(θθθ) =
∂f(tj ;θθθ)

∂θk
, j = 1, . . . , n k = 1, . . . , p.

Since θθθ0 and σ2
0 are unknown, we can use the estimate θ̂θθ and σ2

0 approximation

Σn0 ≈ Σ̂n ≡ σ̂2[Fnθθθ (θ̂θθ)TFnθθθ (θ̂θθ)]−1,

where

σ̂2 =
1

n− p

n∑
j=1

[yj − f(tj ; θ̂θθ
n
)]2.

Standard errors (SE) are then calculated as SEk ≈
√

Σ̂nkk.

We test use of this mathematical/statistical framework for problems with con-
stant parameters.

3. The Verhulst-Pearl logistic growth population model. We first investi-
gate the problem of determining the minimum amount of data that is needed to
collect using the simple and well-known Verhulst-Pearl logistic growth population
model [16]

dx

dt
= rx

(
1− x

K

)
.

The state variable x(t) represents the population size at time t, parameter K rep-
resents the carrying capacity, and parameter r represents the intrinsic growth rate.
The exact solution of this model is given by

x(t) =
K

1 +
(
K
x0
− 1
)
e−rt

, (4)

where x0 represents the scaled (relative to the carrying capacity) initial population
size, i.e., x(0) = x0.

We first created simulated data {yj}nj=1 from equation (4) using the “true” pa-
rameter set θθθ0 = [K, r] = [17.5, .7] and with x0 = 0.1. We then added Gaussian
noise to the simulated data with mean 0 and standard deviation 0.01. Using the in-
verse problem methodology described above, we carried out estimation procedures
for the parameters θθθ = [K, r] using the ordinary least squares method. Note that
we did not try to estimate the initial population size x0. This is because when we
consider the daphnia population data from [17], the initial daphnia population is
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known. Since the model is very simple and only two parameters are being estimated,
a Nelder-Mead optimization algorithm is sufficient. Thus we used the MATLAB
function fminsearch to minimize the cost functional

Jn(θθθ) =

n∑
j=1

[yj − f(tj , θθθ)]
2

with respect to θθθ, where f(tj , θθθ) = x(tj). We provided the MATLAB function with

an initial guess θθθ0 = [8, 1] and obtained the minimized cost Jn(θ̂θθ), where θ̂θθ = θ̂θθ
n

represents the optimized value of θθθ using n number of points. We then calculated
the standard errors for each estimated parameter. Since the model is simple, we
calculated the sensitivity matrix by computing the partial derivatives

∂x

∂K
=

x2
0(1− e−rt)

(x0 + (K − x0)e−rt)2
,

∂x

∂r
=

Kx0(K − x0)te−rt

(x0 + (K − x0)e−rt)2
.

The model sensitivities are plotted in Figure 1.

Time
0 5 10 15 20

S
e
n
s
it
iv

it
y

0

5

10

15

20

25

30

35
Model Sensitivities

K
r

Figure 1. Sensitivity functions corresponding to each parameter
for the logistic model with θθθ = [17.5, 0.7] and x0 = 0.1.

3.1. Length of time for data collection. We are interested in determining the
smallest amount of data that is needed to still provide an adequate parameter

estimation θ̂θθ. Thus we performed multiple inverse problems with an increasing
number of data points. We first use only three data points {y1, y2, y3} to estimate

θ̂θθ
3

and then repeat this process using four data points {y1, ..., y4} to obtain θ̂θθ
4
.

This process is then repeated until all n data points have been used to estimate

θ̂θθ
n
, resulting in the set {θ̂θθ

3
, . . . , θ̂θθ

n
}. We then plotted the data along with the

estimated curves (using equation 4) over the entire time period using each θ̂θθ
i
, where

i = 3, . . . , n.
The simulated data began on time t = 0 and was “collected” each time unit

(“day”) until time t = 24. Figure 2a contains the graphs of the estimated curves and
the data and Figure 2b contains the same curves and data over a smaller time period.
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The estimated parameter values θ̂θθ
i

and corresponding standard errors obtained for
each increasing dataset are plotted in Figure 2c and Figure 2d, respectively.

We can see that parameter r can be estimated with very few data points and
the standard errors remain small for parameter r with increasing n. However, K
is under estimated while using data up to time t = 3 and then is over estimated.
Around day 6 or 7, K becomes close to its true value and the model estimation is
adequate. Similarly, the standard error for parameter K is large using data up to
time t = 3 and then decreases as more data are used in the estimation procedure.
Around day 6 or 7, the standard errors for parameter K begin to level off. It
should be noted that this was to be expected due to the model sensitivities with the
“true” parameters. We can see that the model is sensitive to r early on, while the
model does not become sensitive to K until around day 6 or 7. Thus we can expect
to be able to estimate r with very few data points but the data will not contain
information about parameter K until at least day 6 or 7.

In this simple example, it is easy to look at all of the data and see when the
parameter values and standard errors level off. However, a more important problem
is developing an adaptive feedback methodology that can be used as the data are
being collected (i.e., establishing “real-time” stopping rules). To do this, we first
calculate the percent change in parameter values for an increasing number of data
points n, using the following

Pn − Pn−1

Pn−1
100, (5)

where Pn represents the estimated parameter value using n number of data points
and Pn−1 represents the estimated parameter values using n − 1 number of data
points. The percent change in parameter values for increasing n is plotted in Figure
3a. For each parameter (K, r), we then determine the time when the percent change
in parameter value is less than a threshold of 5%, i.e.,

Pn − Pn−1

Pn−1
100 < 5.

We note that 5% was chosen somewhat arbitrarily, but represents a sufficiently
small relative error to suggest that the parameter values have leveled off to reflect
a stable population. We then choose the maximum of the times associated with
each of the two parameters. We plotted a vertical dashed line at this time in Figure
3a. We can see that the percent change in parameter r is above 5% when using up
to 4 data points but then below 5% when using up to 5 data points. However the
percent change in parameter K is less than 5% once 8 data points are used. Thus
a vertical dashed line is plotted at n = 8 (max{5, 8}) in Figure 3a.

We then calculate the percent change in the standard error using the following

|sn − sn−1|
maxi=1,...,n si

100, (6)

where sn and sn−1 represent the standard error using n and n− 1 number of data
points, respectively. The percent change in standard error for increasing n is plotted
in Figure 3b. Again, for each parameter, we determine the time when the percent
change in standard error is less than a threshold of 5%, i.e.,

|sn − sn−1|
maxi=1,...,n si

100 < 5.



658 H. T. BANKS, J. E. BANKS, R. A. EVERETT AND JOHN D. STARK

We then choose the maximum of the times associated with each of the two param-
eters. We plotted a vertical dashed line at this time in Figure 3b. We can see that
the percent change in standard error for parameter r is less than 5% using 7 data
points, but the percent change in standard error for parameter K requires 8 data
points to reach below the threshold. Thus, a vertical dashed line is plotted at n = 8
(max{7, 8}) in Figure 3b.

Note that we want the parameter values to converge to the “true” or nominal
parameter value as more and more data are collected and thus we use the percent
change in parameter values equation (equation (5)). When using the standard error,
we want to find the time when the standard errors are decreasing and begin to level
off, even if they are still changing relative to the previous standard error. Thus
we calculate the percent change in standard error using equation (6). Using these
two methods, we have two different proposed last data points (proposed last data
P and proposed last data SE, Figure 3). Since we want both the parameter values
to converge and the standard errors to level off, we take the maximum of these
times as our final proposed last data point. Thus, in Figure 2, a vertical dashed
line is plotted at time t = 7, or equivalently n = 8. Note that in this case, both
proposed last data points were equivalent (n = 8). As the data are being collected,
the percent change in parameter values and standard errors can be calculated and
once both values are below their thresholds, we can be confident that sufficient data
has been collected to obtain reliable parameter values with acceptable confidence
levels. Our adaptive feedback methodology is summarized in the following steps.
Each time data are collected

1. Perform an inverse problem using all the available data to obtain the estimated
parameter(s).

2. Calculate the associated standard error(s).
3. Calculate the percent change in parameter values.
4. Calculate the percent change in standard errors.
5. Stop collecting data once the percent change in parameter values decreases

below a threshold and the percent change in standard errors decreases below
a threshold.

3.2. Frequency of data collection. When designing an experiment, it might
be difficult to collect data daily. We now consider the amount of data needed to
collect in order to provide reasonable parameter estimations when the data are
collected, for example, every other day. To investigate this question, we repeated
the process described above using data from time t = 0 to t = 24 with data being
“collected” every other day. The results are plotted in Figures 4 and 5. Again, we
calculated a proposed last data point using the percent change in parameter values
by determining the time when the percent change for each parameter reached below
the threshold and then by choosing the maximum of the times associated with each
of the two parameters (using 5 data points, Figure 5a). We then calculated a
proposed last data point using the percent change in standard error by determining
the time when the percent change in standard error for each parameter reached
below the threshold and then by choosing the maximum of the times associated
with each of the two parameters (using 6 data points, Figure 5b). Finally, we chose
the maximum of these two threshold times as our final proposed last data point
(using 6 data points). Thus, we plotted a vertical dashed line in Figure 4 at time
t = 10, or equivalently n = 6, to represent our proposed time when enough data has
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(b) Figure (a) for t = [15, 24]
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Figure 2. Noisy data are simulated and “collected” every day

from day 0 to day 24. Parameter values θ̂θθ
n

are estimated each day
and the resulting estimated curves are plotted with the data (1st
row). The estimated parameter values and standard errors are also
given for increasing n (2nd row).

been collected. A benefit here is that only 6 data points are needed whereas about 8
data points were needed when collecting the data daily. However, for this example,
by collecting the data daily, we would have sufficient data a few days earlier.

4. Daphnia population growth. Using our knowledge from this simple example,
we now consider the question of whether partial demographic data can replace
full demographic data while still providing a reasonable estimation of the stable
population growth rate λ [9, p.81-89] using the daphnia population data from Stark
and Banks [17].
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Figure 3. The change in parameter values (left) and change in
standard errors (right) are calculated using n and n− 1 number of
data points.

4.1. Data and model. Stark and Banks studied three species of Daphniids, Ce-
riodaphnia dubia, Daphnia magna, and D. pulex. For each species, 3 batches (repli-
cates) of 10 base individuals were longitudinally observed. The survival of the 10
base individuals were recorded daily as well as the total number of offspring pro-
duced each day. The offspring were removed daily. Stark and Banks developed life
tables weekly, determining the values for several demographic parameters, but fo-
cusing specifically on the parameter λ as the endpoint of interest. The parameter λ
represents the stable population growth rate [9], or multiplication rate of the stable
population, i.e.,

x(t) = x0λ
t, (7)

where x(t) represents a daphnia population at time t and x0 represents the initial
daphnia population (x(0) = x0). Since we know that each replicate of each species
began with 10 daphnia, then the model becomes

x(t) = 10λt. (8)

The life tables that Stark and Banks developed are based on the stable population
model [9], which assumes the following:

1. The only changes in the population are from births and deaths (i.e., there is
a closed population)

2. The population is growing at a constant rate over time (i.e., the birth and
death rates are constant)

If we tacitly assume 1. and 2., as done in [17], then we can let b represent the
constant per capita birth rate, d represent the constant per capita death rate, and
r represent the constant intrinsic rate of increase, where r = b− d. Then

dx

dt
= (b− d)x = rx

and so

x(t) = x0e
rt. (9)
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Figure 4. Noisy data are simulated and “collected” every other

day from day 0 to day 24. Parameter values θ̂θθ
n

are estimated each
time data are “collected” and the resulting estimated curves are
plotted with the data (1st row). The estimated parameter values
and standard errors are also given for increasing n (2nd row).

Note that equation (9) is equivalent to equation (7) with λ = er. For further
information on the stable population model and the role of this model in developing
the life tables, see Appendix A in [4].

4.2. Adaptive feedback methodology on the parameter λ. Based on the
results from our simple example using the logistic population growth model, we
investigate the minimum amount of daphnia population data needed by estimating
λ, the parameter of interest, and by calculating the standard errors for an increasing
number of data; once the estimated parameter values and standard errors level
off, we will deem that sufficient data will have been collected. We can determine
this by using the methodology described above. We first calculate the percent
change in parameter values for increasing n using equation (5) and determine when
this reaches below a threshold. We then repeat this process for percent change
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Figure 5. The change in parameter values (left) and change in
standard errors (right) are calculated using n and n− 1 number of
data points.

in standard error using equation (6). Our proposed last data point collection is
then the maximum of these two times. However, there is a difference between our
simulated data in the logistic model example and the data from Stark and Banks. In
the logistic model example, the state variable represented total population size and
the data was total population size at given times. For the daphnia population model
described above, the state variable also represents total population size, however the
data are not total population size. Since the offspring are removed daily, the data
consists of only two generations, not the total population. Since the life tables were
built on the data (see Appendix A in [4] for how to develop the life table), we used
the calculated λ from each week of the life table to determine the total population
for each week using equation (8). We repeated this process for each replicate of
each species. Thus, the datasets {yj}nj=1 now consist of the total population for
each week.

We use the inverse problem methodology to carry out estimation procedures for
θ = λ using the ordinary least squares method. Again, we did not try to estimate
x0 since we know x0 = 10. Using the MATALB function fminsearch, we minimized
the cost functional

Jn(θ) =

n∑
j=1

[yj − f(tj , θ)]
2

with respect to θ, where f(tj , θ) = x(tj). We provided the MATLAB function with
an initial guess which was equivalent to the λ calculated from the life table for

that week, and obtained the minimized cost Jn(θ̂), where θ̂ = θ̂n represents the
optimized value of θ using n number of points. To compute the standard errors for
λ, we used the partial derivative

∂x

∂λ
= x0tλ

t−1 = 10tλt−1.

Following the procedure in the logistic model example, we performed multiple
inverse problems to estimate θ = λ for an increasing number of data points. We first
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(b) Parameter values θ̂n for increasing n
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Figure 6. C. dubia number of offspring and survival data were
used to build a life table [17]. The calculated λ from the life ta-
ble for each week was then used to calculate the total population

each week. Using this total population data, parameter values θ̂n

are estimated each week and the resulting curves are potted along
with the total population data (1st row). The estimated parame-

ter values θ̂n are plotted as well as the standard errors for θ̂n for
each replicate (2nd row). The dashed vertical line represents the
proposed last data by Stark and Banks. The dash-dot vertical line
represents our proposed last data.

used only two data points {y1, y2} to estimate θ̂2 and then repeated this process

until all n data points had been used, resulting in the set {θ̂2, . . . , θ̂n}. We then
plotted the total population data (calculated from the λ for each week from the
life tables) along with the estimated curves over the entire time period using each

θ̂i, for i = 1, . . . , n. The estimated parameter values were then plotted along with
the weekly λ values from the life table. As expected, the two sets of λ values were
extremely similar. The percent change in estimated parameter values, standard
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Figure 7. The percent change in parameter values (left) and stan-
dard errors (right) are calculated using n and n − 1 number of C.
dubia data points. For each method (parameter or standard error),
the dash-dot vertical line is chosen as the proposed time for each
replicate that occurred the most number of times.

errors, and percent change in standard errors were also plotted. This process was
then repeated for each replicate and for each species. Appendix B in [4] contains
all of the graphs for each replicate of each species.

Figure 6a contains the graphs of the estimated curves and the total population
data for the first replicate for C. dubia (the other replicate curves and data are

similar, see Appendix B in [4]). The estimated θ̂n values for each replicate of C.
dubia are plotted in Figure 6b, and the associated standard errors are then plotted
in Figure 6c. Using the Student-Newman-Keuls test, the results from Stark and
Banks indicated that the λ calculated using up to 5 weeks of C. dubia data was not
statistically different from the λ calculated using all 9 weeks of data and thus they
suggested that 5 weeks of data was sufficient. We plotted a vertical dashed line in
Figure 6 at week 5 to represent their proposed last data point.

To determine our proposed last data point, we first calculated when the percent
change in parameter values (equation (5)) was less than 5% and when the percent
change in standard errors (equation (6)) reached below 25% (Figure 7). Note that
we used a larger threshold for the percent change in standard error since we are
interested in when the standard errors are decreasing and begin to level off, even if
they are still changing relative to the previous standard error. Our proposed last
data point for each replicate was calculated as the maximum of these two times.
This process was repeated for each replicate of each species (see Appendix B in
[4]). To determine the proposed last data for each species, we chose the proposed
time for each replicate that occurred the most number of times. For example, for
C. dubia, the proposed last data for replicates 1, 2 and 3, occurred at 8 weeks, 8
weeks, and 7 weeks, respectively (Appendix B in [4]). Thus, we chose 8 weeks as
the proposed last data point for species C. dubia using our proposed methodology.

When considering the D. pulex data, Stark and Banks again concluded that
using 5 weeks of data provided a sufficient estimate of the population growth rate.
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(b) Parameter values θ̂n for increasing n
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Figure 8. D. magna number of offspring and survival data were
used to build a life table [17]. The calculated λ from the life ta-
ble for each week was then used to calculate the total population

each week. Using this total population data, parameter values θ̂n

are estimated each week and the resulting curves are potted along
with the total population data (1st row). The estimated parame-

ter values θ̂n are plotted as well as the standard errors for θ̂n for
each replicate (2nd row). The dashed vertical line represents the
proposed last data by Stark and Banks. The dash-dot vertical line
represents our proposed last data.

Our results indicate that 8 weeks of data are needed (Figure 10). Thus, we again
propose about 3 more weeks compared to Stark and Banks’ proposed time. When
considering the D. magna data, Stark and Banks concluded that using 7 weeks of
data provided a sufficient estimate of the population growth rate. Our results again
indicate that 8 weeks of measurements are needed (Figure 8). For each species, our
results consistently indicated that 8 weeks of data were needed in order to provide
a reasonable estimate for the population growth rate λ.
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Figure 9. The percent change in parameter values (left) and stan-
dard errors (right) are calculated using n and n− 1 number of D.
magna data points. For each method (parameter or standard er-
ror), the dash-dot vertical line is chosen as the proposed time for
each replicate that occurred the most number of times.

We should note that the percent change in parameter values and standard er-
rors do not always decrease below the threshold and remain there, but sometimes
increase back above the threshold. To handle this situation, one must use all of
the information available to decide when enough information has been collected.
For C. dubia, although the percent change in parameter values begins below the
threshold, 2 data points is clearly not enough data (Figure 7). For the percent
change in standard error using C. dubia data, replicate 3 drops below the threshold
at week 4, however replicates 1 and 2 are still above the threshold at this time.
Thus, we would not propose to stop collecting data at week 4. Although all of the
replicates are below the threshold at week 5, replicate 3 increased from about 1.5
to 23 percent, which is quite a big change. Thus, one more week of collecting data
might be recommended. At week 6, again replicate 3 increases to about 42 percent,
another large change, and replicates 1 and 2 also increase. Thus, our proposed last
week of collecting data occurred on week 8, rather than an earlier week. If data
had been collected for only replicates 1 and 2, then we would have proposed to stop
collecting data on week 5. Similarly, when considering D. magna percent change
in parameter values, the levels reach below the threshold on week 3 (Figure 9).
However, there is no indication that the estimated λ values have converged (Fig-
ure 8), thus another week would be recommended. When considering species D.
pulex, the percent change in standard error decreased below the threshold on week
4 for replicates 2 and 3 (Figure 11). However, the standard errors at this time are
still relatively high. Thus, another week of collecting data would be recommended.
Thus, in summary, we believe our proposed methodology can be extremely useful
if employed with proper caution and a measure of conservatism when in doubt.

Stark and Banks developed the life tables weekly, even though the data was
collected daily. We decided to investigate the results using daily life tables. Once
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(b) Parameter values θ̂n for increasing n
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Figure 10. D. pulex number of offspring and survival data were
used to build a life table [17]. The calculated λ from the life ta-
ble for each week was then used to calculate the total population

each week. Using this total population data, parameter values θ̂n

are estimated each week and the resulting curves are potted along
with the total population data (1st row). The estimated parame-

ter values θ̂n are plotted as well as the standard errors for θ̂n for
each replicate (2nd row). The dashed vertical line represents the
proposed last data by Stark and Banks. The dash-dot vertical line
represents our proposed last data.

we created the daily life tables, we repeated the same process using the daily λ values
from the life tables (Figure 12). Again we plotted a dashed vertical line to represent
the last data point that was suggested by Stark and Banks. Although we did not
calculate the percent change in parameter values and percent change in standard
errors using the daily life tables, we plotted a dash-dot vertical line to represent
our proposed last data point calculated from the weekly life tables. Using the daily
data, we can see that the changes in parameter values and standard errors are much
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Figure 11. The percent change in parameter values (left) and
standard errors (right) are calculated using n and n − 1 number
of D. pulex data points. For each method (parameter or standard
error), the dash-dot vertical line is chosen as the proposed time for
each replicate that occurred the most number of times.

smaller at the dash-dot vertical line (our proposed last data point) compared to the
dashed vertical line (Stark and Banks’ proposed last data point), suggesting that
substantial confidence in the parameters can still be gained by collecting the extra
data.

5. Discussion. An important question in the field of ecotoxicology is determining
whether or not partial demographic data can replace full demographic data while
still obtaining an accurate estimate of the endpoint of interest. To investigate this
problem, we used a simple logistic model in order to develop an adaptive feedback
methodology that can be used as the data are being collected for determining when
enough data has been collected to obtain reasonable parameter estimates. By carry-
ing out an inverse problem each time data are collected, one can plot the estimated
parameters over time, standard errors over time, and models using each estimated
parameter. Once the parameter estimates converge (measured by percent change in
parameter estimates decreasing below a threshold) and the standard errors level off
(measured by percent change in standard error decreasing below a threshold), one
can have confidence in concluding that a sufficient amount of data has been collected
to still provide reasonable parameter estimates. We note that the methodologies
developed here are meant to provide “real-time” stopping rules for data collection
for stable population models. In addition, they suggest a means for optimal design
of experiments when investigating known stable assemblages of species.

Although our results supported the results by Stark and Banks, the conclusions
reached should be taken with reservations since a simple model using constant
birth and death rates was assumed in both studies. Previous works that support
using time-varying coefficients when modeling daphnia populations [2, 1] and other
populations [6, 5, 3] suggest future efforts with time-varying coefficients should
be carried out to further develop our ideas. We note that our methodological
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Figure 12. C. dubia (1st row), D. magna (2nd row), and D. pulex
(3rd row) number of offspring and survival data were used to build
a life table. The calculated λ from the life table for each day was
then used to calculate the daily total population. Using this total

population data, parameter values θ̂n are estimated daily. The λ

values from the life tables and estimated parameter values θ̂n are

plotted as well as the standard errors for θ̂n for each replicate. The
dashed vertical lines represent the proposed last data by Stark and
Banks, whereas the dashed-dot vertical lines represent the proposed
last data using our approach.
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developments are founded on having both a correct mathematical as well as a correct
statistical model for the data collection. Current efforts include testing models with
better fits to data to verify that the methodology proposed here is also useful in
models that describe the data sets more closely.
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