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Abstract. Fluctuation scaling has been observed universally in a wide variety

of phenomena. In time series that describe sequences of events, fluctuation
scaling is expressed as power function relationships between the mean and

variance of either inter-event intervals or counting statistics, depending on
measurement variables. In this article, fluctuation scaling has been formulated

for a series of events in which scaling laws in the inter-event intervals and

counting statistics were related. We have considered the first-passage time of
an Ornstein-Uhlenbeck process and used a conductance-based neuron model

with excitatory and inhibitory synaptic inputs to demonstrate the emergence of

fluctuation scaling with various exponents, depending on the input regimes and
the ratio between excitation and inhibition. Furthermore, we have discussed

the possible implication of these results in the context of neural coding.

1. Introduction. Fluctuation scaling has been observed in a wide range of disci-
plines. It was first observed in ecological systems by Taylor as an empirical power
function relationship between the variance and mean of the number of species indi-
viduals [34]. Since then, fluctuation scaling has been demonstrated in many other
fields, including infectious diseases transmission, cancer metastasis, chromosomal
structure, and transportation network traffic [2, 21, 22, 17, 13], thus demonstrating
the univserality of this law. [16] give a comprehensive review.

Herein we have considered fluctuation scaling for point processes. A point process
is a stochastic process that describes a series of event times −∞ < t1 < t2 <
· · · < tn < ∞, or, in other words, the number of events N(s,t] in a given interval
(s, t] [11, 12, 33]. Point processes are used to model a wide variety of phenomena,
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including neural spike trains, earthquake occurrences, and customer arrivals at a
service window [19, 27, 4].

Here we have proposed fluctuation scaling formulae for a sequence of events,
which is expressed as power function relationships between the mean and variance
of either the inter-event interval or counting statistics. For an introduction to the
fluctuation scaling law, consider a Poisson process with a rate λ for which the
probability density function of the inter-event interval xi := ti− ti−1 is given by the
exponential distribution:

f(x) = λe−λx, (1)

and the probability distribution of the event count N∆ := N(t,t+∆] is given by the
Poisson distribution:

P (N∆ = n) =
(λ∆)n

n!
e−λ∆. (2)

The variances in Eqs. (1) and (2) are given by power functions of the mean as
Var(X) = E(X)2 and Var(N∆) = E(N∆), respectively. The fluctuation scaling
shown here generalizes these scaling relationships between the mean and variance
in both interval and counting statistics using an arbitrary scale factor and exponent.

In this article, we have focused on the scaling law exponent and have investigated
the effect of the underlying mechanism of event occurrences on the exponent. To
address this issue, we have analyzed the first-passage time of an Ornstein-Uhlenbeck
(OU) process and a conductance-based neuron model, and have demonstrated the
emergence of fluctuation scaling with various exponents under certain conditions.
Our results suggests that the conventional assumption of proportional relationship
between the spike count mean and variance, a fundamental fact of neural coding
[3], could lead to the wrong conclusion regarding the variability of neural responses.

2. Fluctuation scaling. Consider a sequence of events in which the inter-event
intervals are independent and identically distributed with a mean µ and variance
σ2. Fluctuation scaling in this interval statistics is described by the following power
function relationship between µ and σ2:

σ2 = φµα, (3)

where φ is the scale factor that controls the overall amplitude of the variance and
α is the exponent that controls how the variance is scaled by the mean. For α = 2,
the scale factor φ corresponds to the squared coefficient of variation, for which the
value is unity in a Poisson process. In contrast, α > 2(< 2) implies a tendency for
the event occurrence timing to be over (under) dispersed for large means and under
(over) dispersed for small means.

Next, consider the counting statistics. Let N∆ denote the number of events in a
counting window of duration ∆. For a large counting window relative to the mean
inter-event interval ∆ � µ, the mean and variance of N∆ asymptotically become
∆/µ and σ2∆/µ3, respectively [10]. Accordingly, if the interval statistics obeys the
scaling law (3), for a large ∆/µ the variance of N∆ will asymptotically exhibit the
scaling law:

Var(N∆) ∼ φ∆1−βE(N∆)β , (4)

where the exponent β correlates with that of the interval statistics via the scaling
relationship:

β = 3− α. (5)
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In the counting statistics, the linear relationship between the mean and variance
is maintained only if α = 2. The relationship between the mean and variance is
sublinear if α > 2 and superlinear if α < 2.

The scaling law in the counting statistics is obtained for a sufficiently large win-
dow relative to the mean inter-event interval, ∆ � µ. In the numerical studies
presented in section 4, however, we found that an average of five events falling in a
counting window is enough for Eq. (4) to apply.

We should emphasize that the scaling law (4) is obtained when the mean inter-
event interval is changed and ∆ is fixed. It is also possible to have another scaling
law. For instance, we can have a simple linear relationship between the count mean
and variance for stationary renewal processes when ∆ is changed [10]. In this article,
we consider the scaling law (4), because the count mean is modulated and ∆ is fixed
in the analysis of nonstationary event sequences, which is discussed in section 4.

3. First-passage time analysis. In this section, we analyze the first-passage time
to a threshold using an OU process and a conductance-based neuron model to
investigate under which conditions fluctuation scaling (3) emerges.

3.1. OU process. We consider an OU process described by the following stochastic
differential equation [38]:

dV (t)

dt
= −V (t)

τ
+ a+ bξ(t), V (0) = vr, (6)

where ξ(t) is Gaussian white noise with E[ξ(t)] = 0 and E[ξ(t)ξ(t′)] = δ(t − t′). If
V (t) exceeds a threshold θ > 0, an event occurs and V (t) is immediately reset to vr.
By rescaling (V −vr)/(θ−vr)→ V and t/τ → t, the model parameters are rescaled
as (aτ − vr)/(θ − vr) → a, b

√
τ/(θ − vr) → b, θ → 1 and vr → 0. Accordingly,

Eq. (6) is rewritten as follows:

dV (t)

dt
= −V (t) + a+ bξ(t), V (0) = 0, (7)

which has two free parameters: (a, b). We can analyze Eq. (7) without loss of
generality.

The stochastic integration of Eq. (7) without the threshold condition yields the
solution of V (t):

V (t) = a(1− e−t) + b

∫ t

0

es−tξ(s)ds, (8)

from which the mean and variance of V (t) are respectively obtained as follows:

E[V (t)] = a(1− e−t), (9)

and

Var[V (t)] =
b2

2
(1− e−2t). (10)

Depending on the values of asymptotic mean a and fluctuation b relative to the
threshold, the following three asymptotic regimes are considered (a similar regime
division can found in [40, 15]):

a) Suprathreshold regime (a� 1) with small fluctuations (b� 1), in which the
threshold is exceeded mainly because of drift a.

b) Subthreshold regime (1 − a � b) with small fluctuations (b � 1), in which
the threshold is relatively rarely passed because of small fluctuations in V (t).
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Table 1. Various scaling exponents α and factors φ emerged in
the first-passage time of the OU process.

Regime Condition α φ

a. Suprathreshold a� 1, b� 1
b : fixed 3 b2

b = c
√
a 2 c2

b. Subthreshold 1− a� b, b� 1 2 1
c. Threshold a ∼ 1, b� 1 1 2 log 2

c) Threshold regime (a ∼ 1) with large fluctuations (b� 1), in which the thresh-
old is strongly exceeded because of the large fluctuations in V (t).

The first-passage time analysis of the OU process in the three asymptotic regimes
is described as follows. The results are summarized in Table 1.

3.1.1. Suprathreshold regime. For b � 1 and a − 1 � b, the mean and variance of
the first-passage time have been evaluated in [40] as follows:

µ ∼ log
a

a− 1
− b2

4

[
1

(a− 1)2
− 1

a2

]
, (11)

and

σ2 ∼ b2

2

[
1

(a− 1)2
− 1

a2

]
. (12)

A further assumption of a � 1 and expanding Eqs. (11) and (12) with respect to
1/a and while selecting the leading terms yields

µ ∼ 1

a
, σ2 ∼ b2

a3
. (13)

Thus, the variance of the first-passage time obeys the scaling law (3) with the
exponent α = 3 and the factor φ = b2, if the mean is modulated by changing a
while keeping b unchanged.

This scaling law may also be obtained as follows. For a� 1 and b� 1, |V (t)| � a
and Eq. (7) is approximated to Brownian motion with the drift:

dV (t)

dt
= a

[
− V (t)

a
+ 1

]
+ bξ(t) ≈ a+ bξ(t), (14)

for which the first-passage time probability distribution can be obtained analytically
as the inverse Gaussian distribution [37]. The density function is given by

f(x; a, b) =
1√

2πb2x3
exp

[
− (1− ax)2

2b2x

]
, (15)

the mean and variance of which correspond to Eq. (13).
We can consider another situation in which both a and b are changed. A typ-

ical situation is that b is modulated by a in a square root manner, b = c
√
a, c

being a constant (which is realized by diffusion approximation of Poisson inputs).
Substituting it into Eq. (13) yields the scaling law:

σ2 ∼ c2µ2, (16)

whose exponent (α = 2) differs from that obtained by keeping b unchanged.
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3.1.2. Subthreshold regime. For 1 − a � b and b � 1, the asymptotic mean and
variance of the first-passage time were derived in [40] as follows:

µ ∼ b
√
π

1− a
exp

[
(1− a)2

b2

]
, (17)

and

σ2 ∼ b2π

(1− a)2
exp

[
2(1− a)2

b2

]
, (18)

which follow the fluctuation scaling law (3) with α = 2 and φ = 1. This scaling law
does not depend on the way in which a and b are changed. In fact, in this limit, the
first-passage time probability distribution asymptotically becomes an exponential
distribution with the mean (17) [26, 28], such that the first-passage time sequence
becomes a Poisson process.

3.1.3. Threshold regime. The Laplace transformation of the probability density
function f(x; a, b) for the OU process first-passage time has analytically been de-
rived in [37, 32, 30] as follows:

G(s) =

∫ ∞
0

e−sxf(x; a, b)dx =
Ψ
(
s
2 ,

1
2 , (

a
b )2)

Ψ
(
s
2 ,

1
2 , (

1−a
b )2)

, (19)

where Ψ(x, y, z) is a confluent hypergeometric function of the second kind [1]. For
z � 1, Ψ(x, 1

2 , z) is evaluated as follows:

Ψ(x,
1

2
, z) ∼

√
π

Γ(x+ 1
2 )
− 2
√
π

Γ(x)
z

1
2 . (20)

Using Eqs. (19) and (20), the mean and variance of the first-passage time for a ∼ 1
and b� 1 are obtained as follows:

µ = − lim
s→0

dG(s)

ds
∼
√
π

b
, (21)

and

σ2 = lim
s→0

d2G(s)

ds2
− µ2 ∼ 2

√
π log 2

b
. (22)

Accordingly, in this limit, the fluctuation scaling law (3) emerges with α = 1 and
φ = 2 log 2. Note that a does not appear in the leading terms of µ and σ2, suggesting
that the mean and variance of the first-passage time are modulated mainly by
changing b in this regime.

3.1.4. Numerical results. The scaling laws summarized in Table 1 were obtained
using the three asymptotic regimes. To examine the extent to which these scaling
laws capture the actual mean-variance relationships, we have compared it with
the exact variance of the OU process first-passage time as computed using series
expansion formulas [28, 20, 18]. Figure 1 shows the result: solid lines in the left
panel represent how the set of parameters was changed in (a, b) space, while the
right panel plots the exact mean-variance relationships mapped from the left panel
(solid lines). (Note that there is a unique mapping between (a, b) and (µ, σ2) [39].)
It is seen that wide areas in (a, b) space are approximately mapped onto the scaling
laws obtained in the asymptotic analysis (thick dashed lines), suggesting that the
scaling laws provide good descriptions of the mean-variance relationships in the
three regimes.
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Figure 1. Left: the parameter space (a, b). The mean µ and
variance σ2 of the OU process first-passage time were computed
by changing a and b along solid lines in (a) suprathreshold, (b)
subthreshold and (c) threshold regimes. Right: Log-log plot of
the variance σ2 against the mean µ. Solid lines represent the ex-
act mean-variance relationship mapped from the left panel. Gray
dashed lines represent the scaling laws obtained through an as-
ymptotic analysis (summarized in Table 1), which exhibit good
agreement with the exact mean-variance relationships.

3.2. Neuron model. Here we consider a particular interpretation of the first-
passage time in terms of neural spike trains. In the following subsections, we will
describe a neuron model with a realistic synaptic input and a simplified model.

3.2.1. A realistic description of synaptic input. The membrane potential dynamics
at the soma in a model neuron, V (t), is described as follows:

C
dV (t)

dt
= −gL(V (t)− EL) + IAMPA + IGABA, (23)

where, C = 1 µF/cm2 is the membrane capacitance, gL = 4.52×10−2 mS/cm2 is the
leak conductance, EL = −70 mV is the reversal potential for the leak current, and
IAMPA(GABA) is the AMPA (GABA) synaptic current. The model neuron generates
a spike when the potential V (t) exceeds the spike threshold θ, at which point V (t)
is instantaneously reset to vr. The synaptic current is described by the conductance
input from pre-synaptic neurons as follows:

IAMPA = −
NE∑
k=1

gAMPAsAMPA,k(t)(V − VE),

IGABA = −
NI∑
k=1

gGABAsGABA,k(t)(V − VI),

(24)

where NE and NI are the numbers of excitatory and inhibitory synapses with their
respective reversal potentials VE and VI , gx is the maximal synaptic conductance,
sx,k are the gating variables of the k-th synapse, and x represents the synaptic
component (AMPA or GABA). The gating variable of the x-synaptic component
sx is described by the first-order kinetics as follows [14]:

dsx
dt

= αx[T ](t)(1− sx)− βxsx, (25)
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where [T ](t) is the transmitter concentration in a neuronal cleft, and αx and βx are
the activation and inactivation rates, respectively. When the pre-synaptic neuron
generates a spike, transmitter accumulates in the cleft such that [T ] = 1 mM for
1 ms: [T ] is subsequently set to 0 before the next spike occurs. The spike trains
of the excitatory (E) and inhibitory (I) presynaptic neurons were generated by the
Poisson process with constant rate rE,I = λE,I/NE,I , where λE,I is the total input
rate from the excitatory (E) and inhibitory (I) neurons. The synaptic parameters
were gAMPA = 1.2 nS, αAMPA = 1.1× 106 M−1 s−1, βAMPA = 670 s−1 for the AMPA
synapses; and gGABA = 0.6 nS, αGABA = 5.0 × 106 M−1 s−1, βGABA = 180 s−1,
for the GABA synapses unless stated. The other parameters were NE = 2, 000,
NI = 2, 000, VE = 0 mV, and VI = −75 mV.

3.2.2. Diffusion approximation. The neuron model dynamics (23) using the realistic
synaptic model (24) and (25) can be approximated as follows (See Appendix A for
the derivation):

C
dV (t)

dt
= −gtot(V − Etot) + σ0ξ(t), (26)

where ξ(t) is Gaussian white noise, and

gtot = gL +AAMPAλE +AGABAλI , (27)

Etot = (gLEL +AGABAλIVI)/gtot, (28)

σ2
0 = A2

AMPAλEE
2
tot +A2

GABAλI(Etot − VI)2, (29)

where λE(I) is the total firing rate of the excitatory (inhibitory) pre-synaptic neurons
and AAMPA(GABA) represents the effect of a pre-synaptic spike on the AMPA (GABA)
input. By rescaling the membrane potential and the time as (V − vr)/(θ− vr)→ V
and gtott/C → t, Eq. (26) is rescaled as in Eq. (7), as follows:

a =
Etot − vr
θ − vr

, (30)

b =
σ0√

gtotC(θ − vr)
. (31)

3.2.3. Numerical results. We have also considered balanced excitatory and inhibitory
synaptic inputs in which both excitatory and inhibitory input rates increased while
maintaining a constant ratio r > 0:

λI = rλE . (32)

We simulated spike trains using the model (23), (24) and (25), and computed the
means and variances of inter-spike intervals (ISIs) for different λE . Figure 2a plots
the variances of these ISIs against the means for different values of r. We observed
that the means and variances exhibited an approximate linear relationship on a log-
log scale. We performed a linear regression analysis of the log Var(ISI) on log E(ISI).
The fitted slope (i.e., the exponent α) is plotted as a function of r in Figure 2b. We
observed that this exponent was α ≈ 3 when r = 0 (i.e., excitation is dominant).
The exponent decreased toward α ≈ 2 as the inhibition increased.

We computed the means and variances of the ISIs using series expansion formulas
[28, 20, 18] in the simplified model given by (7), (30) and (31), and obtained the
similar results as those achieved using the model with realistic synaptic inputs
(Figure 3). Although the exponent α varies in similar ranges in both models, the
dependences of α on r are different: it is a curve with negative curvature for the
model with realistic synaptic inputs (Figure 2b), while it is a curve with positive
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Figure 2. The mean-variance relationship for a neuron model
with a realistic synaptic input (AMPA and GABA). (a) Variance
as a function of the means of ISIs at different EI ratios, r. The
dotted line represents σ2 = µ2 (i.e., the Poisson case). (b) The
exponent α as a function of r.
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Figure 3. The mean-variance relationship for a neuron model
with white noise input. (a) Variance as a function of the means of
ISIs at different EI ratios, r. The dotted line represents σ2 = µ2

(i.e., the Poisson case). (b) The exponent α as a function of r. The
exponent α is obtained through linear regression of log σ2 on logµ.

curvature for the simplified model (Figure 3b). This difference might be due to
neglecting the synaptic time constant, which is the main assumption for deriving
the simplified model (Appendix A).

4. Impact of fluctuation scaling on the statistical analysis of neural data.
Both the analyses of the neuron model and of the OU process first-passage time
revealed that exponent α from the interval statistics can hold different values de-
pending on the input regimes or on the ratio between the excitatory and inhibitory
synaptic inputs. A consequence from these results is that the variance of spike count
can exhibit “nontrivial” scaling laws (4)-(5) that depart from simple linear relation-
ships. In this section, we will examine the extent to which the scaling properties of
neural responses affect the neural data analysis. In particular, we will demonstrate
that the conventional assumption of linear relationship between the spike count
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mean and variance could lead to the wrong conclusion regarding the variability of
neural responses.

Recent experimental data analysis suggested that apparent variability in the
observed spike trains can be attributed to two sources: spiking variability, which
effectively acts as measurement noise and cross-trial fluctuations in firing rates,
which correlate with behavior or perception [7, 8, 9]. Churchland et al. (2011)
proposed a method for segregating response variability into spiking variability and
firing rate variability, according to the law of total variance for doubly stochastic
processes [8]. Here we will critically analyze their method and demonstrate how
their method could lead to a wrong conclusion as a result of their assumption that
the spike count variance is proportional to the mean.

Here N∆(t) is set as the number of spikes in the counting window of duration ∆
centered at time t and λ(t) is the mean firing rate in this window. We will assume
that λ(t) is also a random variable, thus allowing a different realized λ(t) in each
trial. According to the law of total variance, the total variance of N∆(t) can be
decomposed into two components:

Var(N∆(t)) = Var(λ(t)∆) + E[Var(N∆(t)|λ(t))]. (33)

The first term on the right side of Eq. (33) represents the cross-trial variability of
the firing rate, whereas the last term in Eq. (33) represents the spiking variability.
In accordance with [8], we refer to the former as the “variance of the conditional
expectation” (VarCE) and the latter as the “point process variance” (PPV). If the
firing rate is the same in each trial, then the VarCE is zero and the total spike count
variance is attributed solely to the PPV. If the firing rate differs in each trial, the
VarCE will capture this variance. To obtain an estimate of the VarCE from neural
data, we can calculate the sample spike count variance and subtract the estimate of
the PPV. To obtain this estimated PPV, it was assumed in [8] that the spike count
variance is proportional to the mean:

Var(N∆(t)|λ(t)) = φE(N∆(t)|λ(t)). (34)

From Eqs. (33) and (34), the VarCE then becomes

Var(λ(t)∆) = Var(N∆(t))− φE(N∆(t)), (35)

where both terms on the right side of the above equation are easily estimated using
the sample mean N̄∆(t) and variance, s2

N∆
(t), of the cross-trial spike counts. If we

know φ, then the estimated VarCE, s2
λ(t), is

s2
λ(t) = s2

N∆
(t)− φN̄∆(t). (36)

As was done in [8], we found the time window with the smallest variance to mean
ratio (i.e., the Fano factor), and took the Fano factor from this epoch as an estimate
of φ, which ensures a positive estimated VarCE throughout the trial. (See [8] in
more detail.)

We demonstrated using simulated spike trains that the estimator (36) might
fail to capture the actual VarCE. In our numerical study, the OU process (7) was
simulated in the three regimes using time-varying parameters given by

Suprathreshold : a = 6 + 5 sin 2π
10 t, b = 0.4

Subthreshold : a = 0.1 + 0.1 sin 2π
6000 t, b = 0.4

Threshold : a = 0.6, b = 10 + 9 sin 2π
10 t

(37)
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For each regime, 104 spike trains were numerically generated. The raster plots of
50 spike trains are displayed in Figure 4 (top). Note that the same parameters were
used in each trial, and thus the firing rates are identical in each trial, such that the
theoretical value of VarCE was zero.

The spike count mean and variance were computed using the 104 spike trains
and a sliding window whose length, ∆, was chosen so that an average of five spikes
fell within the window per trial. The firing rate did not change drastically in
each window, which allowed us to apply Eq. (4). Figure 4 (middle) also plots the
variance against the mean on a log-log scale (filled circles) and shows that the
variance was well described using the theoretical scaling relationship (4) (lines).
The variance was proportional to the mean (β = 1) in the subthreshold regime.
The mean-variance relationship was sublinear (β = 0) in the suprathrehold regime,
whereas it was superlinear (β = 2) in the threshold regime. The estimated firing

rate, λ̂(t) = N̄∆(t)/∆, is displayed together with the estimated VarCE (36) in Fig-

ure 4 (bottom; solid lines and gray regions represent λ̂(t)± 2
√
s2
λ(t), respectively).

The estimated VarCE in the subthreshold regime is shown to be near zero (b), al-
though it significantly departed from zero in the suparthrehold (a) and threshold
(c) regimes. The estimated VarCE increased as the firing rate decreased in the
suprathreshold regime, but it increased as the firing rate increased in the threshold
regime. Note that the actual value of VarCE for all the three cases was zero; the
finite estimated VarCE values resulted from a wrong assumption (34), although the
actual relationship between the spike count mean and variance was not linear in the
suprathreshold and threshold regimes.

5. Discussion. This article describes the formulation of fluctuation scaling for
sequences of events. This fluctuation scaling is expressed as power function rela-
tionships between the means and variances in either the interval statistics (3) or
counting statistics (4), which are linked via the scaling relationship (5). Further-
more, this article demonstrates that the first-passage time to a threshold exhibits
fluctuation scaling in which the exponent depends on the OU process input regimes.
In the suprathreshold regime, in which threshold crossing is mainly caused by posi-
tive drift, the event occurrence tends to be regular, resulting in the exponent α = 3,
whereas in the subthreshold regime with small fluctuations, threshold crossing is
relatively rare, and the event sequences exhibit Poisson statistics with α = 2. In
the threshold regime, in which threshold passing is largely induced by large OU
process fluctuations, the first-passage time is more variable, resulting in α = 1.
We also examined fluctuation scaling in a conductance-based neuron model with
balanced excitatory and inhibitory synaptic inputs and showed that the excitation
to inhibition ratio modulates the scaling exponent; in particular, when excitation
is dominant, the exponent becomes α ≈ 3 and decreases toward α ≈ 2 as inhibition
increases.

We note that many of the mathematical results concerning the issue of OU
process first-passage times were derived long ago ([6] and references therein). Our
OU process results mostly rely on these earlier findings. However, to our best
knowledge, no previous reports have addressed this problem systematically from
the viewpoint of fluctuation scaling (3), particularly in relation to the exponent α.
We therefore believe that this article presents a novel viewpoint on the first-passage
time problem.

An important implication of our results is that renewal processes do not neces-
sarily imply a proportional relationship between the event count mean and variance
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Figure 4. Results of the OU process first-passage time to a
threshold in the suprathreshold (a), subthreshold (b), and thresh-
old regimes (c). The mean spike count, E(N∆), was temporally
modulated by the variations of a and b (37). Top: raster plots of
50 spike trains. Middle: the mean-variance relationship using the
counting statistics. Filled circles represent the sample means and
variances computed with 104 trials. Solid lines represent the theo-
retical scaling law (4). Bottom: solid lines represent the estimated

firing rate λ̂(t) and gray regions represent ±2
√
s2
λ(t); s2

λ(t) is the
estimated VarCE (36).

(proportionality is maintained only if α = 2). In the field of neural coding, a pro-
portional relationship between the spike count mean and variance is considered a
fundamental fact that is relevant almost anywhere in the brain [3]. Our analysis
of a neuron model as well as the OU process first-passage time revealed that the
interval statistics exponent is not necessarily α = 2; this means that the spike count
statistics can significantly deviate from the proportional relationship, and therefore
analysis methods based on this assumption can fail (see section 4).

One possible application of fluctuation scaling may be characterization of the
“intrinsic” variability of neuronal firing. Troy and Robson found that in in vivo
recordings, steady discharges of X retinal ganglion cells in response to stationary
visual patterns exhibited the scaling law in interval statistics [36], for which the
exponent was α ≈ 3 in our formulation. In contrast, cortical spike trains exhibit
an approximately proportional relationship between the spike count variance and
the mean [35, 31], suggesting that α ≈ 2. One might speculate that a difference in
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the scaling exponent reflects the electrophysiological properties of individual cells
or their networks. Further investigations are needed to clarify the relationship be-
tween the scaling exponent and neurophysiological properties. Another theoretical
question is whether fluctuation scaling with various exponents emerges from the dy-
namics of a network of spiking neurons. In the future work, it would be interesting
to investigate how network fluctuations are translated into fluctuation scaling in a
self-consistent framework [24].
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Appendix A. Diffusion approximation for a neuron model with a realistic
synaptic input. In the first-order kinetic model (25), the conductance change after
a presynaptic input can be written as follows:

δgsyn(t) = g̃syn(1− e−t/τfast) (0 < t < T ),
δgsyn(t) = g̃syn(1− e−T/τfast)e−(t−T )/τslow , (T < t).

(38)

where g̃syn = gsynαsyn/(αsyn + βsyn) is the maximal synaptic conductance and
τfast = (αsyn + βsyn)−1, τslow = β−1

syn are the synaptic time constants. The conduc-
tance change is approximated by an exponential function

δgsyn(t) ≈ Asyn/τslowe
−t/τslow , (39)

where Asyn =
∫∞

0
δgsyn(t)dt = csyn

{
T + (τslow − τfast)(1− e−T/τfast)

}
. If the

synaptic input rate λE,I is relatively high, it is possible to apply the diffusion
approximation [23, 5, 29] to the excitatory and inhibitory conductances as follows,

β−1
AMPA

dgE
dt

≈ −gE +AAMPA

(
λE +

√
λEξE(t)

)
, (40)

β−1
GABA

dgI
dt

≈ −gI +AGABA

(
λI +

√
λIξI(t)

)
, (41)

where ξE(I)(t) is the Gaussian white noise. The excitatory (inhibitory) synaptic
conductance can be decomposed into the mean and fluctuations as follows:

gE(I) = gE(I),0 + gE(I),F (t), (42)

where gE,0 = AAMPAλE , gI,0 = AGABAλI .
By substituting (42) into (23) and replacing the voltage with the resting value,

the voltage equation can be written as follows:

C
dV

dt
= −gtot(V − Etot)− gE,F (t)(V − EE)− gI,F (t)(V − EI)

≈ −gtot(V − Etot)− gE,F (t)(Etot − EE)− gI,F (t)(Etot − EI). (43)

where, gtot and Etot are the effective conductance and resting potentials given by

gtot = gL + gE,0 + gI,0, Etot = (gLEL + gI,0EI) /gtot.

If the synaptic time constants are small (βAMPA,GABA � 1), the conductance fluc-
tuations are approximated by white noise (white noise limit [25]),

gE,F (t) ≈ AAMPA

√
λEξE(t), gI,F (t) ≈ AGABA

√
λIξI(t).



FLUCTUATION SCALING 549

Accordingly, we obtain the corresponding OU model:

C
dV

dt
≈ −gtot(V − Etot) + σ0ξ(t), (44)

σ2
0 = A2

AMPAE
2
totλE +A2

GABA(Etot − EI)2λI . (45)
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