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Abstract. Determining excitability thresholds in neuronal models is of high
interest due to its applicability in separating spiking from non-spiking phases

of neuronal membrane potential processes. However, excitability thresholds

are known to depend on various auxiliary variables, including any conductance
or gating variables. Such dependences pose as a double-edged sword; they are

natural consequences of the complexity of the model, but proves difficult to
apply in practice, since gating variables are rarely measured.

In this paper a technique for finding excitability thresholds, based on the

local behaviour of the flow in dynamical systems, is presented. The technique
incorporates the dynamics of the auxiliary variables, yet only produces thresh-

olds for the membrane potential. The method is applied to several classical

neuron models and the threshold’s dependence upon external parameters is
studied, along with a general evaluation of the technique.

1. Introduction. One of the most essential properties of a neuronal model is its
ability to capture both the active spiking phases (fast large-amplitude oscillations)
and the inactive resting phases (weakly nonlinear oscillations), [4]. The concept
of excitability thresholds, which in general is not well defined, is an ad hoc charac-
teristic separating these two “domains”. Excitability threshold are, nevertheless,
essential in many applications, e.g., when studying membrane potentials data is
often separated into active and inactive phases and analysed accordingly.

A vast selection of literature exists on the subject of choosing spiking thresh-
olds in neuronal models. These include both experimentally based approaches and
purely theoretical constructions based on some class of models. The focus of this
paper is the latter. For experimentally based solutions see, e.g., [19] for a thorough
presentation and benchmarking of some of the most common methods.

Some of the theoretical model based approaches rely on differential geometry
and prove highly relevant in the context of detecting distinctive behaviour in dy-
namical systems, see e.g., [7]. A classical approach is studying the inflection sets of
the system, i.e., the region of the state space at which trajectories have vanishing
curvature. This approach for detecting excitability thresholds was first proposed in
1976 ([15]), where it was applied to the BonhoefferVan der Pol model. It was later
reintroduced in [16] in connection to canards in chemical systems. For thorough
treatment in relation to excitability and canards, see e.g., [4] and [21]. As discussed
in [4], inflection methods are limited to planar systems.
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Another type of model based threshold characterisation relies on studying the
steepest slope of the membrane potential process. This, however, crucially depends
on the state of the gating variables. Such dependences is studied in [18], in which the
authors provide a threshold equation that yields an instantaneous threshold value
as a function of the underlying ionic channel conductance. In [20] the excitability
threshold in neuronal models is successfully captured as manifolds in the state space
and thus stressing the dependence of the threshold on activation and inactivation
variables.

The technique presented in this paper focuses on multidimensional neuronal mod-
els, in which an excitability threshold solely for the membrane potential is desired.
This is favourable, as the gating variables are rarely measured. Though the tech-
nique produces a threshold independent of the gating variables, it still captures the
overall dynamics of the system.

The paper is outlined as follows: in section 2 the general framework is established
along with the fundamental assumptions of the model. Moreover, the excitability
threshold technique is motivated and derived. In section 3 the threshold rule is
applied to six different neuron models for varying parameter settings. Finally, the
advantages, drawbacks and general evaluation of the method are considered in sec-
tion 4.

2. Framework and construction. Let E and Θ denote open subsets of Rd and
Rp, respectively. Let f : E × Θ 7→ Rd be a C1-function and consider the initial
value problem:

ẋ = f(x, θ), x(0) = x0, (1)

with x0 ∈ E and θ ∈ Θ. A solution or trajectory of (1) is a function ϕ : R×E×Θ→
E satisfying

ϕ(t, x0, θ) = ϕ(0, x0, θ) +

∫ t

0

f(ϕ(s, x0, θ), θ) ds, for all t ∈ R. (2)

We say that f constitutes a dynamical system on the state space E. Standard
existence and uniqueness results for solutions to (1) can be found in, e.g., [17].
Unless relevant, θ will be dropped from the notation.

We will consider any neuronal model given as a dynamical system. We assume
the first coordinate of x represents the electrical potential, denoted by v. Let u
denote the additional variables. We therefore have the tensor structure: x = (v, u),
f = (fv, fu) and ϕ = (ϕv, ϕu). Additionally, we assume f is C2.

In the following we need the manifold:

N := {x ∈ E | fv(x) = 0} , (3)

known as the v-nullcline. Any trajectory of the system has its marginal v-stationary
points on N . Consequently, all spikes occur on the manifold N , thus stressing the
importance of N in relation to excitability thresholds.

In figure 1 trajectories in reverse time of different system are plotted (see section
3 and appendix A for details). Though they are initialised on equally spaced points
on N we observe clustering of the trajectories.

Because the flow is in reverse, trajectories will be highly sensitive towards initial
conditions if initialised close to the clustered trajectories. Trajectories to the left
curve towards the inactive regime and trajectories to the right curve towards the
active regime. Hence, in this figure, the clustered trajectories are closely related
to the inflection sets of the state spaces. Additionally, they are also closely linked
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Figure 1. State space of different bi-dimensional models with
drawn nullclines. The dotted lines are trajectories initialised on
N and runs in negative time flow. (a) the Abbott-Kepler reduc-
tion, (b) the Morris-Lecar model, (c) the Kokoz-Krinskii reduction,
(d) the Fitzhugh-Nagumo model.

to the manifolds studied in [20]. This clustering of trajectories is therefore closely
linked to the transition between active and inactive phases and thus builds the
foundation of the threshold technique outlined below.

Generally, the clustering is characterised by how the flow scales volumes. In figure
1 equally spaced initialisations on N (corresponding to equal volumes) are squeezed
together or separated from each other by the flow. Consequently, clustering of
trajectories occurs when volumes are considerably scaled down by the reverse flow,
or, scaled up by the non-reversed flow.

Formally, the scaling of volumes is quantified by the Jacobian of the flow x 7→
ϕ(t, x):

J(t, x) := |det(∂xϕ(t, x))| . (4)
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In order to make this characteristic tractable, we consider the infinitesimal scaling
of volumes at t = 0. Standard results yield:

det(∂xϕ(t, x)) = det (∂xϕ(0, x) + t∂t∂xϕ(0, x) + tε(t, x))

= det (I + t [∂xf(x) + ε(t, x)])

= 1 + t · trace(∂xf(x) + ε(t, x)) +O(t2)

(5)

for some function ε vanishing at t = 0. Consequently,

∂tJ(0, x) = ∇f(x), (6)

where ∇ is the divergence operator. Motivated by the above, the proposed thresh-
old, vthr, is given by

vthr := πv

(
argmax

x∈N
∇f(x)

)
, (7)

where πv is the projection onto the v-coordinate.
Clearly, the applicability of vthr relies on existence and uniqueness of a maximal

argument for ∇f(x) on N . For instance, vthr does not exist in linear systems.
However, as seen in section 3, vthr is well defined in the classical neuron models.
Moreover, heat maps of ∇f for four bi-dimensional models is presented in figure 2.

As mentioned, one of the most important properties of a neuronal model is its
ability to capture both active and inactive phases and their separate distinctive be-
haviour. Furthermore, the transition between the two regimes must be fast, other-
wise the model does not sufficiently reflect the “all-or-none”-principle of excitability
in neurons. From the model’s perspective this implies that only finely tuned initial-
isations exhibits local v-maxima that can neither be considered active nor inactive.
Such crossings of N are exactly those having large values of ∇f and thus captured
by (7). Therefore vthr is well defined if the model considered sufficiently mimics the
“all-or-none” principle.

3. Examples. In the following we investigate vthr for different models and param-
eter configurations. In practice vthr is determined by studying the marginalisation

v 7→ sup
u:(v,u)∈N

∇f(v, u). (8)

The models considered here are: the Hodgkin-Huxley (HH) model ([8]), the Connor-
Stevens (CS) model ([2]), the Abbot-Kepler (AK) reduction ([1], [10]), the Kokoz-
Krinskii (KK) reduction ([11]), the Morris-Lecar (ML) model ([13]) and the Fitzhu-
gh-Nagumo (FHN) model ([6], [14]). All models considered are specified in appendix
A.

In the case of the Hodgkin-Huxley and the Connor-Stevens model computing vthr
is especially simple, as evaluating (8) amounts to solving a linear programming (lp)
problem. All models, except for the Fitzhugh-Nagumo model, do not admit closed
form expressions for vthr and are evaluated numerically. The results for varying
input current, I, are visualised in figure 3. The excitability threshold suggested
by the above technique lies at the typically proposed level for the different models.
Moreover, the threshold increases with I.

For the Hodgkin-Huxley and the Connor-Stevens model a sudden change occur
around I = 3.3 and I = −4.9, respectively. As indicated, these are not discon-
tinuities, but are the results of changing active constraints in the lp problem of
evaluating (8). The sudden change is not associated with bifurcations (the closest
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Figure 2. Heat maps of ∇f on the state space of different bi-
dimensional models with drawn null-clines: (a) the Abbott-Kepler
reduction, (b) the Morris-Lecar model, (c) the Kokoz-Krinskii re-
duction, (d) the Fitzhugh-Nagumo model. Darker colours mean
larger ∇f value.

bifurcation takes place at I = 9.78 for the HH model, see [12]). In fact, the thresh-
old rule seems to be unaffected by any of the bifurcations occurring when tuning
I. This emphasises that vthr is not related to whether the system promotes spiking
behaviour or not, but how local v-maxima are separated by the dynamics.

Finally, we consider the Fitzhugh-Nagumo model. Straightforward calculations
yield vthr = 0, hence the threshold in this particular model is independent of the
parameters. Again, this stresses the interpretation of vthr; it measures where the
mimicking of the “all-or-none”-principle is most prominent in the model. Hence,
for varying parameters, v = 0 still acts as the separation of local v-maxima.
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Figure 3. Values of vthr for varying input current I and different
models. The models are Hodgkin-Huxley (HH), Connor-Stevens
(CS), Abbott-Kepler (AK), Kokoz-Krinskii (KK) and Morris-Lecar
(ML).
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4. Discussion. In the above an excitability threshold for the membrane potential
in neuronal models has been presented. It applies to multidimensional neuronal
models given as ODEs and is relatively easy to evaluate. The threshold rule relies
on the same classic considerations behind other threshold rules, e.g., [4] and [20].
While still incorporating the full dynamics of the system, it provides thresholds in
v only. Additionally, requirements of bi-dimensionality, imposed in e.g., [4], is not
necessary.

A drawback of the threshold rule is that it may not fully capture the complexity
of models, as more sophisticated manifold based threshold rules do, e.g., as in [20].
However, the above presented technique applies to situations in which only the
membrane potential is observable.

Finally, the main drawback of the technique is that it only applies whenever
argmax

x∈N
∇f(x) is well defined. However, as pointed out in section 2, if the neuron

model captures the “all-or-none”-principle sufficiently well, then ∇f will be large
whenever a transition from inactive to active phases occurs.

Acknowledgments. A great thanks to Susanne Ditlevsen for supervising the pro-
ject that led to these results.

Appendix A. Models.

A.1. The Hodgkin-Huxley model. The Hodgkin-Huxley model, first presented
in 1952 (see [8]), is the most influential model in neuroscience. It is a four-
dimensional dynamical model governed by the following dynamics:

v̇ =
I − gL(v − VL)− gNam

3h(v − VNa)− gKn4(v − VK)

C
,

ṅ =
n∞(v)− n
τn(v)

, ṁ =
m∞(v)−m

τm(v)
, ḣ =

h∞(v)− h
τh(v)

.

(9)

Here τx = 1/(αx + βx) and x∞ = αx/(αx + βx) for x = n,m, h and

αn(v) =
v+55
100

1− exp
(
− v+55

10

) , βn(v) =
exp

(
−v+55

10

)
8

,

αm(v) =
v+40
10

1− exp
(
− v+40

10

) , βm(v) = 4 exp

(
−v + 65

18

)
,

αh(v) = 0.07 exp

(
−v + 65

20

)
, βh(v) =

1

1 + exp
(
− v+35

10

) .
(10)

The parameters are listed in table 1 and taken from [12].

Table 1. Parameter values for the Hodgkin-Huxley model.

Parameter Value Parameter Value

gNa 120 mS/cm2 VNa 50 mV

gK 36 mS/cm2 VK −77 mV

gL 0.3 mS/cm2 VL −54.4 mV

C 1 µF/cm2
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A.2. The Fitzhugh-Nagumo model. The first phenomenological model resem-
bling the Hodgkin-Huxley dynamics was proposed by Fitzhugh ([6]) and Nagumo
et. al ([14]) independently. It reads:

v̇ = v − v3

3
− u+ I,

u̇ =
v + a− bu

τ
.

(11)

The parameters used in figure 1 and 2 are a = 0.7, b = 0.8, I = 0.5 and τ = 12.5.

A.3. The Connor-Stevens model. The Connor-Stevens model ([2]) extends the
model of Hodgkin and Huxley with a transient potassium current.

v̇ =
I − gL(v − VL)− gNam

3h(v − VNa)− gKn4(v − VK)− gAa3b(v − VA)

C
,

ṅ =
n∞(v)− n
τn(v)

, ṁ =
m∞(v)−m

τm(v)
, ḣ =

h∞(v)− h
τh(v)

,

ȧ =
a∞(v)− a
τa(v)

, ḃ =
b∞(v)− b
τb(v)

.

(12)

Here τx = 1/(αx + βx) and x∞ = αx/(αx + βx) for x = n,m, h and

αn(v) =
0.02(v + 45.7)

1− exp (−0.1(v + 45.7))
, βn(v) = 0.25 exp (−0.0125(v + 55.7)) ,

αm(v) =
0.38(v + 29.7)

1− exp (−0.1(v + 29.7))
, βm(v) = 15.2 exp (−0.0556(v + 54.7)) ,

αh(v) = 0.266 exp (−0.05(v + 48)) , βh(v) =
3.8

1 + exp (−0.1(v + 18))
,

a∞(v) =

[
0.0761 exp(0.0314(v + 94.22))

1 + exp(0.0346(v + 1.17))

] 1
3

,τa(v) = 0.3632 +
1.158

1 + exp(0.0497(v + 55.96))
,

b∞(v) =

[
1

1 + exp(0.0688(v + 53.3))

]4

, τb(v) = 1.24 +
2.678

1 + exp(0.0624(v + 50))
.

(13)

The parameters are listed in table 2 and taken from [3].

Table 2. Parameter values for the Connor-Stevens model.

Parameter Value Parameter Value

gNa 120 mS/cm2 VNa 55 mV

gK 20 mS/cm2 VK −72 mV

gL 0.3 mS/cm2 VL −17 mV

gA 47.7 mS/cm2 VA −75 mV

C 1 µF/cm2

A.4. The Kokoz-Krinskii reduction. Kokoz and Krinskii provided a more real-
istic model mimicking the dynamics of the Hodgkin-Huxley model in [11]. It relies
on two reductions: m is assumed instantaneous and the sum of the slower variables
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h and n remain constant at level K. The dynamics therefore reduces to

v̇ =
I − gL(v − VL)− gNam∞(v)3(K − n)(v − VNa)− gKn4(v − VK)

C
,

ṅ =
n∞(v)− n
τn(v)

.

(14)

We set K = 0.8 and the rest of the specifications are as in section A.1.

A.5. The Morris-Lecar model. Another classical example of a conductance
based neuron model is the Morris-Lecar model, see [13] for details. The dynamics
are as follows:

v̇ =
I − gL(v − VL)− gCam∞(v)(v − VCa)− gKu(v − VK)

C
,

u̇ = α(v)(1− u)− β(v)u,
(15)

where

m∞(v) =
1

2

(
1 + tanh

(
v − V1
V2

))
,

α(v) =
1

2
φ cosh

(
v − V3

2V4

)(
1 + tanh

(
v − V3
V4

))
,

β(v) =
1

2
φ cosh

(
v − V3

2V4

)(
1− tanh

(
v − V3
V4

))
.

(16)

The parameter values used in this example are taken from [5] and are given in table
3.

Table 3. Parameter values for the Morris-Lecar model.

Parameter Value Parameter Value Parameter Value

V1 −1.2 mV gCa 4.4 µS/cm2 VCa 120mV

V2 18 mV gK 8 µS/cm2 VK −84 mV

V3 2 mV gL 2 µS/cm2 VL −60 mV

V4 30 mV C 20 µF/cm2 φ 0.04 ms−1

A.6. The Abbot-Kepler reduction. The reduction of the Hodgkin-Huxley model
given below is just one of many possible reductions. They all follow the same prin-
ciple proposed by Abbot and Kepler ([1], [10]). In this paper we consider

v̇ =
I − gL(v − VL)− gNam∞(v)3h∞(u)(v − VNa)− gKn∞(u)4(v − VK)

C
,

u̇ = α(v, u)
h∞(v)− h∞(u)

τh(v)h′∞(u)
+ (1− α(v, u))

n∞(v)− n∞(u)

τn(v)n′∞(u)
,

(17)

where

α(v, u) =

(
gNam∞(v)3h′∞(u)(v − VNa)

)2
(gNam∞(v)3h′∞(u)(v − VNa))

2
+ (4gKn∞(u)3n′∞(u)(v − VK))2

. (18)

The rest is specified in section A.1.
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