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Abstract. A new definition of firing time is given in the framework of In-

tegrate and Fire neuronal models. The classical absorption condition at the

threshold is relaxed and the firing time is defined as the first time the mem-
brane potential process lies above a fixed depolarisation level for a sufficiently

long time. The mathematical properties of the new firing time are investigated
both for the Perfect Integrator and the Leaky Integrator. In the latter case, a

simulation study is presented to complete the analysis where analytical results

are not yet achieved.

1. Introduction. Integrate and Fire (IF) models are among the most used de-
scriptions of the single neuron membrane potential dynamics [22, 42, 50, 51]. Their
popularity is due to their capability of reproducing most of the essential properties
of neural processing together with their mathematical tractability. Since their intro-
duction [21], a large literature on this class of models appeared. Recent reviews ded-
icated to the topic are [10, 11, 46]. Highly predictive generalisations of these models,
both for the spiking times and for the subthreshold membrane potential response
to given input currents, have been introduced [30, 32, 39, 44]. Moreover, they are
considered as building blocks of neuronal networks models [8, 12, 13, 18, 19, 27, 49].

The statistical investigation of these models is still incomplete despite recent
efforts [5, 7, 15, 16, 17, 33, 35, 37, 48] and some old preliminary study [28, 34].

In many instances, data are not consistent with a relevant feature of such models.
We refer to the absorbing assumption imposed to the membrane potential at the
threshold level, i.e. the firing condition. The presence of the absorbing boundary is
often disregarded, introducing important errors in the estimation procedure [6, 25].
One of the motivations for ignoring the presence of the absorbing boundary is of
statistical nature: the estimation of its value is ambiguous. Setting the threshold at
the depolarisation level at which a spike is released is very natural and in agreement
with the model construction. However, in almost every recording, a value chosen
as previously described is inconsistent with the absorption assumption. Indeed the
voltage clearly exceeds the estimated level several times without firing.

Mainly motivated by statistical purposes, we propose here a new firing paradigm.
Our goal is to generalise the model in order to overcome the lack of congruence with
data but without loosing its mathematical tractability.
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To this aim we work only on the firing mechanism and introduce a new definition
of firing time. The new model relaxes the absorption condition and allows crossing of
the threshold without firing. This choice has a biological rationale. The generation
of a spike requests the opening of a cascade of voltage dependent channels. Only
signals that sustain the potential for a sufficiently long time interval can give rise
to such event.

The manuscript is organised as follows. We present a brief review on classical
IF models in Section 2 and introduce the new firing paradigm in Section 3. The
mathematical properties of the new firing time are derived in Section 4 for the
Perfect Integrator model and in Section 5 for the Leaky Integrator model. In the
latter case the mathematical results are not sufficient to complete the comparison
of the new model and the classical one. Hence a simulation study is presented as
well. Some short conclusive arguments are illustrated in Section 6.

2. Classical Integrate and Fire models. In the simplest description of a neu-
ron, the cell is identified with its membrane potential Vt. Excitatory and inhibitory
presynaptic inputs determine fluctuations of the depolarisation until an action po-
tential is generated. Then, the cell recovers its resting potential and the process
starts anew.

Integrate and Fire (IF) models are composed of three elements: the stochastic
process that describes the membrane depolarisation between two consecutive action
potentials, the firing mechanism that identifies the instant at which a spike is gen-
erated and the resetting condition. Action potentials are reduced to point events
fully characterised by their firing time, disregarding the shape of the spike and its
duration.

Diffusions are the most widely used stochastic processes for describing the mem-
brane potential Vt. They are solutions of stochastic differential equations (SDEs),
cf [40]

dVt = β(t, Vt)dt+ σ(t, Vt)dWt, V0 = v0, (1)

where v0 is the resetting potential, W (t) is a standard Brownian motion and β
and σ > 0 are real valued functions, the so called infinitesimal drift and diffusion
coefficient.

The spiking mechanism is included in the models by imposing a firing condition:
an output spike is generated when the membrane potential reaches a fixed threshold
level S > v0. The membrane potential is then instantaneously reset to its initial
value v0. The firing time is identified with the random variable

T = inf{t ≥ 0 | Vt ≥ S}, (2)

the so called first passage time of the process Vt across the threshold S. Under such
assumptions, the sequence of interspike intervals (ISIs) form a renewal process with
independent inter–times all distributed as T given in eq. (2).

Action potentials are usually well separated in time. Even with a strong input
it is not possible to excite a second spike during or immediately after a first one.
Therefore an absolute refractory period τr is often included in the models [22]. The
firing frequency is then given by the r.v.

λout =
1

T + τr
. (3)

In many cases (see for example [10]), the same notation refers to the reciprocal
of the mean interspike interval, 1/(E[T ] + τr), in other cases it refers to the mean of
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instantaneous firing frequency E[1/(T + τr)]. For a comparison of such definitions
see [36].

We consider here the so called Perfect Integrator and the Leaky Integrator IF
models, i.e. the membrane potential Vt in equation (1) is a Wiener process and
an Ornstein-Uhlenbeck (OU) process, respectively. In the first case, the membrane
potential Vt follows the equation

dVt = µdt+ σdWt, V0 = v0, (4)

where the infinitesimal drift µ and the diffusion coefficient σ > 0 are constant. In
this model spiking is a sure event only if µ ≥ 0 and S ≥ v0. The first passage time
is Inverse Gaussian distributed with probability density function (pdf) [46]

f(t, S, v0) =
|S − v0|√

2πσ2t3
exp

[
− (S − v0 − µt)2

2σ2t

]
. (5)

Mean and variance of T are given by

E[T ] =
S − v0

µ
Var[T ] =

(S − v0)σ2

µ3
. (6)

Introducing a leakage term for the spontaneous decay of the membrane potential
towards the resting level in the absence of inputs, we get the so called Leaky In-
tegrator. The resulting stochastic process for the membrane potential is the well
known OU process, solution of the equation

dVt =

[
− (Vt − v0)

τ
+ µ

]
dt+ σdWt, V0 = v0, (7)

where τ > 0 is the membrane time constant. Mean and variance of the process Vt
are given by the following equations

E[Vt|v0] = v0e−t/τ + µτ(1− e−t/τ ) (8)

Var[Vt|v0] =
σ2τ

2
· (1− e−2t/τ ) (9)

The first passage time pdf is not known in closed form but several representations
are written in terms of its Laplace transform, series expansion and Bessel bridge
process [3, 46]. Moreover it is solution of some integral equations and efficient
numerical algorithms for an approximation have been derived [9, 24]. An explicit
equation for the mean first passage time is given by [46]

E[T ] =

√
πτ

σ2

∫ S−µτ

−µτ

[
1 + Erf

(
x

σ
√
τ

)]
exp

(
x2

σ2τ

)
dx. (10)

For the second order moment see, for example, [43, 47]. Many properties of the
firing time depend on the reciprocal position between the asymptotic mean of the
process E[V∞] = µτ and the value of the threshold S. We can distinguish two firing
regimes, supra–threshold regime, µτ > S, and sub–threshold regime, µτ < S. In
the first case the firing times are relatively regular, mostly affected by the drifting
part of the process Vt. In the second case the crossing of the threshold is determined
by the random fluctuations of the process and shows a Poissonian behaviour [46].
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3. A new definition of the firing time. In IF models paradigm the firing thresh-
old, i.e. the depolarisation level at which an action potential is released, is assumed
to be absorbing. This implies that the stochastic process Vt verifies a boundary
condition according to which it cannot enter the half–plane (S,+∞). Hence the
sample paths of the constrained process differ from those of the unconstrained pro-
cess and the firing threshold is the maximum depolarisation level reached between
two consecutive spikes.
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Figure 1. An example of membrane potential intracellular record-
ing [52]. The elements of an IF model have been indicated.

In Fig. 1 an empirical intracellular recording is reproduced and the characterising
elements of an IF model are indicated. Two evidences contradict the absorbing
boundary assumption:

(a) the membrane potential crosses the threshold level but no action potential is
released;

(b) the firing threshold cannot be considered constant.

To overcome the above mentioned inconsistencies we propose here a new firing
mechanism definition. We assume that a spike is generated as the membrane po-
tential reaches a fixed threshold level and remains above it for a sufficiently long
time interval. The firing time is defined as

H = inf {t ≥ 0 | (t− gt) · 1Vt≥S ≥ ∆} , (11)

where 1A is the indicator function of the set A, ∆ is the time window that the
process has to spend above the threshold S and ∀t

gt = sup{s ≤ t;Vs = S} (12)

In Fig. 2 a sample trajectory of the membrane potential is plotted and gt as well as
H are shown. Actually the new firing mechanism satisfies (a) and (b). Moreover it
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Figure 2. The firing time H.

naturally includes an absolute refractory period equal to ∆ avoiding the artificial
introduction of a further parameter τr.

The r.v. H has been firstly introduced in [14], in order to study the so called
Parisian barrier options. It is known that H is a F+

gt–stopping time and therefore

a F+
t stopping time.1 In addition, H and VH are independent. The law of VH and

the Laplace transform of H for a standard Brownian motion are given [14]

E
[
e−λH

]
=

e−S
√

2λ

ψ(
√

2λ∆)
, (13)

where

ψ(z) =

∫ ∞
0

xe(z x− x2

2 )dx

= 1 +

√
π

2
ze

z2

2

[
1 + Erf

(
z√
2

)]
.

and

P(VH ∈ dv) =
v − S

∆
e−

(S−v)2

2∆ 1v>S dv. (14)

4. The perfect Integrator model. We derive here an explicit expression for the
Laplace transform of H for a Wiener process with drift µ and diffusion coefficient σ.
In the following, we denote P0 (E0) the measure (and the corresponding expected
value) under which the coordinate process is a standard Brownian motion and with
Pµ,σ (Eµ,σ) the measure under which it is a Brownian motion with drift µ and
diffusion coefficient σ.

1Let Ft be the natural filtration of the Brownian motion W . If R is a random variable such
that R > 0 a.s, we define the sigma field F−R of the past up to R as the σ algebra generated by

the variables ςR, where ς is a predictable process. Denote by F+
R the slow Brownian filtration

F+
R = F−R ∨ σ(sgn(Wt)). For details see [14].
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Theorem 4.1. The Laplace transform of the random variable H defined in eq. (11)
is given as

Eµ,σ
(
e−λH

)
= exp

[
µS

σ2
− S

σ

√
2

(
λ+
|µ|2
2σ2

)] ψ
(
µ
σ

√
∆
)

ψ

(√
2
(
λ+ |µ|2

2σ2

)
∆

) . (15)

Proof. Let us reduce the Wiener process Vt in eq. (4) to a process Zt = Vt/σ with
the same drift but unitary diffusion coefficient. We have, for v0 = 0

dZt =
µ

σ
dt+ dWt, Z0 = 0. (16)

By Girsanov theorem [31, 40, 45]

dPµ
σ ,1

dP0

∣∣∣∣∣
t

= Gt(ω) = exp

(
µ

σ
Zt −

µ2

2σ2
t

)
,

and hence

Eµ
σ ,1

[
e−λH

]
= E0

[
GH · e−λH

]
= E0

[
e
µ
σZH−

µ2

2σ2H · e−λH
]

= E0

[
e
−
(
λ+ µ2

2σ2

)
H
]

︸ ︷︷ ︸
A

·E0

[
e
µ
σZH

]
︸ ︷︷ ︸

B

(17)

where the third equality follows from the independence between H and ZH [14].
From (13) and (14) it follows that

A =
e
−S
√

2
(
λ+ µ2

2σ2

)

ψ

(√
2
(
λ+ µ2

2σ2

)
∆

) (18)

and

B =

∫ +∞

S

e
µ
σ x P0(ZH ∈ dx)

= e
µS
σ

[
1 +

µ

σ

√
π∆

2
e

∆µ2

2σ2

(
1 + Erf

[
µ

σ

√
∆

2

])]
= e

µS
σ · ψ

(µ
σ

√
∆
)
. (19)

Therefore, the Laplace transform of the random variable H for a Wiener process
with drift µ

σ and unitary diffusion coefficient is

Eµ
σ ,1

(
e−λH

)
= exp

[
µS

σ
− S

√
2

(
λ+
|µ|2
2σ2

)] ψ
(
µ
σ

√
∆
)

ψ

(√
2
(
λ+ |µ|2

2σ2

)
∆

) . (20)

Finally, rescaling the process to Vt, we get eq. (15) for a Brownian motion with
drift µ and diffusion coefficient σ.
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Figure 3. (a) Pdfs of H and T + ∆ for three different values of µ:
µ = 0.6 mVms−1 (solid line), µ = 1.2 mVms−1 (dashed line), µ = 2
mVms−1 (dotted line), S = 10 mV, V0 = 0 mV, σ = 1 mV2ms−1,
∆ = 2 ms. (b) Pdfs of H and T + ∆ for three different values of
σ: σ = 0.5 mV2ms−1 (solid line), σ = 1 mV2ms−1 (dashed line),
σ = 2 mV2ms−1 (dotted line), S = 10 mV, V0 = 0 mV, µ = 1.2
mVms−1 , ∆ = 2 ms.

Proposition 1. It holds

P(H <∞) =

1 µ ≥ 0

e( 2µS

σ2 ) ψ(
√

∆µ
σ )

ψ(−
√

∆µ
σ )

µ < 0.
(21)

When the firing time H is finite a.s., the first two moments of the r.v. H are given
as

E[H] =

(
S

µ
+ ∆

)
+
σ2

µ2

1− 1

ψ
(
µ
σ

√
∆
)
 (22)

E[H2] =

(
S

µ
+ ∆

)2

+
σ2

µ2

{(
3S

µ
+

3σ2

µ2
+ 2∆

)
+ (23)

− 1

ψ
(
µ
σ

√
∆
) (3∆ +

5σ2

µ2
+

2S

µ

)
+

1

ψ2
(
µ
σ

√
∆
) 2σ2

µ2

 .

Proof. From eq. (15) and considering that

P (H <∞) = Eµ,σ
(
e−λH

)∣∣
λ=0

, (24)

we get the conditions (21). Moreover recalling that

E[H] = − d

dλ
Eµ,σ

(
e−λH

) ∣∣∣∣∣
λ=0

and E[H2] =
d2

dλ
Eµ,σ

(
e−λH

) ∣∣∣∣∣
λ=0

, (25)

we get the moments (22) and (23).
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Eq. (15) can be numerically inverted in order to obtain the pdf of H [1, 2]. In
Fig. 3, a graphical comparison between the pdfs of T +∆ and H is shown. The pdfs
show similar behaviours. More appreciable differences emerge for smaller values of
µ and larger values of σ.

Let us now derive some results about the compared behavior of the two firing
times H and T . We fix the refractory period τr equal to ∆ and hence we compare
H to T + ∆. Furthermore, we restrict to the case S > v0 = 0 and µ ≥ 0.

Proposition 2. For any ∆ > 0

E[H] > E[T ] + ∆

and

Var[H] > Var[T ]

if and only if

2σ4

µ4
+

σ4

µ4ψ2
(
µ
√

∆
σ

) − σ2∆

µ2ψ
(
µ
√

∆
σ

) − 3σ4

µ4ψ
(
µ
√

∆
σ

) > 0.

Proof. From eq. (22) and eq. (6) we have

E[H] = (E[T ] + ∆) +
σ2

µ2

1− 1

ψ
(
µ
σ

√
∆
)
 .

The thesis follows recalling that ψ(z) > 1 for any z > 0. The result on the variances
comes directly applying (6), (22) and (23).

When µ is large enough, H is well approximated by T + ∆. For µ going to zero
the expectation of H goes to infinity with a rate faster than the expectation of T ,
as shown in the following proposition.

Proposition 3. It holds

i. E[H] ≈ 2E[T ] + ∆ and E[H]− (E[T ] + ∆)→ 0 as µ→ +∞,
ii. E[H]− (E[T ] + ∆)→∞ as µ→ 0.

Proof. From eq. (22) and considering that ψ(z)→ +∞, for z → +∞,

E[H] =
S

µ
+ ∆ + o

(
1

µ

)
= E[T ] + ∆ + o

(
1

µ

)
,

that gives the result i.. From eq. (22) and the Taylor series expansion of the ψ
function around z = 0

ψ(z) = 1 +

√
π

2
z

(
1 +

z2

2
+ o(z2)

)[
1 +

2√
π

(
z√
2

+ o(z)

)]
, (26)

2 In the following, we will use a ≈ b for x→∞ if

lim
x→∞

a(x)

b(x)
= c ∈ R

and we will use a ≈ b for x→ 0 if

lim
x→0

a(x)

b(x)
= c ∈ R
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it follows that for µ→ 0

E[H] ≈ E[T ] + ∆ +
σ

µ

√
π∆

2
.

This entails the proposition.

The difference E[H]− (E[T ] + ∆) grows also with σ. Indeed, the expectation of
the r.v. T does not depend on σ, see eq. (6), while E[H] grows linearly with respect
to σ, as shown in the following proposition.

Proposition 4. E[H] ≈ σ, as σ → +∞.

Proof. Considering again eq. (26) we get, for σ → +∞

E[H] ≈ E[T ] +
σ

µ

√
π∆

2
.

As additional remark to Proposition 4, let us notice that as the trajectories of
the process become more irregular, the request of lying above the level S for a
sufficiently long time becomes more difficult. On the contrary, the instantaneous
hitting of the level S is not affected by the increased variability.

The effect of ∆ over H and T + ∆ is quite trivial. The two random variables
have a similar behavior for small values of ∆ and they assume the same value for
∆ = 0.

Proposition 5. It holds

i. E[H]− E[T ] ≈
√

∆, as ∆→ 0,

ii. E[H]− (E[T ] + ∆)→ σ2

µ2 , as ∆→ +∞.

Proof. Considering again eq. (26) we get, as ∆→ 0

E[H] ≈ E[T ] +
σ

µ

√
π∆

2
. (27)

The result ii. follows easily from (22) and the fact that ψ(z) → +∞, as z →
+∞.

5. The Leaky Integrator model. In the OU case the comparison between the
two firing models is based on Monte Carlo simulations. Before entering the details
of the results, let us remark that the problem is well posed as the r.v. H is finite
a.s. for any choice of the parameters of the OU process, as shown in the following
proposition.

Proposition 6. Let G+
∆ be the left endpoint of the first positive excursion exceeding

∆ in length

G+
∆ = inf{gt|(t− gt) · 1Vt≥S ≥ ∆}. (28)

Then

P(G+
∆ <∞) = 1. (29)

Proof. For each ∆ > 0 we indicate with LG+
∆

the (local) time at which the pro-

cess Vt has a first positive excursion of length greater than ∆, and with h+(∆) =
n+((∆,+∞)) the Ito measure of positive excursions of length greater than ∆ [29].
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From Ito excursion theory, it follows that LG+
∆

is an exponential random variable

of parameter h+(∆) ≥ 0, so that P(G+
∆ = ∞) = limt→∞ e−th

+(∆) [23]. Hence

P(G+
∆ =∞) = 0 if h+(∆) > 0 or P(G+

∆ =∞) = 1 if h+(∆) = 0.
Moreover, ∀λ > 0, h+(∆) satisfies the following equation [41]:

ϕ+(λ) = λ

∫ ∞
0

e−λ∆h+(∆)d∆, (30)

with

ϕ+(λ) = −1

2

d

dx
Ex[e−λT ]

∣∣∣∣
x=S+

. (31)

For an OU process of equation

dVt = [−βVt + µ] dt+ σdWt, V0 = 0,

ϕ+ takes the form

ϕ+(λ) =

(
λ√
β

) H(−λ/β−1)

(
S
√
β

σ − µ
σ
√
β

)
H(−λ/β)

(
S
√
β

σ − µ
σ
√
β

) (32)

with Hv(z) the Hermite function [38]. Because Hv(z) has no zeroes for v ≤ 0 [20],
from eq. (30) and (32) it follows that h+(∆) > 0 and therefore P(G+

∆ <∞) = 1.

The numerical simulations are performed with parameters in a physiological
range, according to [37]. We set S = 10 mV, V0 = 0 mV, τ = 12.5 ms, µ ∈ [0.7, 2]
mVms−1 and ∆ ∈ [0, 4] ms. However we choose σ ∈ [0.5, 3] mV2ms−1, a range
wider than the interval estimated in [37]. The rationale of this choice lies in the
observation that the preprocessing through a moving average filter performed by
the authors may decrease the original variability of the traces and hence give un-
derestimated values for the diffusion coefficient.

Simulation batches are performed with two samples of N = 1000 trajectories of
the OU process stopped at the firing times T and H respectively. The simulation
algorithm generates exact trajectories of the OU process at discrete times by means
of the transition density. The first passage time T is deduced from the trajectories
evaluating possible hidden crossings in between the nodes of the time discretisa-
tion, as suggested in [26, 4]. Analogously to the previous Section, the comparison
concerns H and T + ∆, where ∆ is interpreted as the absolute refractory period τr.

A first glance to the Figs. 4, 5 and 7 confirms some of the features proved for
the Perfect Integrator model, eventually with different rates for the asymptotics.
Specifically, in the explored range of the parameters and for ∆ > 0

– E[H] is always larger than E[T ] + ∆;
– Var[H] is always larger than Var[T ];
– for large values of µ the difference between E[H] and E[T ] + ∆ decreases to

zero and for small values seems to diverge.

Furthermore, in the suprathreshold regime, the role of σ and ∆ is similar to that
proved for the Perfect Integrator. In fact

– as σ increases the E[H] increases as well;
– as ∆ increases the difference between E[H] and E[T ] + ∆ seems to have an

horizontal asymptote.
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Figure 4. (a) Expected value, (b) variance of H and T+∆ respect
to µ: S = 10 mV, V0 = 0 mV, τ = 12.5 ms, ∆ = 2 ms, σ = 1
mV2ms−1, µ ∈ [0.7, 2] mVms−1. (c) E[H] − (E[T ] + ∆) for two
different values of ∆: ∆ = 2, 4 ms.

The dependency on σ strongly changes in the subthreshold regime, cf. Fig. 6.
Indeed, as σ increases, both E[H] and E[T ] + ∆ decrease as well as their differ-
ence. This feature is the natural consequence of the determinant role of noise in
such regime. This effect is reversed in the suprathreshold regime, cf Fig. 5, where
spiking is determined by the drifting component of the process and noise disturbs
the permanence of the membrane potential above the threshold. As ∆ increases the
qualitative behaviour of E[H] and E[T ] is comparable in both regimes, cf Figs. 7
and 8. However, in the subthreshold instance (Fig. 7), the rate of divergence of the
difference is dramatically larger.

6. Conclusions. We proposed here a new firing time paradigm for IF stochastic
models. The new definition is motivated by statistical purposes. Its usefulness in
the estimation of the model parameters (including the threshold level) lies in the
full accordance of data with the assumptions of the model.

We derived closed form expression for the Laplace transform of the firing time
and the first two moments in the case of the Perfect Integrator. Moreover, we
explored the finiteness of the firing time for both models.

The results discussed in this paper are suitable to estimate the parameters of a
Perfect Integrator model with a method of moments. About the Leaky Integrator,
in the suprathreshold regime the new firing time H is not significantly different
from the classical T + ∆. Hence relying on known results about T + ∆ to estimate
the parameters of the voltage process should not generate dramatic errors. Though
the use of the new paradigm is recommendable also in this regime to estimate S, in
order to consider a model fully consistent with data. In the subthreshold regime,
the new firing time H shows remarkable differences with respect to T + ∆. Hence,
all the mathematical results for the estimation of parameters should be derived in
the new paradigm. The deduction of the Laplace transform of H for the Leaky
Integrator model, is an ongoing effort and will be the topic of a forthcoming work.
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Figure 5. (a) Expected value, (b) variance of H and T+∆ respect
to σ in the suprathreshold regime: S = 10 mV, V0 = 0 mV, τ =
12.5 ms, µ = 2 mVms−1, ∆ = 2 ms, σ ∈ [0.5, 3] mV 2ms−1. (c)
E[H]− (E[T ] + ∆) for two different values of ∆ = 2, 4 ms.
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Figure 6. (a) Expected value, (b) variance of H and T+∆ respect
to σ in the subthreshold regime: S = 10 mV, V0 = 0 mV, τ = 12.5
ms, µ = 0.7 mVms−1, ∆ = 2 ms, σ ∈ [0.5, 3] mV 2ms−1. (c)
E[H]− (E[T ] + ∆) for two different values of ∆ =, 2, 4 ms.

Once the theoretical framework will be deduced for both cases, proper estimators
will be derived and the two firing mechanism will be compared on true recorded
data.
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