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Abstract. We study a model of the chemostat with several species in compe-

tition for a single resource. We take into account the intra-specific interactions
between individuals of the same population of micro-organisms and we assume

that the growth rates are increasing and the dilution rates are distinct. Using

the concept of steady-state characteristics, we present a geometric character-
ization of the existence and stability of all equilibria. Moreover, we provide
necessary and sufficient conditions on the control parameters of the system

to have a positive equilibrium. Using a Lyapunov function, we give a global
asymptotic stability result for the competition model of several species. The

operating diagram describes the asymptotic behavior of this model with respect

to control parameters and illustrates the effect of the intra-specific competition
on the coexistence region of the species.

1. Introduction. The competitive exclusion principle (CEP) states that, in a
chemostat and under specific assumptions, when microbial species compete for the
same limiting nutrient in continuous culture, at most one species survives and all
others perish, [21]. The surviving species is the one with the smallest subsistence or
break-even concentration of the limiting resource. The chemostat model describing
the interactions between the microbial species has been used for different systems,
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especially for wastewater treatment processes, biological reactors, etc. Nevertheless,
for most of these systems, it is observed that many species can coexist and the pre-
diction given by the CEP is not in accordance with the reality. This has motivated
a lot of recent research and a theory of microbial competition is under development.
The aim of these studies is to construct mathematical models in agreement with
the observations and to predict the qualitative behavior of competition systems.
By modifying the assumed operating conditions, many extensions of the classical
chemostat model have been performed. Coexistence of several species has been
proved when considering models with time-varying dilution rates, and or input nu-
trient concentration, see [8, 10, 22, 25] or with variable yields, [2, 18, 19, 20], see
also [6, 7, 11, 12, 13, 14, 16, 23, 24] for other extensions.

Recently, within the framework of the classical chemostat model, Lobry et al.
have introduced in [14, 15] growth functions that do not only depend on the re-
source concentration but also on the biomass concentration. In this model, they
introduce the concept of the steady-state characteristic for each species. For sev-
eral species in competition for a single resource, they show that the knowledge
of the characteristics enables to give sufficient conditions for coexistence and to
determine the asymptotic behavior of the system. For the proposed model, they
prove the existence of a globally asymptotically stable equilibrium of coexistence,
see [12, 14]. The consideration of density-dependent growth functions in the chemo-
stat model has been also introduced in the literature in the field of mathematical
ecology [1] or wastewater process engineering [9]. For instance, it has been proven
that flocculation systems can be reduced, under certain assumptions, to systems
with density-dependent growth rates where coexistence may occur through this
mechanism, [3, 4, 7].

In order to explain coexistence, other approaches rely on taking into account,
in the chemostat model, inter-specific interactions between populations of micro-
organisms or intra-specific interactions between individuals themselves. Wolkowicz
and Lu [24] have considered two models, corresponding respectively to the case
where only intra-specific interferences are permitted and to the case where only
inter-specific interactions occur. In the case of intra-specific interactions in the
dynamics of two species, there exists a coexistence equilibrium which is locally
asymptotically stable. In the case of inter-specific interactions in the dynamics of
two species, there exists a coexistence equilibrium, but it is unstable [24]. The
case of both intra- and inter-specific interactions has been considered in [3, 5]. It
has been shown that there can be one or more positive locally exponentially stable
equilibria. In the case of more than one, bistability can occur, for certain values of
the operating parameters.

De Leenheer et al. [11] have proposed a chemostat model where n species are
competing for a single nutrient by considering that mortality rates are due to the
crowding effects. The authors were interested only in the positive equilibrium. They
require that the death rate parameters of all species are large enough to prove the
existence of a positive equilibrium. They use the theory of monotone dynamical
systems for an interconnection of two input/output systems to prove an almost-
global stability result of the positive equilibrium.

The goal of this paper is to give a quite comprehensive analysis of the model of De
Leenheer et al. [11]. Using the concept of steady-state characteristics introduced
by Lobry et al. [14, 15], we present a geometric characterization that describes
all equilibria of the model and their stability, not only the positive equilibrium as
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it is done in [11]. We give a necessary and sufficient condition for the existence
of a positive equilibrium, not only a sufficient condition as it is done in [11]. In
particular, we show that if the death rate parameters of all species are positive,
then the existence of a stable positive equilibrium is possible for certain values of
the operating parameters. Hence, the sufficient condition (the death rate parameters
of all species are large enough) given by [11] is not necessary. These results were
obtained in [3]. We generalize the Lyapunov function proposed by Wolkowicz and
Lu [24], in the case of two species, to prove the global stability of the equilibrium,
corresponding to the extinction of all species except the one with the lowest break-
even concentration. Last but not least we determine the operating diagram of
the model, that is to say, we determine the regions of the operating parameters
(dilution rate and input concentration of the nutrient), which depict the existence
and the stability of each equilibrium. This question was not considered in [11]. We
show that the operating diagram is independent of the intra-specific competition
parameter of the weaker species.

In this paper, we may allow that there is no intra-specific competition of the
weaker species contrary to the literature where it is apparently always assumed
that all intra-specific competition parameters are positive [3, 5, 6, 7, 11, 14, 15, 24].
Ruan et al. [17] considered the issue of the coexistence in a two-competitors/one-
prey (biotic resource) model with a density-dependent mortality rate of only one
of the competitors. Similarly to what is shown by [17] for a biotic resource, our
findings demonstrate that in the case of an abiotic resource, two competitors can
coexist when only one of the competitors exhibits intra-specific competition, namely
the stronger one. The possible coexistence when the weaker species has no intra-
specific competition is not surprising since the lack of intra-specific competition
for the weaker species has a beneficial effect on this species’ ability to survive.
What is much more interesting is that, the operating diagram being independent
of the intra-specific competition parameter of the weaker species, coexistence is
possible. This occurs even for arbitrarily high levels of intra-specific competition of
the weaker species and also for suitable given dilution rate and input concentration
of the nutrient.

This paper is organized as follows: in Section 2 we present an intra-specific
competition model of n species and give some preliminary results. Section 3 is
devoted to analyse this model in the case of two species. Using the concept of
steady-state characteristics, we give a geometric characterization of the existence
and stability of all equilibria. We prove that only one equilibrium is stable. A global
asymptotic stability result is given. In Section 4, this approach is extended to the
study of the multi-species model. In Section 5, we present the operating diagrams
which depict the existence and the stability of each equilibrium according to control
parameters. In Section 6, numerical simulations with realistic growth functions
(of Monod-type) illustrate either the coexistence or the competitive exclusion in
different cases. Finally, some conclusions are drawn in Section 7.

For convenience, we use the abbreviations LES for Locally Exponentially Sta-
ble equilibria and GAS for Globally Asymptotically Stable equilibria, in all what
follows.

2. Mathematical model. We consider the chemostat model of n species com-
peting for a single nutrient with intra-specific linear interactions, introduced by De
Leenheer et al. [11]. This model reads:
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 Ṡ = D(Sin − S)−
n∑
i=1

fi(S)xi

ẋi = [fi(S)− aixi −Di]xi, i = 1, . . . , n

(1)

where S denotes the concentration of the substrate; xi denotes the concentration
of the ith population of micro-organisms; Sin and D denote, respectively, the con-
centration of substrate in the feed bottle and the dilution rate of the chemostat;
Di denotes the removal rate of the species i which is the sum of the death rate of
species i and the dilution rate D, (Di are not necessarily equal); ai is a non-negative
parameter giving rise to death rate aixi which is due to intra-specific interaction
and fi(·) denotes the per-capita growth rate of the ith population. We first make
the following assumption on the growth functions:

H1: For i = 1, . . . , n, fi(0) = 0 and for all S > 0, f ′i(S) > 0.

Hypothesis H1 means that the growth can take place if and only if the substrate is
present. Moreover, the growth rate of each species increases with the concentration
of substrate. In the following, we prove that system (1) is behaving as well as one
would expect for any reasonable chemostat model.

Proposition 1. For any non-negative initial condition, the solutions of (1) remain
non-negative and are positively bounded. The set

Ω =

{
(S, x1, . . . , xn) ∈ Rn+1

+ : Z = S +

n∑
i=1

xi 6 max

(
Z(0),

D

D∗
Sin

)}
where D∗ = min(D,D1, . . . , Dn), is positively invariant and a global attractor for
(1).

Proof. From (1), we have

Ż = DSin −DS −
n∑
i=1

(Dixi + aix
2
i ).

Hence,

Ż 6 D(Sin −
D∗

D
Z).

From Gronwall’s Lemma, we obtain

Z(t) 6
D

D∗
Sin +

(
Z(0)− D

D∗
Sin

)
e−D

∗t, for all t > 0. (2)

It is easy to see from (1) that the cone Rn+1
+ is positively invariant. Thus solutions

are non-negative for all t > 0 and from (2) we deduce that solutions are positively
bounded and that the set Ω is positively invariant and is a global attractor for
(1).

3. Analysis of the competition model with two species. For a better under-
standing of the qualitative behavior of solutions of the model (1), we begin with
the case n = 2. In this particular case, we can describe precisely the solutions and
give stability results for all equilibria. Moreover, we can show that a necessary and
sufficient condition of coexistence of both species is the inhibition of the strongest
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species by intra-specific competition. System (1), in the case of two species com-
peting for a single nutrient, reads

Ṡ = D(Sin − S)− f1(S)x1 − f2(S)x2

ẋ1 = [f1(S)− a1x1 −D1]x1

ẋ2 = [f2(S)− a2x2 −D2]x2.

(3)

We assume that H1 is satisfied for n = 2. Now, we shall discuss the existence of
equilibria of system (3) and then their asymptotic stability for a1 > 0 and a2 > 0.

3.1. Existence of equilibria. If equation fi(S) = Di has a solution, we denote
λi = f−1

i (Di), for i = 1, 2. Otherwise, λi = +∞. We assume that the populations
xi are labeled such that λ1 < λ2. The equilibria are solutions of system (4):

0 = D(Sin − S)− f1(S)x1 − f2(S)x2

0 = [f1(S)− a1x1 −D1]x1

0 = [f2(S)− a2x2 −D2]x2.

(4)

By solving system (4), we will prove the existence of four equilibria, according to
the concentration Sin: a washout equilibrium, two equilibria corresponding to the
extinction of the first and the second species, respectively, and a positive equilib-
rium corresponding to the coexistence of both species. For the description of the
equilibria, we need the following notations

hi(S) =
fi(S)−Di

ai
fi(S), Hi(S) = D(Sin − S)− hi(S), i = 1, 2, (5)

and

λ̄2 = λ2 +
h1(λ2)

D
. (6)

Notice that the function h2(·) is defined only when a2 > 0. In this case, we define
the function H(·) by

H(S) = D(Sin − S)−
2∑
i=1

hi(S).

Then, we can state:

Proposition 2. System (3) admits the following equilibria:

1. The washout equilibrium E0 = (Sin, 0, 0), that always exists.
2. The equilibrium E1 = (S1, x̄1, 0), of extinction of species x2, where S1 is the

unique solution of H1(S) = 0, and x̄1 =
f1(S1)−D1

a1
. E1 exists if and only

if Sin > λ1.
3. The equilibrium E2 = (S2, 0, x̄2), of extinction of species x1, where S2 = λ2

and x̄2 =
D(Sin − λ2)

D2
if a2 = 0 and S2 is the unique solution of H2(S) = 0,

and x̄2 =
f2(S2)−D2

a2
if a2 > 0. E2 exists if and only if Sin > λ2.

4. The positive equilibrium E∗ = (S∗, x∗1, x
∗
2), where S∗ = λ2, x∗1 =

f1(λ2)−D1

a1
,

x∗2 = H1(λ2)/D2 if a2 = 0 and S∗ is the unique solution of equation H(S) = 0,

x∗i =
fi(S

∗)−Di

ai
, i = 1, 2, if a2 > 0. E∗ exists if and only if Sin > λ̄2.
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Proof. We first note that if x1 = x2 = 0, we obtain the washout equilibrium E0 =
(Sin, 0, 0) which always exists.

For the proof of item 2, if x2 = 0 and x1 6= 0, then from the second equation of
(4), we deduce that

x1 =
f1(S)−D1

a1
,

which is positive if and only if S > λ1. From the first equation, we deduce that
H1(S) = 0. Since H1 is decreasing on [λ1,+∞[, and we have

H1(λ1) = D(Sin − λ1) and H1(Sin) = −h1(Sin),

then there exists a unique solution S1 > λ1 of equation H1(S) = 0 if and only if
Sin > λ1.

For the proof of item 3, if x1 = 0 and x2 6= 0, two cases must be distinguished.
If a2 > 0 then, in the same way as the previous item, we prove that there exists

a unique solution S2 > λ2 of equation H2(S) = 0 if and only if Sin > λ2.
If a2 = 0 then f2(S) = D2 which implies that S2 = λ2 and then x2 = D(Sin −

λ2)/D2 which is positive if and only if Sin > λ2.
For the proof of item 4, if x1 6= 0 and x2 6= 0, then two cases must be distin-

guished.
If a2 > 0 then, from the second and the third equation of (4), we obtain

xi =
fi(S)−Di

ai
, i = 1, 2,

which is positive if and only if S > λi. From the first equation, we deduce that
H(S) = 0. Since H is decreasing on [λ2,+∞[,

H(λ2) = D(Sin − λ2)− h1(λ2) and H(Sin) = −
2∑
i=1

hi(Sin),

there exists a unique solution S∗ > λ2 of equationH(S) = 0 if and only ifH(λ2) > 0,
that is, Sin > λ̄2.

If a2 = 0 then the third equation of system (4) implies that S∗ = λ2 and from
the second one we have x∗1 = (f1(S)−D1)/a1. The first equation leads to

x∗2 =
D(Sin − S)− h1(λ2)

D2
=
H1(λ2)

D2
.

In the next section, we will show that the positive equilibrium E∗ is stable as
long as it exists. We explain here what are the consequences of the existence of
this equilibrium on the coexistence of the species. More precisely, we justify the
claim of the introduction that coexistence may be possible, even though the weaker
competitor exhibits arbitrarily high levels of intra-specific competition. Accord-
ing to Proposition 2, the existence of a positive equilibrium holds if Sin > λ̄2 or
equivalently, using (5) and (6), if

Sin > λ2 +
f1(λ2)−D1

a1D
f1(λ2). (7)

This is the necessary and sufficient condition for the existence of the positive equi-
librium. This condition does not involve the intra-specific competition parameter
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a2 of the weaker competitor. In particular, the weaker competitor may exhibit ar-
bitrarily high levels of intra-specific competition a2. However, since the density of
the weaker competitor at the equilibrium is given by

x∗2 =
f2(S∗)−D2

a2
,

it tends to 0 as a2 tends to +∞. There is another interesting observation which
can be obtained from (7). If for example Sin > λ2 (which expresses that species 2
could survive in the absence of the stronger competitor 1, and the absence of intra-
specific competition with itself), then (7) holds for all sufficiently large a1, i.e. for
all sufficiently large levels of intra-specific competition of the stronger competitor 1.
This relates to the findings of De Leenheer et al. [11] who established the existence
of a positive equilibrium if the parameters a1 and a2 are large enough.

3.2. Stability of equilibria. For a2 > 0, the local asymptotic stability of equilib-
ria of (3) is given in the following result:

Proposition 3.

1. E0 is LES if and only if Sin < λi, for i = 1, 2.
2. E1 is LES if and only if λ1 < Sin < λ̄2.
3. E2 is a saddle point when it exists.
4. E∗ is LES if and only if Sin > λ̄2.

Proof. Let J be the Jacobian matrix of (3) at (S, x1, x2), that is given by

J =

 −D − f ′1(S)x1 − f ′2(S)x2 −f1(S) −f2(S)
f ′1(S)x1 f1(S)− 2a1x1 −D1 0
f ′2(S)x2 0 f2(S)− 2a2x2 −D2

 .
At E0 = (Sin, 0, 0), we have

JE0
=

 −D −f1(Sin) −f2(Sin)
0 f1(Sin)−D1 0
0 0 f2(Sin)−D2

 .
The eigenvalues are on the diagonal. They are negative, that is, E0 is LES if and
only if Sin < λi, i = 1, 2. For the proof of item 2, the Jacobian matrix of (3) at
E1 = (S1, x̄1, 0), is given by:

JE1
=

 −D − f ′1(S1)x̄1 −f1(S1) −f2(S1)
f ′1(S1)x̄1 −a1x̄1 0

0 0 f2(S1)−D2

 .
Thus, f2(S1) − D2 is an eigenvalue of JE1 . The other eigenvalues of JE1 are the
eigenvalues of the matrix

A1 =

[
−D − f ′1(S1)x̄1 −f1(S1)

f ′1(S1)x̄1 −a1x̄1

]
.

We can see that det(A1) > 0 and tr(A1) < 0, then the two eigenvalues of A1 have
negative real parts. The equilibrium E1 is then LES if and only if S1 < λ2 or
equivalently Sin < λ̄2.
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For item 3, we use similar arguments to check the stability of E2 = (S2, 0, x̄2),
which exists if and only if λ2 < Sin. Since the Jacobian matrix at E2 is

JE2
=

 −D − f ′2(S2)x̄2 −f1(S2) −f2(S2)
0 f1(S2)−D1 0

f ′2(S2)x̄2 0 −a2x̄2

 .
Then, f1(S2) − D1 is an eigenvalue of JE2 . The two other eigenvalues of JE2 are
the eigenvalues of the matrix

A2 =

[
−D − f ′2(S2)x̄2 −f2(S2)

f ′2(S2)x̄2 −a2x̄2

]
.

Since det(A2) > 0 and tr(A2) < 0, the two eigenvalues of A2 have negative real
parts. Consequently, E2 is LES if and only if S2 < λ1. Since we have S2 > λ2 > λ1,
E2 is a saddle point when it exists.

For the proof of item 4, we can write the Jacobian matrix at E∗ = (S∗, x∗1, x
∗
2)

in the form:

JE∗ =

 −m11 −m12 −m13

m21 −m22 0
m31 0 −m33


where

m11 = D + f ′1(S∗)x∗1 + f ′2(S∗)x∗2, m12 = f1(S∗), m13 = f2(S∗),

m21 = f ′1(S∗)x∗1, m22 = a1x
∗
1, m31 = f ′2(S∗)x∗2, m33 = a2x

∗
2,

which are positive. The characteristic polynomial is given by

P (λ) = c0λ
3 + c1λ

2 + c2λ+ c3,

where
c0 = −1, c1 = −(m11 +m22 +m33),

c2 = −(m12m21 +m13m31 +m11m22 +m11m33 +m22m33),

c3 = −m22m13m31 −m11m22m33 −m12m21m33.

According to the Routh-Hurwitz criterion, E∗ is LES if and only if{
ci < 0, i = 0, . . . , 3

c1c2 − c0c3 > 0.

Since mij > 0, for all i, j = 1, . . . , 3, it follows that ci < 0. Then, a straightforward
calculation gives

c1c2 − c0c3 = −m11c2 +m22(m12m21 +m11m22 +m22m33)

+m33(m13m31 +m11m22 +m11m33 +m22m33)

which is positive. Thus all the conditions of the Routh-Hurwitz criterion are satisfied
and so E∗ is LES when it exists.

Table 1 summarizes the previous results. Fig. 1 shows that the stable equilibrium
is the one on the red arc and all other equilibria (in blue) are unstable. More
precisely, the equilibria are given by the intersection between the line ∆ of equation
y = D(Sin−S) and either the curve of the function h12(·) = h1(·)+h2(·) defined for
S > λ2, or the curve of the function hi(·) defined respectively for S > λi, i = 1, 2, or
the line of equation y = 0 which represents the washout equilibrium E0. If Sin > λ̄2,
the intersection between the line ∆ and the curve of the function h12(·) represents
the solution S∗ of the equation H(S) = 0 satisfying S∗ > λ2. Therefore, the
condition x∗i > 0, i = 1, 2, is satisfied, and there exists a unique positive equilibrium
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Equilibria Existence condition Stability condition

E0 Always exists Sin < λi, i = 1, 2

E1 Sin > λ1 Sin < λ̄2

E2 Sin > λ2 Unstable whenever it exists

E∗ Sin > λ̄2 Stable whenever it exists

Table 1. Existence and local stability of equilibria of system (3).

(a)y

∆

DSin

h12

h1

h2

E∗

E1

E2

E0
S

λ̄2λ1 λ2

(b)y

∆

DSin

h1

E0

E∗
E2

E1

λ1 λ2 λ̄2

S

Figure 1. Steady-state characteristics with Sin > λ̄2: (a) equilib-
ria of (3) when a2 > 0, (b) equilibria of (3) when a2 = 0. We use
red color for LES equilibria and blue color for unstable equilibria.

E∗. If λ2 < Sin < λ̄2, there exist three equilibria E1, E2 and E0 given by the
intersection between the line ∆ and either the function hi(·), i = 1, 2, respectively,
or the line of equation y = 0. If λ1 < Sin < λ2, there exist two equilibria E1 and
E0 given by the intersection between the line ∆ and either the function h1(·) or the
line of equation y = 0. If Sin < λ1, there exists one equilibrium E0 given by the
intersection between the line ∆ and the line of equation y = 0.

Notice that when Sin = λ̄2, E1 coalesces with E∗ where E1 is a saddle-node
equilibrium since it has a zero eigenvalue and it is due to a saddle-node bifurcation
of E1 (saddle point) and E∗ (stable node), (see Fig. 1(a)). Similarly, when Sin = λ2,
E0 coalesces with E2 and when Sin = λ1, E0 coalesces with E1.

Fig. 1(b) illustrates the steady-state characteristics for a2 = 0 and the existence
of the positive equilibrium E∗ which is obtained by the intersection between the
line ∆ and the vertical line that corresponds to the curve of function h12(·). Since
E∗ and E2 have the same S component, S = λ2, they appear at the same point of
the (S, y) plane. However, these equilibria do not coincide, since they have distinct
x1 and x2 components.

Thus, if λ1 < λ2 then the first species has a competitive advantage over the
second species and so this second species need not to inhibit its growth in order
to coexist with the other species. The absence of intra-specific inhibition for the
weaker species may allow it to survive. Hence, the coexistence is due to the fact
that the most efficient species sees its growth inhibited by its own intra-specific
competition.

We can derive, now, the global asymptotic behavior of (3) according to Sin. More
specifically, we have the following result:
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Proposition 4. Under assumption H1 in the case n = 2 and for ai > 0, i = 1, 2,
the following cases occur:

1. If Sin < λ1, there exists a unique equilibrium E0 = (Sin, 0, 0) which is GAS.
2. If λ1 < Sin < λ2, then there exist two equilibria: E0 is unstable and E1 =

(S1, x̄1, 0) is GAS.
3. If λ2 < Sin < λ̄2, then there exist three equilibria: E0 and E2 = (S2, 0, x̄2) are

unstable while E1 is LES. Moreover, if there exists a constant α > 0 which
satisfies:

max
0<S<S1

g(S) 6 α 6 min
λ2<S<Sin

g(S) where g(S) =
f2(S)

f1(S1)

f1(S)− f1(S1)

f2(S)−D2

Sin − S1

Sin − S
,

then E1 is GAS with respect to all solutions with x1(0) > 0.
4. If Sin > λ̄2, then there exist four equilibria: E0, E1 and E2 are unstable while

E∗ = (S∗, x∗1, x
∗
2) is LES.

Proof. First, the global stability of the washout equilibrium follows from part 5. of
Lemma 1.1 of [24]. For item 2, the global stability of E1 derives from part 4. of
Theorem 2.2 of [24]. For item 3, it derives from part 5. of Theorem 2.2 of [24]. We
conclude by using Proposition 3. Item 4 is a consequence of Proposition 3.

4. Study of the competition model with several species. Now, we consider
the case of n species competing for a same limiting resource. We determine the
equilibria of (1) under assumption H1 and we specify the asymptotic stability ac-
cording to the control parameter Sin. For that, we use the concept of steady-state
characteristics, to describe geometrically the equilibria. The steady-state charac-
teristic is a curve which is associated with each species. It permits if the dynamic
of the renewal of the resource is known to give sufficient conditions for coexistence
and to predict the issue of the competition.

4.1. Existence of equilibria. In the following, we study the existence of equilibria
of system (1) under assumption H1 and for all ai > 0, i = 1, . . . , n. If equation
fi(S) = Di has a solution, then we denote λi = f−1

i (Di). Otherwise, λi = +∞. We
assume that the populations xi are labeled such that

λ1 < λ2 < · · · < λn.

To find the equilibria of (1), we solve the following system: 0 = D(Sin − S)−
n∑
i=1

fi(S)xi

0 = [fi(S)− aixi −Di]xi, i = 1, . . . , n.

(8)

For convenience, we introduce the following functions, for i = 1, . . . , n:

hi(S) =

{
fi(S)−Di

ai
fi(S) if S > λi

0, else
(9)

and

H(S) = D(Sin − S)−
n∑
i=1

hi(S).
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If xi = 0 for all i = 1, . . . , n, then S = Sin from the first equation of (8). This
corresponds to the washout equilibrium E0 = (Sin, 0, . . . , 0), which always exists.
If xi 6= 0, for all i = 1, . . . , n, we deduce from equation i+ 1 of (8) that,

xi =
fi(S)−Di

ai
,

which is positive if and only if S > λi. From the first equation of (8), we deduce
that H(S) = 0. Since H is decreasing on [λn,+∞[ and hn(λn) = 0,

H(λn) = D(Sin − λn)−
n−1∑
k=1

hk(λn) and H(Sin) = −
n∑
i=1

hi(Sin),

there exists a unique solution S∗ > λn of equation H(S) = 0 if and only if H(λn) >
0, that is,

Sin > λ̄n with λ̄n = λn +
1

D

n−1∑
k=1

hk(λn).

Hence, one has the following result:

Proposition 5. System (1) admits a unique positive equilibrium E∗ = (S∗, x∗1,
. . . , x∗n) if and only if

Sin > λ̄n.

In order to identify the other equilibria corresponding to the extinction of one or
many species, we first introduce the following definition:

Definition 4.1. We define the steady-state characteristics by the set of the curves
y = 0 and y = hJ(S) where

hJ =
∑
i∈J

hi,

with J a subset of {1, . . . , n}, defined for S > max{λj : j ∈ J}.

From the first equation of (8), for any fixed value of Sin, the equilibria are
obtained by taking the intersections of the line ∆ of equation y = D(Sin − S) with
the steady-state characteristics y = 0 and y = hJ(S), J ⊂ {1, . . . , n}, (see Fig. 2,
for n = 3). We can deduce that:

• If Sin > λ̄n, there exist 2n equilibria:
1. A washout equilibrium E0.
2. C1

n equilibria E1, . . . , En, where one species survives, which are given by
the intersections of ∆ and the curves of hi, i = 1, . . . , n.

3. C2
n equilibria Eij , with i, j = 1, . . . , n and i < j, where two species coexist

and the other species are excluded. They are given by the intersections
of ∆ and the curves hij = hi + hj .

4. Cmn equilibria where m species coexist, for any 1 6 m 6 n.
5. A positive equilibrium E∗, where all species coexist, which is given by the

intersection of ∆ and the curve h12...n =
∑n
i=1 hi.

The total number of equilibria is, then,
∑n
k=0 C

k
n = 2n.

• If λ1 < Sin 6 λ̄n, we can extend the last reasoning to see that according to
the position of Sin, the intersections of ∆ with the steady-state characteristics
y = hJ , J = {1, 2, . . . , j}, j 6 n are composed of the intersections with
the curve y = 0 (which corresponds to the washout equilibrium), the curves
y = hi, i = 1, . . . , j, the curves y = hi + hk, i, k = 1, . . . , j, i 6= k, ... and
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the curve y = h1 + h2 + . . . + hj (which corresponds to the coexistence of j
species).

• If Sin 6 λ1, the only intersection point of the characteristics with ∆ is on the
curve y = 0 and it corresponds to the washout equilibrium E0.

y

∆

DSin

h123

h12

h13

h1

h23

h2

h3

E∗

E12

E13

E1

E23

E2

E3

E0

λ1 λ2 λ̄2 λ3 λ̄23 λ̄13 λ̄3 Sin

S

Figure 2. Steady-state characteristics for n = 3. The equilibrium
E∗ (in red) is the only stable equilibrium. It has the smallest S
component. All other equilibria (in blue) are unstable.

In Fig. 2, we illustrate the case of three species competing for a single nutrient.
It shows the number of equilibria of (1) according to Sin. We use the following
notations

λ̄k = λk +
1

D

k−1∑
i=1

hi(λk), k = 1, . . . , n (10)

and

λ̄13 = λ3 +
h1(λ3)

D
, λ̄23 = λ3 +

h2(λ3)

D
.

Then, we can see that

• If Sin > λ̄3, there exist 23 equilibria: A washout equilibrium E0, a positive
equilibrium E∗, which is the intersection of ∆ and the curve h123 :=

∑3
i=1 hi.

Three equilibria E1, E2 and E3, where one species survives, three equilibria
E12, E13 and E23, where two species coexist while the third species is excluded.

• If λ̄13 < Sin < λ̄3, then there exist seven equilibria: E0, E1, E2, E3, E12, E13

and E23.
• If λ̄23 < Sin < λ̄13, then there exist six equilibria: E0, E1, E2, E3, E12 and
E23.

• If λ3 < Sin < λ̄23, then there exist five equilibria: E0, E1, E2, E3 and E12.
• If λ̄2 < Sin < λ3, then there exist four equilibria: E0, E1, E2 and E12.
• If λ2 < Sin < λ̄2, then there exist three equilibria: E0, E1 and E2.
• If λ1 < Sin < λ2, then there exist two equilibria E0 and E1.
• If Sin < λ1, then there exists a unique equilibrium E0.
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4.2. Stability of equilibria. We are interested, now, in the asymptotic behavior
of (1). As explained in the previous section, the system can have at most 2n

equilibria obtained by taking the intersections of the line ∆ with the steady-state
characteristics. We show that in each case, only one equilibrium is stable, namely
the leftmost one (with the smallest S component), corresponding to the intersection

of ∆ with the red steady-state characteristic y =
∑k
i=1 hi(S). All other equilibria

corresponding to the intersections of ∆ with the blue steady-state characteristics
are unstable. In order to do this, we calculate the Jacobian matrix and we use
mainly Lemma 6.3 of [4], which we recall here:

Lemma 4.2. Consider the matrix

A =



−D −
n∑
i=1

αi c1 c2 · · · cn

α1 −b1 0 · · · 0
α2 0 −b2 · · · 0
...

...
...

. . .
...

αn 0 0 · · · −bn


. (11)

Assume that D > 0 and for i = 1, . . . , n, αi > 0, bi > 0 and ci 6 bi. Then, all the
eigenvalues of A have negative real parts.

We have the following result:

Proposition 6. Let D and Sin be fixed. The equilibrium with the smallest S com-
ponent is LES. All other equilibria are unstable.

Proof. Let E = (S, x1, . . . , xn) an equilibrium. The Jacobian matrix at E has the
form (11) with

αi = f ′i(S)xi, bi = −[fi(S)− 2aixi −Di] and ci = −fi(S).

From (10), we easily see that λ1 = λ̄1 < λ̄2 < · · · < λ̄n. Assume first that Sin > λ̄n.
The leftmost equilibrium is the positive equilibrium E∗ = (S∗, x∗1, . . . , x

∗
n), which

satisfies fi(S
∗)−aix∗i −Di = 0. Therefore the Jacobian matrix terms at E∗ satisfy:

αi = f ′i(S
∗)x∗i , bi = aix

∗
i and ci = −fi(S∗).

Using H1, the positivity of the coefficients ai and Lemma 4.2, we conclude that E∗

is LES.
If we denote by Ē = (S̄, x1, . . . , xn) an equilibrium point corresponding to the

intersection of ∆ with the blue steady-state characteristic, we have xk = 0 for at
least one k = 1, . . . , n. The Jacobian matrix at Ē has the form (11) with αk = 0 and
has −bk = fk(S̄) −Dk as an eigenvalue. Because Sin > λ̄n, we have S̄ > λn > λk
and the eigenvalue −bk is positive. Thus Ē is unstable.

Assume now that Sin < λ1. Then the washout E0 = (Sin, 0, . . . , 0) is the only
equilibrium. It corresponds to the intersection of ∆ with the red steady-state char-
acteristic y = 0. The Jacobian matrix at E0 has the form (11) with αk = 0 for all
k = 1, . . . , n and has −D and −bk = fk(Sin) − Dk, k = 1, . . . , n, as eigenvalues.
Because Sin < λ1, all eigenvalues −bk are negative. Therefore E0 is LES.

Assume now that λ̄k < Sin < λ̄k+1 for some k = 1, . . . , n − 1. We denote by
Ek = (Sk, xk1 , . . . , x

k
n) the leftmost equilibrium, that is to say, the intersection of ∆

with the steady-state characteristic y =
∑k
i=1 hi(S). Then we have λk < Sk < λk+1.
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From definition (9) we see that,

hk+1(S) = . . . = hn(S) = 0, for λk < S < λk+1

and then xkk+1 = . . . = xkn = 0. The Jacobian matrix at Ek has the form (11) with

αj = 0 for j = k+1, . . . , n. We deduce that −bj = fj(S
k)−Dj , j = k+1, . . . , n are

eigenvalues of the Jacobian matrix at Ek. Because Sk < λk+1, these eigenvalues
are negative. The upper-left k × k square matrix of the Jacobian matrix has also
the form (11) with

αi = f ′i(S
k)xki , bi = aix

k
i and ci = −fi(Sk), i = 1, . . . , k.

Using Lemma 4.2, the eigenvalues of this matrix have negative real parts. Therefore,
the equilibrium Ek is LES.

If we denote by Ē = (S̄, x1, . . . , xn) an equilibrium point corresponding to the
intersection of ∆ with a blue steady-state characteristic, we have xi = 0 for at least
one i = 1, . . . , k. The Jacobian matrix at Ē has the form (11) with αi = 0 and
hence −bi = fi(S̄) −Di is an eigenvalue. Because Sin > λ̄k, we have S̄ > λk > λi
and then, the eigenvalue −bi is positive. Thus Ē is unstable.

In Fig. 2, we stained in red the part of the characteristics which correspond to
LES equilibria, and in blue the unstable equilibria. Table 2 summarizes the previous
results where the letter S (resp. U) means stable (resp. unstable). The absence of
letter means that the corresponding equilibrium does not exist.

Condition E0 E1 E2 E12 E3 E23 E13 E∗

Sin < λ1 S

λ1 < Sin < λ2 U S

λ2 < Sin < λ̄2 U S U

λ̄2 < Sin < λ3 U U U S

λ3 < Sin < λ̄23 U U U S U

λ̄23 < Sin < λ̄13 U U U S U U

λ̄13 < Sin < λ̄3 U U U S U U U

Sin > λ̄3 U U U U U U U S

Table 2. Existence and local stability of equilibria of (1) with n = 3.

We aim, now, to prove in the case of the multi-species model the global stability of
the equilibrium E1 = (S1, x̄1, 0, . . . , 0) corresponding to the extinction of all species
except the one which has the lowest break-even concentration.

Proposition 7. Assume that λ1 < Sin < λ̄2 and that there exist constants αi > 0,
for each i > 2 satisfying λi < Sin such that

max
0<S<λ1

gi(S) 6 αi 6 min
λi<S<Sin

gi(S) (12)

where

gi(S) =
fi(S)

f1(S1)

f1(S)− f1(S1)

fi(S)−Di

Sin − S1

Sin − S
.

Then, the equilibrium E1 is GAS for system (1) with respect to all solutions with
x1(0) > 0.
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Proof. Consider the Lyapunov function V = V (S, x1, . . . , xn) defined as follows:

V =
Sin − S1

f1(S1)

∫ S

S1

f1(σ)− f1(S1)

Sin − σ
dσ +

∫ x1

x̄1

ξ − x̄1

ξ
dξ +

n∑
i=2

αixi,

where αi > 0 are the positive constants satisfying (12) if S < Sin and αi > 0 are
arbitrary if S > Sin. The function V is continuously differentiable for 0 < S < Sin
and xi > 0, i = 1, . . . , n and positive except at the point E1, where it is equal to 0.
The time derivative of V computed along the trajectories of (1) is given by:

V̇ = x1(f1(S)− f1(S1))

[
1− f1(S)

Sin − S
Sin − S1

f1(S1)

]
− a1(x1 − x̄1)2 −

n∑
i=2

αiaix
2
i

+

n∑
i=2

xi(fi(S)−Di)(αi − gi(S)).

Note that, the first term of the above sum is always non-positive for 0 < S < Sin
and equals 0 for S ∈]0, Sin[ if and only if S = S1 or x1 = 0. The second and the
third term are obviously non-positive and vanish only if x1 = x̄1 and xi = 0 for
i = 2, . . . , n. Finally, the last term of the above sum is always non-positive for every
S ∈]0, Sin[ and is equal to zero if and only if xi = 0 for i = 2, . . . , n. Then, V̇ 6 0
and V = 0 if and only if S = S1, x1 = x̄1 and xi = 0 for i = 2, . . . , n. Hence, the
result follows by applying the LaSalle extension theorem (see [21]).

5. Operating diagram. The operating diagram describes the asymptotic behav-
ior of (1) when the concentration of the substrate in the feed bottle Sin and the
dilution rate D vary. In model (1), each parameter Di, i = 1, · · · , n, can be written
as Di = D + Ai, Ai > 0 where Ai can be interpreted as the specific natural death
rate of species i.

We first denote m̄i = supS>0 fi(S) − Ai and we assume that m̄i > 0. For the
description of the steady states and their stability, with respect to control param-
eters Sin and D, we define the inverse function Fi of the increasing functions fi,
i = 1, · · · , n, so that:

S = Fi(D)⇔ fi(S) = D +Ai, for all S ∈ [0,+∞[ and D ∈ [0, m̄i[.

Note that the inverse function Fi can be calculated explicitly in the case of the
Monod growth functions considered in Section 6. In the following, we assume,
without loss of generality, that:

F1(D) < F2(D) < · · · < Fn(D), for all D ∈]0, m̄n[.

To illustrate the operating diagram, we also define the following functions:

FJ :]0, m̄j̄ [ −→ ]0,+∞[

D −→ Fj̄(D) + 1
D

∑
j∈J

hj(Fj̄(D)),

where J is a non-empty subset of {1, . . . , n}, and j̄ = max{j : j ∈ J}.
Let ΓJ be the curve of equation Sin = FJ(D). Thus, there exist 2n−1 curves that

separate the plane (D,Sin) into regions of existence and stability of the different
equilibria. Since the functions FJ depend only on a1, . . . , an−1, the regions of the
operating diagram are independent of an. Hence, the intra-specific competition of
the least competitive species has no effect on the coexistence region. For a better
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understanding, we illustrate the previous results in the cases n = 2 and 3, with the
parameter values provided in Table 5.

In the case n = 2, the curves Γi, i = 1, 2 and Γ12 separate the operating plane
(D,Sin) in four regions, as shown in Fig. 3(b-c), labeled as Ik, k = 0, . . . , 3.

Table 3 shows the existence and local stability of equilibria in the regions Ik,
k = 0, . . . , 3, when the curves Γ1 and Γ2 do not intersect. Note that the case where
the curves Γi intersect can be treated similarly.

Region E0 E1 E2 E∗

(D,Sin) ∈ I0 S
(D,Sin) ∈ I1 U S
(D,Sin) ∈ I2 U S U
(D,Sin) ∈ I3 U U U S

Table 3. Existence and local stability of steady states according
to (D,Sin), in the case n = 2 and Γ1 ∩ Γ2 = ∅.

The transition from the region I0 to the region I1 by the curve Γ1 (the red
curve) corresponds to a saddle-node bifurcation making the equilibrium E0 unsta-
ble (saddle point) with the appearance of an LES equilibrium E1. The transition
from the region I1 to the region I2 by the curve Γ2 (the blue curve) corresponds
to the appearance of a saddle point E2 by a bifurcation with a saddle point E0.
The transition from the region I2 to the region I3 by the curve Γ12 (the magenta
curve) corresponds to a saddle-node bifurcation making the equilibrium E1 unstable
(saddle point) with the appearance of an LES equilibrium E∗.

(a)
Sin Γ2 Γ1

I2

I1

I0

D

(b)
Sin Γ12 Γ2 Γ1

I3

I2

I1

I0

D

(c)
Sin Γ12 Γ2 Γ1

I3

I2

I1

I0

D

Figure 3. Emergence of the coexistence region I3 (a) a1 = 0, (b)
a1 = 0.15 and (c) a1 = 1.5.

When a1 = 0, the operating diagram corresponds to the classical chemostat
model (see Fig. 3(a)). Increasing a1 leads to the emergence of the coexistence region
I3 and to the reduction of the region I2 corresponding to the competitive exclusion
of the second species (see Fig. 3(b-c)). Thus, the intra-specific competition of the
most competitive species leads to changes in the size and emergence of coexistence
regions.

Notice that the function Fi(·) is not defined if supS>0 fi(S) 6 Ai and we let
Fi(0) = +∞. In this case, the regions I1, I2 and I3 are empty. In addition, if
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Ai > 0, then

lim
D−→0+

F12(D) = +∞,

and since h1(F2(D)) > 0, we have F2(D) < F12(D) for all D ∈]0, m̄2[.
For n = 3, the seven curves Γi , Γij , i, j = 1, 2, 3 with i < j and Γ123 determine

the regions where various equilibria exist, and indicate their stability properties.
These curves separate the operating plane (D,Sin) in ten regions, as shown in Fig.
4(a), labeled Ik, k = 0, . . . , 9. Table 4 shows the existence and local stability of
equilibria in the regions Ik, k = 0, . . . , 9, when the curves Γi, i = 1, 2, 3, do not
intersect.

Region E0 E1 E2 E3 E23 E12 E13 E∗

(D,Sin) ∈ I0 S
(D,Sin) ∈ I1 U S
(D,Sin) ∈ I2 U S U
(D,Sin) ∈ I3 U S U U
(D,Sin) ∈ I4 U S U U U
(D,Sin) ∈ I5 U U U U S
(D,Sin) ∈ I6 U U U S
(D,Sin) ∈ I7 U U U U U S
(D,Sin) ∈ I8 U U U U U S U
(D,Sin) ∈ I9 U U U U U U U S

Table 4. Existence and local stability of steady states of three
species model.

The curve Γ12 does intersect the curves Γ23 and Γ3 in D∗1 and D∗2 , respectively.
According to the value of dilution rate D with respect to D∗1 and D∗2 , we obtain the
three steady-state characteristics illustrated in Figs. 4(b) and 5(a-b).

(a)SinΓ23Γ12Γ13Γ123 Γ1Γ2

I6

I5
?

I9

I8

I7

I4

I3 I2 I1 I0

Γ3

D

(b)

∆

h123

h12

h13

h1

h23

h2

h3

E∗

E12

E13 E1

E23

E2

E3

E0

λ1λ2 λ3 λ̄23 λ̄2 λ̄13 λ̄3 Sin

S

Figure 4. (a) Operating diagram of (1) in the case n = 3. (b)
Steady-state characteristics for D < D∗1 .
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(a)

∆
h123

h12

h13

h1

h23

h2

h3

E∗

E12

E13

E1

E23

E2

E3

E0

λ1 λ2 λ3 λ̄2 λ̄23 λ̄13 λ̄3 Sin

S

(b)

∆ h123

h13

h12

h1

h23

h2

h3

E∗

E12

E13

E1

E23

E2

E3

E0

λ1 λ2 λ3λ̄23λ̄2 λ̄13λ̄3 Sin

S

Figure 5. Steady-state characteristics for (a) D∗1 < D < D∗2 and
(b) D∗2 < D.

In fact, Fig. 4(b) illustrates the case D < D∗1 where

λ1 < λ2 < λ3 < λ̄23 < λ̄2 < λ̄13 < λ̄3.

Fig. 5(a) illustrates the case D∗1 < D < D∗2 where

λ1 < λ2 < λ3 < λ̄2 < λ̄23 < λ̄13 < λ̄3.

Fig. 5(b) illustrates the case D∗2 < D where

λ1 < λ2 < λ̄2 < λ3 < λ̄23 < λ̄13 < λ̄3.

6. Simulations. In the following, we illustrate the results obtained for system (1)
in the case n = 3 and the functions fi(·) are of Monod-type, defined by:

fi(S) =
miS

Ki + S
, i = 1, 2, 3, (13)

where mi is the maximum specific growth rate and Ki is the Michaelis-Menten (or
half-saturation) constant. Straightforward calculation shows that

Fi(D) =
Ki(D +Ai)

mi −D −Ai
, i = 1, 2, 3.

For the numerical simulations, we use the parameters provided in Table 5.

Parameters m1 K1 A1 m2 K2 A2 m3 K3 A3

Fig. 3 2 2 0.4 2.5 3 1

Figs. 4, 5 and 6 2 2 0.3 2.5 3 1 3 4 1.5

Table 5. Parameter values of model (1) with the Monod function
(13) for n = 2 and n = 3.

For these parameter values, the curves Sin = Fi(D) do not intersect and we
obtain the operating diagram in Fig. 4(a). Note that

D∗1 w 0.869 and D∗2 w 0.968.

The steady-state characteristics are depicted in Fig. 4(b) for D < D∗1 ,

(D,Sin) = (0.6, 60) ∈ I9 or even Sin > λ̄3 w 34.443,
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where there exist 23 equilibria for system (1). In this case, Fig. 6(a) shows the
coexistence of the three species and the convergence towards the positive equilibrium
E∗ w (18.214, 9.021, 2.732, 1.199) for several positive initial conditions. Fig. 6(b)
shows the competitive exclusion of the third species for

(D,Sin) = (0.6, 32) ∈ I8 or even λ̄13 w 29.840 < Sin < λ̄3.

For several positive initial conditions, the solutions of (1) converge towards the
equilibrium E12 ' (8.583, 7.220, 1.262, 0).

(a)

S

x1

x2
x3

Time

(b)

S

x1

x2

x3

Time

(c)

x1

S

x2x3

Time

(d)

S

x1x2x3

Time

Figure 6. (a) Coexistence of the three species for (D,Sin) ∈ I9.
(b) Competitive exclusion of the third species for (D,Sin) ∈ I8.
(c) Competitive exclusion of the third and the second species for
(D,Sin) ∈ I4. (d) Washout of all species for (D,Sin) ∈ I0.

Fig. 6(c) shows the competitive exclusion of the third and the second species for

(D,Sin) = (0.6, 16) ∈ I4 or even λ̄23 w 13.935 < Sin < λ̄2 w 18.777.

For several positive initial conditions, the solutions of (1) converge towards the
equilibrium E1 ' (4.581, 4.922, 0, 0). Fig. 6(d) shows the washout of all species for

(D,Sin) = (0.6, 0.6) ∈ I0 or even Sin < λ1 w 1.636.

For several positive initial conditions, the solutions of (1) converge towards the
equilibrium E0 ' (0.6, 0, 0, 0).

7. Conclusion. In this paper, we considered the mathematical model describing
multi-species competition for a single growth-limiting resource in a chemostat pro-
posed by De Leenheer et al. [11]. For monotonic growth functions and different
dilution rates, we proved that the outcome of competition does not always satisfy
the CEP which predicts that only one species can exist in the long term. Indeed,
we proved that according to the operating parameters (D the dilution rate and Sin
the concentration of substrate in the feed bottle) several species can coexist: the
system has one and only one LES equilibrium for which a certain number p 6 n of
the species are present. In the other equilibria, the present species are less than p
and all these equilibria are unstable.

If the intra-specific parameters values of all species are positive, we proved the
existence of a stable positive equilibrium for certain values of the operating param-
eters. We determined precisely the region of the operating parameters for which
the coexistence of all species holds. This region is one of the regions of the op-
erating diagram which depicts the existence and the stability of each equilibrium.
We generalize the Lyapunov function proposed by Wolkowicz and Lu [24], in the
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case of two species, to prove the global stability of the unique LES equilibrium,
corresponding to the extinction of all species except the one with the lowest break-
even concentration. This result shows that even if the species exhibits intra-specific
competition, then the CEP may hold. Indeed, if λ1 < Sin < λ̄2 then all species
except the one with the lowest break-even concentration are excluded. Moreover, if
Sin < λ1 then as in the classical chemostat, all species are washed out. If Sin > λ̄2

then the coexistence of two species or more is possible.
The GAS result of the equilibrium where only one species is present, in the

case where it is LES, imposes some assumptions on the growth functions, which
do not necessarily hold for all monotone growth functions. We conjecture that
the result is true for all monotone growth function. The problem is certainly as
difficult as the similar classical one with no intra-specific competition which is still
open. Another interesting and challenging open problem for further work is to
find Lyapunov functions showing the global stability of the coexistence equilibrium
under some assumptions on the growth functions.

In the case of two species, we showed that coexistence occurs also if the death
rate parameter of the weaker (less competitive) species is non-negative (the zero
value is allowed) and the death rate parameter of the stronger species is positive.
The coexistence is not unexpected, since the lack of intra-specific competition for
the weaker species has a beneficial effect on its ability to survive. What is much
more interesting is that coexistence may be possible, even though the weaker com-
petitor exhibits arbitrarily high levels of intra-specific competition. A surprising
and unexpected result is that the operating diagram does not depend on the intra-
specific competition parameter an of the weaker species. Obviously, the values of
some equilibrium components will depend on an, but the conditions of existence
and stability of all equilibria do not involve the parameter an.

The operating diagram depicts regions in the (D,Sin) plane in which the vari-
ous outcomes occur. To maintain the coexistence of species in the chemostat, the
parameter values of D and Sin should be chosen in the coexistence region, not in
the other regions where exclusion of at least one species occurs. The operating dia-
gram is of great importance in the applied literature since it permits to determine
critical limits for the good functioning of the chemostat and the protection of the
weaker competing species in the microbial ecosystems. We have showed how the
intra-specific competition of the n−1 most efficient species introduces a coexistence
region of n species, while the death rate parameter of the least competitive species
has no effects on the regions of the operating diagram. When the intra-specific
competition terms of the n− 1 stronger species are zero, we find the operating dia-
gram of the classical chemostat model. Increasing these terms reduces the regions
of competitive exclusion and increases the region of coexistence. The simulations
illustrate the mathematical results demonstrated in the case where the growth rates
are of Monod-type.
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