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Abstract. The operational mode of a neuron (i.e., whether a neuron is an
integrator or a coincidence detector) is in part determined by the degree of

synchrony in the firing of its pre-synaptic neural population. More specifi-
cally, it is determined by the degree of synchrony that causes the neuron to

fire. In this paper, we investigate the relationship between the input and the

operational mode. We compare the response-relevant input synchrony, which
measures the operational mode and can be determined using a membrane po-

tential slope-based measure [7], with the spike time distance of the spike trains

driving the neuron, which measures spike train synchrony and can be deter-
mined using the multivariate SPIKE-distance metric [10]. We discover that

the relationship between the two measures changes substantially based on the

values of the parameters of the input (firing rate and number of spike trains)
and the parameters of the post-synaptic neuron (synaptic weight, membrane

leak time constant and spike threshold). More importantly, we determine how

the parameters interact to shape the synchrony-operational mode relationship.
Our results indicate that the amount of depolarisation caused by a highly syn-

chronous volley of input spikes, is the most influential factor in defining the
relationship between input synchrony and operational mode. This is defined by

the number of input spikes and the membrane potential depolarisation caused
per spike, compared to the spike threshold.

1. Introduction. The mechanisms used by neurons to encode information into
spike trains is one of the fundamental questions surrounding the neural code. In
1982, Abeles proposed that neurons in the cortex may act as coincidence detectors
rather than temporal integrators [1]. Temporal integration implies that neurons
fire a response after a certain number of pre-synaptic spikes (on average) arrive at
the neuron’s input [16, 17]. Under this assumption, the temporal structure of pre-
synaptic spike trains is lost in the integration process of the post-synaptic neuron.
The firing rate of the post-synaptic neuron encodes the intensity (i.e., the rate) of
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the total (summed) pre-synaptic activity. On the other hand coincidence detection
implies that the firing of a neuron is a result of synchronous arrival of multiple input
spikes and that temporally dispersed spike trains are unable (or less likely) to cause
a neuron to fire [18, 19].

While it is relatively straightforward to show that a passive model neuron can be
excited by both temporally dispersed and precisely coincident activity [5, 2, 14], the
existence of the latter has great implications for the nature of the neural code [18,
19, 6, 3]. In particular, if coincidence detection was indeed found to be the dominant
mode of operation in certain neurons, it would indicate an increased significance of
precise timing in spike trains, which greatly reinforces and supports the existence
of temporal codes, as opposed to rate codes [18, 19, 6].

We recently described a measure that estimates the degree of response-relevant
synchrony between the set of pre-synaptic spike trains driving a leaky integrate-
and-fire (LIF) neuron, obtained by observing the intracellular potential slope prior
to depolarisation and assuming no knowledge of the actual pre-synaptic firing ac-
tivity [7]. Our measure however, referred to here as the Normalised Pre-Spike Slope
(NPSS), is more than just an input synchrony estimator. Given that it measures the
response-relevant input synchrony, i.e., the degree of synchrony that is responsible
for triggering response spikes, it is effectively a measure of the operational mode of
a neuron as well and it determines where the neuron’s activity lies on the continuum
between pure temporal integration and pure coincidence detection.

Spike train distance metrics are a family of methods for calculating the dissim-
ilarity (distance) between spike trains [21, 20, 11, 8, 22, 9, 10, 15]. Such measure-
ments for spike trains are useful for quantifying the differences and similarities of
spike timings across a number of trials with common stimuli [20], or measuring the
spike time synchrony within a neural sub-population [11, 8, 9, 10]. In the case of
the Victor-Purpura spike train distance metric, the dissimilarity between two spike
trains is expressed as the cost of converting one spike train to another, in a simi-
lar fashion to the more general edit-length distance for sequences of characters or
symbols [22]. More recently, Rusu & Florian [15] introduced the modulus-metric, a
spike train metric inspired by the Pompeiu-Hausdorff distance [12, 4] between two
nonempty, compact sets. The modulus metric computes the distances between two
spike trains and the set of all possible spike trains within a bounded period [15].
The SPIKE-distance relies on instantaneous differences between nearby spikes from
two spike trains and constructs a temporal profile of differences between the spike
sequences [9].

When analysing multiple spike trains, the aforementioned metrics can be used
to calculate the average pairwise distance, however this calculation scales with N2

(where N is the number of spike trains), making such calculations infeasible for even
a few dozen spike trains. A variant for multiple spike trains, the multivariate SPIKE-
distance, can be calculated using the standard deviation of spike times following
or preceding a point in time, which scales with N [9] and for this reason it was
chosen for the work presented in the paper. The same study would be infeasible
if average pairwise spike train distance metrics were used, or it would force us to
limit the number of input spike trains (denoted in this work by Nin to specify that
the spike trains are acting as inputs). Additionally, the SPIKE-distance is time-
scale independent and parameter free, which reduces the complexity of our analysis
further.
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In the main part of this paper, we investigate the relation between the opera-
tional mode, as determined by the NPSS and the spike time distance of the spike
trains driving the neuron, as measured by the SPIKE-distance metric. Our goal is
to determine the circumstances under which input synchrony directly determines
operational mode (i.e., high synchrony causes coincidence detection while low syn-
chrony causes temporal integration) and more importantly, to investigate how the
properties of the input (number of inputs, rate), combined with the properties of
the neuron itself (synaptic weight, membrane leak time constant and threshold)
affect this relationship.

Generally, the meaning of the two measures can be interpreted as actual syn-
chrony for the SPIKE-distance versus utilised synchrony for the NPSS. In the
former case, the SPIKE-distance is derived directly from the spike trains and is a
measure of the synchrony between them, unaffected by spike rates or the properties
of the neuron. On the other hand, the NPSS is a measure of how the neuron utilises
the synchrony in the input; whether synchronous spike trains are solely responsible
for causing response spikes, no coincidences are responsible for causing response
spikes, or any combination in between.

In the rest of this paper, we initially describe the methodology and parameters
used to generate synchronous spike trains and the model used to run the simulations.
We then describe the calculation of the two measures, the SPIKE-distance and the
NPSS, in detail. We continue with presenting our results and conclude with a
detailed discussion of the relationship between the two measures and the various
ways in which it is shaped by the values of the parameters used, both to generate
the spike trains and to run the simulation.

2. Methods. The overall methodology used is as follows:

1. Generate spike trains with parameter values (number of spike trains Nin,
spike frequency fin, fraction of synchronous spike trains Sin and jitter σin)
randomised within the ranges defined in Table 1.

2. Calculate the multivariate SPIKE-distance (DS) between the generated (in-
put) spike trains (using the method described in [9], see also Section 2.2).

3. Use the spike trains to drive a neuron model, causing it to fire. The weight
(depolarisation caused per spike, Win) is also randomised and shown in Ta-
ble 1.

4. Calculate the NPSS (using the method described in [7], see also Section 2.4).
5. Compare the NPSS with DS .

In step 3, if the parameter value combination is such that no spikes are fired, the
simulation is discarded entirely.

2.1. Input generation. For step 1, we use the same method for generating syn-
chronous spike trains as in [7]:

1a. Generate a single Poisson spike train with rate fin.
1b. Copy the first spike train (SinNin − 1) times, resulting in SinNin identical

spike trains.
1c. Apply jitter to the generated spike trains by shifting each spike by a random

variate from a Gaussian distribution with location 0 and standard deviation
σin.

1d. Generate Nin(1− Sin) Poisson spike trains, for a total of Nin spike trains.
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Table 1. Parameter symbols and value ranges

Symbol Description Value or range Units

Nin Number of input spike trains 30–400 —
Sin Fraction of trains that are synchronous 0–1 —
fin Input spike frequency per train 50–150 Hz
Win Input weight (voltage change per spike) 0.1–1.0 mV
σin Gaussian jitter (for synchronous spikes) 0–4 ms
Vth Neuron spike threshold 15 mV
V0 Neuron resting (and reset) potential 0 mV
τ Membrane leak time constant 10 ms

2.2. SPIKE-distance. The multivariate SPIKE-distance metric (step 2) is calcu-
lated using the method described in [9] and section 2.1.3 of that paper in particular.
For any time t, the spike distance is:

Sm(t) =
σ
[
t
(n)
P (t)

]
n
〈X(n)

F (t)〉n + σ
[
t
(n)
F (t)

]
n
〈X(n)

P (t)〉n

〈X(n)
ISI(t)〉2n

, (1)

Where 〈X(n)
P (t)〉n and 〈X(n)

F (t)〉n are the average intervals to the previous and fol-

lowing spikes respectively, across all Nin spike trains and σ
[
t
(n)
P (t)

]
n

and σ
[
t
(n)
F (t)

]
n

are their standard deviations. Finally, 〈X(n)
ISI(t)〉n is the average ISI across the Nin

spike trains, around time t.
To represent the SPIKE-distance value of the full duration of a simulation, we

calculate the integral of Sm across time:

DS =
1

T

T∫
t=0

Sm(t)dt (2)

Numerically, the SPIKE-distance was computed at intervals for t of 1 ms and the
integral was calculated using the trapezoidal rule.

2.3. Neuron model. In step 3, we use the leaky integrate-and-fire (LIF) model,
as in [7], with total reset.

τ
dV

dt
= V0 − V (t) +RI(t) (3)

The parameters for the resting potential V0, spike threshold Vth and membrane leak
time constant τ were the same as in [7] and are shown in Table 1. The rest of the
parameters include R, which is the resistance of the membrane and I(t), which is the
time-dependent input current generated by incoming spikes. In our modelling, the
input term RI(t) is parameterised using Win (in volts), which defines the voltage
change per spike. Input spikes are treated as pulses, causing instantaneous changes
in the membrane potential.

2.4. Normalised Pre-Spike Slope. In step 4, we calculate the NPSS after run-
ning the LIF neuron with the generated inputs from step 1 for 5 seconds of simulated
time. The NPSS is calculated as follows:
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4a. Calculate the mean slope of the membrane potential (m) in a time window
(w = 2 ms) prior to the time of firing of each spike (ti).

mi = (V (ti)− V (ti − w)) /w (4)

The value of w, also referred to as the coincidence window, is determined
in part by the membrane leak time constant (τ) and the assumed temporal
precision of the neuron [7].

4b. Calculate the upper (U) and lower (Li) normalisation bounds for each inter-
spike interval (ISI). Note that the upper bound does not depend on the length
of the ISI (∆ti), so it takes the same value in all cases:

U = (Vth − V0)/w (5)

Li =
[
Vth −

(
V0 + Ia

(
1− e−

∆ti−w
τ

))]
/w (6)

Ia = (Vth − V0) /
(

1− e−
∆ti
τ

)
. (7)

The lower bound depends on Ia, which is the constant input that is required
to cause the neuron to fire at exactly ∆ti, the length of the ISI.

4c. The NPSS value for the spike fired at ti is given by:

Mi = (mi − Li) / (U − Li) . (8)

To represent the NPSS value of the full duration of a simulation, we use the
arithmetic mean:

M̄ =
∑
i

Mi (9)

2.5. Comparison. Comparisons between the NPSS and the SPIKE-distance met-
ric are made on averages across each simulation, i.e., M and DS (eqns. 2 and 9).

3. Results and discussion. Our results initially focus on the relationship between
the NPSS and the SPIKE-distance for all simulations. We look at the effect of
several parameters and properties of the simulation on the relationship between
the two measures and discuss its causes and implications. We then generalise our
conclusions regarding the effect of synchrony on the operational mode.

The SPIKE-distance (DS) is an inverse measure of synchrony. DS = 0 indicates
that all spike trains are synchronous (identical) while larger numbers indicate less
synchrony. In our simulations, the maximum value of DS approached 0.5, which is
in accordance with the values shown in [9]. The NPSS (M) indicates the operational
mode by measuring the degree of utilised synchrony and ranges from 0 to 1. M = 0
indicates that there is no synchrony responsible for the firing of the neuron, while
M = 1 means that the neuron fires solely due to synchronous spike trains.

For the following analysis, we introduce two features of the model: the asymptotic
threshold-free potential (V∞) and the volley peak potential (∆v). The asymptotic
threshold-free potential is the asymptotic temporal mean of the membrane potential
in the absence of a spike threshold and is calculated as follows:

V∞ = NinfinWinτ. (10)

The volley peak potential is the increase in potential at the membrane of the neuron
when a completely synchronous volley arrives from all input spike trains and is
calculated as follows:

∆v = NinWin. (11)
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Figure 1. NPSS (M) vs SPIKE-distance (DS) with the colour of
each point showing the degree of applied jitter (σin). High values
mean high degrees of applied jitter (up to 4 ms) which makes spike
volleys wider, while low values indicate that volleys are tighter
and more synchronous, with 0 ms indicating that all spikes in a
volley are simultaneous. (a) shows all points while the three smaller
figures split the point into subsets depending on the value of σin.
(b) σin = 0 ms. (c) 0 ms < σin ≤ 2 ms. (d) σin ≥ 2 ms.

3.1. Effect of jitter (σin). Fig. 1a shows the relationship between the multivari-
ate SPIKE-distance and the NPSS for each simulation. The data consists of 605
simulations where no jitter was added to synchronous spike trains (σin = 0 ms) and
2420 simulations with jitter falling within the value ranges shown in Table 1 (3025
total). Figs. 1b to 1d show the same data, split into three cases, depending on the
degree of jitter. For Fig. 1b, σin = 0 ms, for Fig. 1c, 0 ms < σin ≤ 2 ms and for
Fig. 1d, 2 ms ≤ σin (up to 4 ms). The maximum value for σin of 4 ms was chosen
such that it is high enough to reduce synchrony significantly, to the point where no
synchronous activity beyond what is expected by random chance remains, even for
cases where Sin = 1 [7]. In all three figures, the colour of each point represents the
value of jitter applied, denoted by the colour bar on the right-hand side.

In [7], we noted that increasing jitter from 0 to 4 ms, causes the operational
mode to shift from coincidence detection to temporal integration. This is especially
apparent in cases where volleys are supra-threshold (∆v > Vth, see below) and pre-
synaptic firing is completely synchronised (Sin = 1). In such cases, the value of
σin can cause the neuron to operate as a pure coincidence detector (if σin = 0 ms,
M = 1) or a pure temporal integrator (if σin ≥ 4 ms, M = 0). The data presented
in Fig. 1 generalises this conclusion, since as the jitter increases, the data points
tend to stay closer to the lower-right of the plot, where the SPIKE-distance is
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Figure 2. NPSS (M) vs SPIKE-distance (DS) with the colour of
each point showing the asymptotic threshold-free potential (V∞, see
eqn. 10). (a) shows all points while the three smaller figures split
the point into subsets depending on the value of V∞ with respect
to the spike threshold (Vth). (b) V∞ < Vth. (c) Vth ≤ V∞ < 2Vth.
(d) V∞ ≥ 2Vth.

high (DS > 0.25) and the NPSS is low (M < 0.5). This is expected, since lower
synchrony, caused by higher jitter, causes the neuron to operate as a temporal
integrator, regardless of any other behaviour or parameter.

3.2. Effect of threshold-free potential (V∞) and volley peak potential
(∆v). Fig. 2 shows the same data as Fig. 1, with the colour of each point rep-
resenting the asymptotic, threshold-free potential (V∞, eqn. 10). If V∞ is higher
than the spike threshold Vth, response spikes are generated almost surely, while if
it is sub-threshold, response spikes are generated only if there is enough noise caus-
ing fluctuations that could drive the potential above threshold. The three smaller
subfigures, Figs. 2b to 2d, separate the points into three categories, based on the re-
lationship between V∞ and Vth. For Fig. 2b, V∞ < Vth, for Fig. 2c, Vth ≤ V∞ < 2Vth
and for Fig. 2d, V∞ ≥ 2Vth.

Similarly, Fig. 3 shows the same data again, but with the colour of each point
representing the peak voltage change caused by a synchronous volley (∆v, eqn. 11).
The three smaller subfigures, Figs. 3b to 3d, separate the points into three cate-
gories, based on the relationship between ∆v and Vth. For Fig. 3b, ∆v < Vth, for
Fig. 3c, Vth ≤ ∆v < 2Vth and for Fig. 3d, ∆v ≥ 2Vth.

These two features define various aspects of the behaviour of the neuron as well as
the relationship between the two measures being studied here (the SPIKE-distance
and the NPSS). In particular, in the following sections, we will use the relationship
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Figure 3. NPSS (M) vs SPIKE-distance (DS) with the colour of
each point showing the peak depolarisation of a fully synchronous
volley (∆v, see eqn. 11). (a) shows all points while the three smaller
figures split the point into subsets depending on the value of ∆v

with respect to the spike threshold (Vth). (b) ∆v < Vth. (c) Vth ≤
∆v < 2Vth. (d) ∆v ≥ 2Vth.

between these two values and the spike threshold (i.e., whether they are supra-
or sub-threshold) to show how the relationship between the input synchrony and
operational mode changes under different conditions.

3.3. Integration of coincident volleys. The data points in Fig. 1b that do not
follow the trend seen in the other points of the same subfigure (points whereM ≈ 0.5
and Ds < 0.3) are of particular interest. This deviation is caused by sub-threshold
values for the asymptotic potential (V∞) and more importantly the volley peak
(∆v). This is evident in Figs. 2b, 2c, 3b and 3c which show the behaviour occurring
for low values of V∞ and ∆v. Even more clearly, the phenomenon is exemplified
in Figs. 4c, 5e and 5f, which show how the operational mode is determined by
varying degrees of input synchrony when the asymptotic potential (V∞) is above
threshold and the volley peak (∆v) is below threshold. The phenomenon can also
be seen in Figs. 4a, 5a and 5b, which show cases where both V∞ and ∆v are below
threshold. More specifically, when ∆v < Vth, coincidence detection cannot occur,
even for Sin = 1, since a single spike volley cannot bring the neuron to fire from
rest. Instead, the neuron may integrate multiple spike volleys in order to reach
the firing threshold and in that case, the NPSS measures a balance of integration
and coincidence detection (M ≈ 0.5). The points that appear at M ≈ 0.5 and
DS = 0 on the figures are examples of this occurrence: the input spike trains were
completely synchronous (Sin = 1) and there was no jitter (σin = 0 ms), which
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Figure 4. NPSS (M) vs SPIKE-distance (DS) with the colour of
each point showing the degree of applied jitter (σin). Each subplot
is separated based on the relationship of the asymptotic threshold-
free potential (V∞) and the volley peak (∆v) to the spike threshold
(Vth). (a) Sub-threshold asymptotic potential and sub-threshold
peak: V∞ < Vth & ∆v < Vth. (b) Sub-threshold asymptotic poten-
tial and supra-threshold peak: V∞ < Vth & ∆v ≥ Vth. (c) Supra-
threshold asymptotic potential and sub-threshold peak: V∞ ≥ Vth
& ∆v < Vth. (d) Supra-threshold asymptotic potential and supra-
threshold peak: V∞ ≥ Vth & ∆v ≥ Vth.

results in a SPIKE-distance of zero, but the neuron behaves in a manner signified
by the middle of the operational mode continuum, where neither pure coincidence
detection nor temporal integration is taking place. In this case, we describe the
behaviour of the neuron as integrating coincidences, to denote that high degrees of
synchrony are driving the neuron, but multiple volleys are required to fire. In terms
of the aforementioned actual versus utilised synchrony, the input spike trains have
very high degrees of actual synchrony, but the neuron utilises this synchrony in a
different way. Instead, the high synchrony in a single volley is only utilised to bring
the membrane potential up to a certain level below threshold, before subsequent
volleys are integrated to raise the membrane potential above threshold and trigger
a response.

3.4. Coincidence detection. Our results also show the necessary circumstances
for a neuron to operate as a coincidence detector. Coincidence detection is measured
by the NPSS when M ≈ 1. We know that coincidence detection only occurs for
high values of Sin and in fact, pure coincidence detection only occurs when Sin = 1.
This is fundamental to our interpretation of the continuum of operational modes.
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For any value Sin < 1, there are Nin(1− Sin) random spike trains that contribute
to the depolarisation of the membrane across each inter-spike interval. Therefore, a
response spike cannot be fired as a result of coincident inputs only; there is always a
degree of depolarisation that occurred before the coincidence window w and is part
of the interval’s integration period. By looking at each figure, we can determine
how each of the other parameters and variables (σin, V∞, ∆v) affect the possibility
of achieving pure coincidence detection. From Fig. 1 it is apparent that coincidence
detection only occurs when σin = 0 ms (see, Fig. 1b), while Fig. 2 shows that the
asymptotic potential, V∞, has no effect on the ability of a neuron to operate as
a coincidence detector. Finally, Fig. 3 shows that coincidence detection requires
supra-threshold volley peaks, ∆v ≥ Vth. The above is summarised in Fig. 4, which
shows that coincidence detection occurs when ∆v ≥ Vth and σin = 0 ms (dark
blue points in upper-left corner), but V∞ can be either supra- or sub-threshold
(Figs. 4b and 4c). Examples of pure coincidence detection occurring can also be
seen in the sample configurations in Fig. 5. Figs. 5c and 5d show two cases where
the asymptotic potential is sub-threshold and the volley peak is supra-threshold
(V∞ = 10 mV,∆v = 20 mV for Fig. 5c and V∞ = 12.5 mV,∆v = 25 mV for
Fig. 5d) and in both cases, M = 1 when Sin = 1, DS = 0 and σin = 0 ms. The
same holds for Figs. 5g and 5h, which show two cases where the asymptotic potential
and the volley peak are supra-threshold (V∞ = 25 mV,∆v = 25 mV for Fig. 5e and
V∞ = 20 mV,∆v = 40 mV for Fig. 5f).

3.5. Effect of input parameter values (Nin, fin,Win). The figures for separate
parameter configurations in Fig. 5 illustrate how the individual parameters of the
neuron and the input have little effect on the relationship between the NPSS and the
SPIKE-distance and it is in fact the volley peak’s relation to the spike threshold that
mostly defines the relationship. The relationship between the asymptotic potential
and the threshold mainly determines the number of spikes that are fired when there
is little or no synchrony. Cases where the asymptotic potential is sub-threshold
and there is no synchrony simply produce very few spikes or none at all. Cases
where no spikes were fired were discarded and therefore do not appear in any of the
results. Each pair of figures in Fig. 5 shows very similar behaviour between them,
suggesting that specific parameter values (Nin, fin,Win), or specific values for V∞
& ∆v are not important for the interaction between SPIKE-distance and NPSS,
but the relative value of V∞ towards the threshold is the most important factor.

3.6. Summary of results. In all figures, the horizontal axis represents the value
of the integral of the SPIKE-distance over the entire duration of each simulation
(DS) and the vertical axis represents the value of the average NPSS (M). The
location of each point on a figure tells us the degree of synchrony in the input and
how that synchrony is being utilised by the neuron. To summarise, we describe the
causes and implications of points existing in each of the four quadrants of the plane
defined by the two measures.

Points in the lower-right part of the plot denote cases where the input is mostly
random (DS is high) and the neuron is simply integrating random input spikes (M
is low). This is the most common case, since it occurs both when Sin is low and
when Sin and σin are both high.

Points in the upper-right part denote cases where the input is mostly random
(DS is high) but the neuron is performing coincidence detection. This case is rare
and is caused by the SPIKE-distance measuring low spike train synchrony due to a
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(a) Nin: 100, fin: 100 Hz, Win: 0.1 mV
V∞ − Vth = −5 mV, ∆v − Vth = −5 mV
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(b) Nin: 50, fin: 100 Hz, Win: 0.2 mV
V∞ − Vth = −5 mV,∆v − Vth = −5 mV
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(c) Nin: 200, fin: 50 Hz, Win: 0.1 mV
V∞ − Vth = −5 mV, ∆v − Vth = 5 mV
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(d) Nin: 50, fin: 50 Hz, Win: 0.5 mV
V∞ − Vth = −2.5 mV,∆v − Vth = 10 mV
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(e) Nin: 50, fin: 140 Hz, Win: 0.25 mV
V∞ − Vth = 2.5 mV,∆v − Vth = −2.5 mV
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(f) Nin: 140, fin: 120 Hz, Win: 0.1 mV
V∞ − Vth = 1.8 mV,∆v − Vth = −1 mV
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(g) Nin: 50, fin: 100 Hz, Win: 0.5 mV
V∞ − Vth = 15 mV, ∆v − Vth = 15 mV
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(h) Nin: 400, fin: 50 Hz, Win: 0.1 mV
V∞ − Vth = 5 mV,∆v − Vth = 25 mV
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Figure 5. NPSS (M) vs SPIKE-distance (DS) for specific config-
urations of Nin, fin and Win, across the full range of synchrony
parameters, Sin ∈ [0, 1] (0.1 step size) and σin ∈ [0, 4] ms (1 mV
step size). The colour of each point shows the degree of applied
jitter (σin). The dashed lines connect points which share the same
value of σin and are ordered based on the value of Sin. Each subse-
quent point on a given line, starting from the top left, has a higher
value of Sin. Therefore, each pair of figures correspond to one of
the four cases shown in Fig. 4: (a) and (b) correspond to the first
case (Fig. 4a) where both the asymptotic potential and the volley
peak are sub-threshold, (c) and (d) correspond to the second case
(Fig. 4b) where the asymptotic potential is sub-threshold and the
volley peak is supra-threshold, (e) and (f) correspond to the third
case (Fig. 4c) where the asymptotic potential is supra-threshold
and the volley peak is sub-threshold, and (g) and (h) correspond
to the fourth case (Fig. 4d) where both the asymptotic potential
and the volley peak are supra-threshold.

large number of random spike trains, but the NPSS measures coincidence detection
because the neuron is responding primarily to coincidences. A clear example of this
occurrence can be seen in Fig. 5c, where M ≈ 0.9 and DS ≈ 0.4. Similar occurrences
can also be seen in Figs. 5d, 5g and 5h. Even though Sin = 0.8 & σin = 0 ms (for
Fig. 5c), which means that 80 % of spike trains are identical, the large value of
Nin = 200 creates enough random spike trains for the SPIKE-distance to measure
high overall spike distance. On the other hand, the NPSS measures a dominance of
coincidence detection, due to the high synchrony driving the neuron.

Even less common are points in the lower-left part of the plots. This area denotes
cases where the input is highly synchronous but the neuron performs mostly tempo-
ral integration (both DS and M are low). Such cases can occur, theoretically, when
the inputs are highly synchronised (Sin ≈ 1 & σin ≈ 0), the volley peak is very low
(∆v � Vth), but the input rate of each spike train (fin) is very high, which causes a
high asymptotic potential (V∞ > Vth). The result of this, is an extreme case of the
aforementioned behaviour of integrating coincidences, where the coincidences (syn-
chronous volleys) cause very small depolarisation (low peak), but they are frequent
enough to drive the membrane potential above threshold and cause response spikes.
As far as the NPSS is concerned, this is equivalent to temporal integration, even
though the spike trains at the input are highly synchronised. Our data does not
show extreme versions of this case (e.g., points in the lower-left corner) since that
would require very high spike rates. This can be seen by considering eqns. 10 and 11.
Eqn. 10 can be rewritten as V∞ = ∆vfinτ and, since we consider τ constant for a
given neuron, only the value of fin can cause the asymptotic potential to become
supra-threshold in the presence of a sub-threshold volley peak. For example, for
∆v < 1 mV (very small volley peak) the NPSS will measure near-zero, even when
Sin = 1, but the asymptotic potential must be supra-threshold (V∞ ≥ Vth) for
spikes to occur. Given our neuron parameter values, Vth = 15 mV and τ = 10 ms,
the individual input spike rate would have to be at least 1500 Hz.

The fourth and final case is represented by the upper-left part of the plot, where
the input spike trains are highly synchronised (DS is low) and the neuron is per-
forming coincidence detection (M is high). As mentioned in Section 3.4, high input
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synchrony, which occurs when Sin is high and σin is low, causes the neuron to
operate as a coincidence detector only when the volley peak is supra-threshold
(∆v > Vth).

4. Conclusions. Through our study of the relationship between the NPSS and
the SPIKE-distance metric, we have investigated the ways in which input syn-
chrony determines the operational mode and how this relationship is affected by
the properties of the pre-synaptic spike trains and the post-synaptic cell. The op-
erational mode of a neuron is considered to exist in a continuum between temporal
integration and coincidence detection [14, 7]. Generally, highly correlated or syn-
chronised inputs are more likely to cause a post-synaptic response (spike reliability
is increased) and shrink the response latency, two main characteristics of coinci-
dence detection [2, 5, 14, 7, 13]. Therefore, it is generally believed that higher
degrees of input synchrony cause the neuron to operate as a coincidence detector
and conversely, random, or highly dispersed inputs cause the neuron to operate as
a temporal integrator.

Our results and analysis show that high synchrony brings a neuron’s operational
mode to pure coincidence detection only when (i) the synchronous volley causes a
high enough depolarisation to cause a response (∆v ≥ Vth) and (ii) spike volleys
are highly synchronous (σin = 0 ms). These conditions are both necessary and suf-
ficient for a neuron to operate in a pure coincidence detection mode, as measured
by the NPSS. More generally, we have found that the relationship between input
synchrony and operational mode is not straightforward. The most important factor
is the amount of depolarisation caused by a single synchronous volley, assuming no
jitter is applied (∆v). The relationship between this value and the post-synaptic
neuron’s spike threshold (Vth) greatly affects the relationship between input syn-
chrony and operational mode. As already mentioned, when ∆v is supra-threshold,
higher degrees of input synchrony bring the neuron closer to coincidence detection.
However, at lower values, the neuron begins to operate in a manner we have de-
scribed as integrating coincidences, where a neuron is driven by high synchrony, but
requires multiple highly synchronous volleys to reach the threshold.

Our measure could be adapted to measure the operational mode of more com-
plex models which implement more realistic mechanisms. Such mechanisms may
cause the neuron to prefer one operational mode over another intrinsically. For
instance, active conductances can make the model more sensitive to synchronous
inputs, which would favour coincidence detection and increase the frequency of
high membrane potential slope values. The ability of the NPSS to correctly mea-
sure the response-relevant input synchrony depends mainly on whether the upper
and lower slope bounds can reflect the effects of the neural mechanisms. This could
be accomplished by determining the maximum and minimum rate of depolarisa-
tion empirically, by driving the model with inputs representing various extreme
cases. It is unclear how this will affect the relationship between the NPSS and
the SPIKE-distance, however. Certain neural mechanisms can cause the model to
behave differently, even when driven by the same input spike patterns, under dif-
ferent conditions (e.g., for different degrees of membrane depolarisation). Whether
a meaningful relationship between the two measures exists in such cases could be a
matter of study that would follow the adaptation of the NPSS to different models
and circumstances, and is outside the scope of this paper.
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