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Abstract. Experimentally it is known that some neurons encode preferen-
tially information about low-frequency (slow) components of a time-dependent

stimulus while others prefer intermediate or high-frequency (fast) components.

Accordingly, neurons can be categorized as low-pass, band-pass or high-pass
information filters. Mechanisms of information filtering at the cellular and the

network levels have been suggested. Here we propose yet another mechanism,

based on noise shaping due to spontaneous non-renewal spiking statistics. We
compare two integrate-and-fire models with threshold noise that differ solely

in their interspike interval (ISI) correlations: the renewal model generates in-

dependent ISIs, whereas the non-renewal model exhibits positive correlations
between adjacent ISIs. For these simplified neuron models we analytically

calculate ISI density and power spectrum of the spontaneous spike train as
well as approximations for input-output cross-spectrum and spike-train power

spectrum in the presence of a broad-band Gaussian stimulus. This yields the

spectral coherence, an approximate frequency-resolved measure of informa-
tion transmission. We demonstrate that for low spiking variability the renewal

model acts as a low-pass filter of information (coherence has a global maximum

at zero frequency), whereas the non-renewal model displays a pronounced max-
imum of the coherence at non-vanishing frequency and thus can be regarded

as a band-pass filter of information.

1. Introduction. Neurons encode time-dependent sensory signals in sequences of
action potentials, so-called spike trains. How the nonlinear and stochastic (noisy)
dynamics of the neuron shapes this encoding process is an active topic of current
research in computational neuroscience. Many nerve cells fire spikes already in the
absence of sensory stimulation — they are spontaneously active. How do the prop-
erties of this spontaneous activity influence their signal transmission capabilities if a
stimulus is presented to the neuron? This very general question has been addressed,
for instance, for neurons that show a pronounced non-renewal spontaneous spiking,
i.e. their spike trains display correlations among the intervals between adjacent
spikes (so-called interspike intervals or short ISIs). It has been demonstrated that
negative ISI correlations can significantly enhance the transmission of a broad-band
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signal [10, 12, 9], an idea that may be also usable for artificial signal detectors [37].
ISI correlations can arise for various reasons and can be different in sign, shape,
and function.

Besides the total amount of transmitted information, the neural encoding of
specific stimulus features may be also worth to be investigated. A number of ex-
perimental and theoretical studies explored, how the signal transmission of certain
neural systems differs for the slow, intermediate and fast components of a time-
dependent signal. This can be quantified by the spectral coherence function, a
frequency-dependent correlation coefficient between zero and one, which has been
measured, for instance, in the vestibular system of monkey [43, 33], the auditory
system of bullfrog [40] and cricket [32], and the electrosensory system of electric fish
[11, 35, 36]. By means of high values of the coherence at low, intermediate or high
frequencies we can distinguish low-pass, band-pass, and high-pass filters of informa-
tion. For a more faithful measure of information filtering, see the frequency-resolved
mutual information rate recently suggested by [3].

Features of the dynamics that shape the neural information filter have also re-
ceived some attention from theoreticians. First of all, the simplest yet not com-
pletely unrealistic neuron model, the integrate-and-fire (IF) neuron with white back-
ground noise, transmits most information about slow components of a broadband
stimulus [51, 27]. Remarkably, this low-pass filter property is independent of the fir-
ing regime (tonic, irregular, or bursting) and the kind of subthreshold nonlinearity
that distinguishes different (perfect, leaky, and quadratic) IF neurons. This raises
the question by which mechanisms a pronounced band-pass or high-pass information
filter may arise.

An additional source of high- or low-pass filtering may originate in short-term
synaptic plasticity [52, 1]. Although we do not observe this with a homogeneous
population of synapses that are all facilitating or all depressing [29, 34], the pic-
ture changes if we take into account that most cortical neurons receive different
signals through subpopulations of either depressing or facilitating synapses (hetero-
geneous synaptic short-term plasticity). Specifically, information on stimuli that
arrive through depressing synapses may be high-pass filtered [15]. Another mech-
anism for low- and high-pass filtering of information is associated with bursting in
cells with active dendrites [38]. Sorting spikes from cells with active dendrites into
bursts and isolated spikes, one finds that the latter code for high-frequency bands,
whereas bursts have a large coherence at low frequencies only - a result that was
first observed experimentally in pyramidal cells in weakly electric fish [38]. A third
mechanism for information filtering at the cellular level is observed for neuron mod-
els that display pronounced subthreshold oscillations due to the presence of slow
ionic currents [25, 8, 16]. Variants of the resonate-and-fire neuron show band-pass
filtering of information [4]. Finally, at the population level it has been shown that
synchronous spikes of neurons, which are stimulated by a common signal, carry more
information about high than about low frequencies [46] confirming and explaining
earlier experimental findings [35].

In this paper we suggest a new and simple mechanism for a band-pass filtering of
information about a broad-band stimulus. This is based on positive ISI correlations
in the neuron’s spontaneous activity. Such correlations are experimentally observed
(see e.g. [30, 17]) and can originate from an slow external stimulus [26], slow intrinsic
channel noise [44], or subthreshold spike-frequency adaptation [39, 47]. We explore
the consequences of a positive ISI correlation for the frequency-resolved information
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transmission in two analytically tractable neuron models. The two models are
similar in their spontaneous spiking and their linear response but differ only in
their ISI correlation: the renewal model generates a spike train with independent
ISIs while the non-renewal model displays a positive correlation between adjacent
ISIs. This comparison of non-renewal and renewal models is similar in spirit and
analytical methodology to the studies by [12] and [28] that explored the effect of
negative ISI correlations on neural signal transmission.

Our paper is organized as follows. We start by introducing the models and
measures of interest, explain then how the latter can be calculated or at least ap-
proximated analytically, compare our results to numerical simulations of the model,
and discuss the noise-shaping effect that leads to band-pass filtering of information.
Details of the calculations are presented in the appendix.

2. Models and measures. Here we introduce the simple perfect integrate-and-
fire models with threshold noise by means of which we will investigate the effect
of positive ISI correlations on neural signal transmission. We will also define the
measures of interest and give analytical expressions or at least approximations for
these statistics.

2.1. Neuron model. For both models, the input is integrated according to

dv

dt
= µ+ s(t), (1)

where v(t) is the membrane voltage and µ is a constant base current, which we
choose in the following as µ = 1 (all parameters are given in non-dimensional units,
including time-scales and frequencies); s(t) is the input signal discussed below. As
in all IF models upon reaching a threshold vT the voltage is reset to a value vR
and the i-th spike time ti is registered. The models are illustrated in Fig. 1 in the
absence of a stimulus (s(t) ≡ 0, spontaneous activity). In our setup vT and vR are
not fixed but vary stochastically from spike to spike as follows. For both models we
draw after each spike a random threshold vT from an inverse Gaussian distribution
PT (vT ) in the range [0,∞]; for the specific distribution, see below Eq.(6). The two
models differ in the generation of the reset value vR. For the renewal model vR is
drawn from a mirrored distribution of negative values, i.e. pR(vR) = pT (−vR), see
below Eq.(6). All random values of threshold and reset are statistically independent
in this model and this leads to ISIs that are also completely independent of each
other (see Fig. 1d). in

For the non-renewal model we use the preceding threshold value (i.e. vT mirrored
along zero) as the next reset value. This leads to the same statistical distribution
of reset values as in the renewal model. Moreover, a high value of the threshold
(implying a preceding ISI which is larger than the mean ISI on average) causes a low
value of the following reset (implying a subsequent ISI that is likewise larger than
the mean ISI on average). So the particular reset rule leads to a positive correlation
between adjacent intervals with a serial correlation coefficient of 1/2 (see Fig. 1d
and appendix, sec. (4)).

Although random fluctuations of a firing threshold have been observed in exper-
iments [2, 9] and used in theory [20, 12] we do not claim that our models with their
stochastic threshold and reset values capture the subthreshold membrane voltage of
real neurons. Rather our two models are intended to describe features of real neu-
rons’ spike train statistics in an analytically tractable manner. Moreover, because
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Figure 1. Spontaneous activity of the two models stud-
ied in this paper. Time course of the membrane voltage of the
integrate-and-fire model with threshold noise in the renewal ver-
sion (a) and the non-renewal version (b). In the renewal model (a)
the threshold (green) and reset (blue) values are drawn indepen-
dently from an inverse Gaussian distribution (indicated on the top
left and given in Eq.(5)). In the non-renewal model (b) each reset
value is a flipped version of the previous threshold value (which is
mirrored along the time axis), giving rise to positive correlations
between adjacent ISIs (d). Both models display exactly the same
ISI distribution (c) (see Eq.(5) below) which is an inverse Gaussian
though with different mean and variance than the ones used for
threshold and reset.

of their simplicity, renewal and non-renewal versions differ exactly in one statistical
property only, the interval correlation, and are thus amenable to a quantitive com-
parison of their signal transmission characteristics (see below). With our choice of
the inverse Gaussian probability density for the values of threshold and reset, the
ISI density will be an inverse Gaussian as well. This function coincides with the
ISI density of a perfect integrate-and-fire model driven by white Gaussian noise,
which is one of the classical results in theoretical neuroscience [21]. Typically, the
inverse Gaussian probability density is a unimodal distribution skewed to the right
that displays a suppressed probability at very short intervals (reflecting a refractory
state) and possesses a pronounced tail describing the distribution of long intervals.
These features are shared by the ISI histograms of many neurons (see, for instance,
[6]); indeed, the ISI density of some neurons can be well fit by an inverse Gaussian
[21, 17].

If we switch on a signal s(t) it will modulate the speed with which the voltage
approaches the threshold and will thus affect the spike times generated by the
model. In this way, the signal will be encoded in the sequence of spikes. It is the
central question of this paper how the positive ISI correlations in the non-renewal
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model influence the transmission of the signal s(t). For the signal s(t) we will use a
band-limited Gaussian white noise with a variance 〈s2〉 = ε2 and a cut-off frequency
fc. The power spectrum of such a stimulus is given by

Sst(f) =
ε2

2fc
Θ(f − fc), (2)

where Θ(f) is the Heaviside function. Note that our model includes two kinds
of stochasticity (randomness): the random values of threshold and reset describe
in a simplified manner intrinsic neural variability, whereas the randomness of the
external stimulus is a simple model for a complex time-dependent sensory signal.

2.2. Spike train statistics and spectral measures. Using the spike times ti
given by the threshold crossings we can define a spike train for the associated point-
process [22]:

x(t) =
∑
i

δ (t− ti). (3)

An important characteristics of neural variability is the statistics of the interspike
interval (ISI), Ti = ti − ti−1. The time averaged firing rate r and the coefficient of
variation (CV) of the ISI can be both expressed by the first two moments of the ISI
as follows

r0 =
1

〈Ti〉i
, CV =

√
〈(Ti − 〈Ti〉i)2〉i
〈Ti〉i

, (4)

where 〈. . .〉i means an average performed over the index i. If the CV is zero then
the spike-train x(t) is regular (pacemaker cell), whereas a CV around one indicates
a more irregular spike train, similar to a Poisson process. For comparison, the CV

for the spike trains in Fig. 1 is CV = 0.5.
Instead of only measuring the mean and the variance of the ISI we can also ask

for the probability density F1(T ) of the single ISI T (where we drop the index).
Fortunately, for our simple models and by construction we know the ISI density of
the spontaneous activity exactly. If the reset and threshold values are distributed
according to inverse Gaussian probability distributions, the ISI is a sum of two inde-
pendent random variables that are likewise distributed according to such probability
distributions. This is so because without additional signal the voltage having con-
stant speed translates random voltage differences between reset and threshold into
random time intervals (ISIs) with similar distributions. The voltage started at the
reset point goes to zero in a first time interval, τ̂i distributed according to FIG(τ̂i),
and continues from zero to the threshold value in a second time interval, τi, also
distributed according to FIG(τi). Now, the sum of two intervals, both distributed
according to the same inverse Gaussian function, is likewise distributed according
to an inverse Gaussian, though with mean and variance doubled, compared to the
single intervals, τ̂i, τi, [18].

The inverse Gaussian distribution of the ISI can be conveniently parameterized
in terms of the inverse mean value, i.e. the firing rate r0, and the coefficient of
variation CV

F1(T ) =

√
1

2πr0C2
VT

3
exp

[
−r0

(T − 1/r0)
2

2C2
VT

]
. (5)

Using the above discussed relation between threshold and reset distributions on
the one hand and the ISI distribution on the other hand, we can prescribe CV and
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rate of the output spike train by drawing the threshold and reset values from the
following distributions

pT(vT ) =

√
µ

8πr0C2
Vv

3
T

exp

[
−r0

(vT − µ/ (2r0))
2

2C2
VvTµ

]
, pR(vR) = pT(−vR). (6)

For the renewal model we have to draw the reset values from the mirrored distribu-
tion pR(vR). In the non-renewal model the reset values are determined by mirroring
the respective preceding threshold value, leading to the very same statistical distri-
bution of reset values as in the renewal model. For all parameter sets studied in
this paper the mean values of the two distributions for threshold and reset are set
to 1/2 such that with µ = 1, the firing rate is always one, r0 = 1.

In order to characterize the statistical dependence among the ISIs, we use the
serial correlation coefficient (SCC)

ρk =
〈(Ti+k − Ti) (Ti − 〈Ti〉i)〉i

〈(Ti − 〈Ti〉i)2〉i
. (7)

The SCC of the spontaneous spiking activity (without signal, i.e. s(t) ≡ 0) for
the renewal model is zero for higher lags than zero, because all threshold and reset
values are independent from each other, and thus the corresponding intervals are
independent as well, implying

ρR,k = 0, k > 0. (8)

This is different for the non-renewal model for which each reset value equals the
negative image of the foregoing threshold value. As outlined above, a high (low)
threshold value implies a long (short) foregoing ISI which is then, by virtue of the
low (high) reset value, followed by a longer (shorter) subsequent ISIs. As shown in
the appendix, sec. (4), this leads to a pronounced positive correlation exclusively
between adjacent ISIs

ρNR,k =
1

2
δ1,k, k > 0. (9)

To study the signal transmission of the neuron models in the framework of Shan-
non’s information theory [45, 13], we will work in the following in the frequency
domain. Let x(t) be the output spike train of the neuron subjected to the signal
s(t). The Fourier transform of a stochastic process will be denoted by a tilde and
is for a finite time window [0, T ] defined as

x̃T (f) =

T∫
0

dt e2πiftx(t), (10)

Given the output spike train x(t) and the signal s(t), the power spectrum of x(t)
and the input-output cross-spectrum are given by

Sx,x(f) = lim
T→∞

〈〈x̃T (f)x̃∗T (f)〉vT ,vR〉s
T

, (11)

Sx,s(f) = lim
T→∞

〈〈x̃T (f)s̃∗T (f)〉vT ,vR〉s
T

, (12)

Here the star denotes the complex conjugated and the average is performed both
with respect to the internal noise and the external stimulus.
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The spike train power spectra in the spontaneous case (renewal or non-renewal)
can be given in terms of the Fourier transforms of the probability density of the
n-th order interval Tn, Fn = F (Tn) [24]

S0(f) = r0

(
1 +

∞∑
n=1

F̃n(f) + F̃ ∗n(f)

)
. (13)

In case of a renewal process we have that F̃n(f) =
(
F̃1(f)

)n
. In the absence of

a signal (which we indicate in the following by the index “0”), we thus obtain the
well-known formula [50]

SR,0(f) = r0
1− |F̃1,0(f)|2

|1− F̃1,0(f)|2
= r0

1− F̃1,0(f)F̃1,0(−f)(
1− F̃1,0(f)

)(
1− F̃1,0(−f)

) , (14)

where we used that F̃ ∗1,0(f) = F̃1,0(−f).

For the nonrenewal model studied here we have that F̃n(f) = F̃ 2
τ (f)F̃τ (2f)n−1,

where F̃τ (f) denotes the characteristic function of the probability density of thresh-
old and reset values (see sec. (4)). The expression for the spontaneous power spec-
trum of the spike train can be significantly simplified (see the appendix, sec. (4))
and reads

SNR,0(f) = r0

∣∣∣∣1−√F̃1,0(2f)

∣∣∣∣2 + 2<
[
F̃ ∗1,0(f)

(
1−

√
F̃1,0(2f)

)]
|1−

√
F̃1,0(2f)|2

, (15)

where < [...] denotes the real part of a complex number. We conclude that for
calculating the power spectra of both models in the spontaneous case (s(t) ≡ 0), we
need to know only the characteristic function of the ISI. For an inverse Gaussian
ISI density, this function is known and reads:

F̃1,0(f) = exp

 1

C2
V,0

1−

√
1− 4πif

C2
V,0

r0

, (16)

The cross-spectrum between input signal, s(t), and evoked output spike train, x(t),
can be written in terms of the power spectrum of the input signal

Sx,s(f) = χ(f)Sst(f) =
r0
µ
Sst(f). (17)

In the last step we have used that the susceptibility χ(f) of the perfect IF model
with threshold noise is a constant with respect to frequency, i.e. χ = r0/µ [28].

The spike-train power spectrum in presence of a weak broadband stimulus can
be approximated by this following simple expression (theory I from [28]):

SI(f) = S0(f) + |χ(f)|2Sst(f) = S0(f) +
r20
µ2
Sst(f). (18)

For a linear system, the first formula would be exact, i.e. the power spectrum of
the driven system equals the sum of the power spectrum of the unperturbed system
(here denoted by S0(f)) and the transmitted signal power (here described by the
susceptibility χ(f) and the signal spectrum Sst(f)). Applying the formula to a
nonlinear system is an approximation of unknown accuracy. Nevertheless, it has
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been widely used in the literature on nonlinear stochastic systems with external
driving (for an in-depth discussion and references, see [28]).

For the perfect IF model with threshold noise and external driving, an alternative
theory for the power spectrum (in the following called theory II) has been developed
by [28]. It turns out that the following formula can be applied in our setup as well:

SII(f) = r0 + |χ(f)|2Sst(f) +

∞∫
−∞

df ′ (S0(f ′)− r0) I(f, f ′), (19)

I(f, f ′) =
4
(
af ′2

)3[
a2f ′4 + 4π2 (f − f ′)2

]2
+2<

 (
af ′2 − 2iπf

)2
[af ′2 − 2iπ (f − f ′)]2

∞∫
−∞

df̃
Sst

(
f̃
)
/µ2

af ′2 − 2iπ
(
f − f ′ − f̃

)
 , (20)

with the abbreviation a = π2ε2/(fcµ
2). Theory II is valid for a weak noise only

but still captures nonlinear effects of the signal on the power spectrum. It can, for
instance, quantitatively describe how a band-pass limited signal (having power only
up to a cut-off frequency fc) broadens a spectral peak that is outside the signal
band, e.g. a peak at f > fc.

The derivation of the formulas above is a nontrivial matter but works, briefly, as
follows. The system with driving signal (v̇ = µ+ s(t)) can be mapped to the spon-
taneous system v̇ = µ by a nonlinear time transformation. A necessary condition
for a unique mapping (a monotonic time transformation) is that

√
〈s2〉 � µ (weak

signal amplitude). Then, using i) the Wiener-Khinchin theorem, ii) the relation
between the conditional spike counts of the driven and the spontaneous system,
iii) a Markovian approximation for a needed conditional average of the signal and
iv) a number of manipulations of the resulting integral expressions in the Fourier
domain, gives the final result stated above in Eq.(19) and Eq.(20).

Information transmission in our setup can be studied by using the spectral co-
herence function [41, 42]

C(f) =
|Sx,s(f)|2

Sx,x(f)Ss,s(f)
. (21)

The coherence function is a correlation coefficient, which is restricted to [0, 1] and
measures which spectral components of the input are represented in the output. A
value of the coherence close to one at a certain frequency indicates that the output
carries almost all information of this spectral component of the stimulus, whereas
a value close to zero implies that almost no information is linearly encoded about
the signal component in this frequency band. Thus, the coherence can be regarded
as an approximate measure of information filtering.

Using theory I for the power spectrum, the coherence function between evoked
output spike train and input signal can be approximated by

CI(f) =

[
1 +

2fcµ
2S0(f)

r20ε
2

]−1
, (22)

which we will use below to study the shape of the coherence function analytically.
We will also compare the coherence, using Eq.(21) and the power spectrum of theory
II, Eq.(19), to numerical simulations.
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One possible measure of the extent of band-pass filtering of information is

Q = C(f̂)/C(0), (23)

where f̂ denotes the frequency at which the coherence attains its global maximum.
Clearly, for a low-pass filter of information, we have Q = 1, whereas values signifi-
cantly larger than one indicate a band-pass or high-pass filter.

By means of the coherence function we can also estimate the total amount of
transmitted information using a lower bound formula for the mutual information
rate

MLB = −
∞∫
0

df log2 (1− CSR(f)). (24)

This formula has been proven mathematically in Ref. [19]; for a number of instruc-
tive examples in the neurobiological context, see the review by [5], for a recent study
of how tight this bound is in case of a leaky integrate-and-fire model, see [3]. We
note that for the models studied here the integral in Eq.(24) has to be evaluated
numerically.

3. Results. Here we present the theoretical predictions for the spectral measures
and compare them to results of stochastic simulations of the two models. We will
vary the signal strength and the intrinsic variability of the model neuron, which is
parameterized solely by the CV of the spontaneous activity. Note that the latter is
generally smaller than the CV of the evoked activity (both are compared below in
Fig. 6). Because the perfect IF neuron is commonly used to model rather regular
spiking behaviour of tonically firing cells (see e.g. the studies by [21] and [17])
with CV ≤ 0.5, we restrict ourselves in this study to this regime of low CV of the
spontaneous activity.

3.1. ISI correlations lead to band-pass-filtering of information. Before we
systematically explore the dependence of spectra and coherence on system param-
eters, let us highlight the main effect of positive ISI correlations on signal transfer,
i.e. the main difference between the renewal and the non-renewal models. In Fig. 2
we show the squared cross-spectra between input and output, the spike train power
spectra, and the coherence functions of the two models. While there is no difference
in the cross-spectra (Fig. 2a), the power spectra of the two models (Fig. 2b) differ
significantly due to the noise-shaping effect of positive correlations: the non-renewal
model has more power at low frequencies but reduced power in an intermediate fre-
quency range about f ≈ 1/2, corresponding to half of the firing rate, r0 = 1. This
effect can already be understood from the inspection of the spontaneous power spec-
tra, which is for the case shown close to the spectrum according to theory I, Eq.(18)
(dashed lines in Fig. 2b). Generally, we know that the spike train power spectrum
of a stationary point process obeys the relation [14]

S(0) = r0CV

(
1 + 2

∞∑
k=1

ρk

)
. (25)

Both models have the same rate and CV, implying that

SNR(0) = r0CV (1 + 2ρ1) = 2r0CV = 2SR(0) (26)

because in the renewal model
∑∞
k=1 ρk = 0. Thus, the non-renewal model has

twice as much power at low frequencies as the renewal model, which is only slightly
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Figure 2. Information filtering of the two models. Numeri-
cal results (symbols) compared to theory I (dashed lines) and the-
ory II (solid lines) for CV,0 = 0.1 of the spontaneous activity and a
weak input signal s(t) (ε2 = 0.01). Theory I predicts a maximum
of the coherence at much higher values (C ≈ 0.7), which is not
shown.

changed by the presence of a weak signal (cf. Fig. 2b). Because the total integral
over the power spectra is unchanged (for the same reason given by [12] and [28] for
the IF neuron with negative ISI correlations), the increased power at low frequencies
has to be reduced in some other frequency range, an effect known as noise shaping
[49, 48, 31]. Fig. 2b reveals that this reduction is observed at intermediate frequen-
cies around half of the firing rate (for our numerical example, f = r0/2 = 1/2). We
recall that the coherence is essentially the ratio between squared cross-spectrum and
power spectrum (cf. Eq.(21)). Hence, we can conclude that the coherence function
of the non-renewal model must have a pronounced peak at the intermediate range
about f ≈ 1/2 but is small at low frequencies, which is indeed what we observe
in Fig. 2c. The renewal model, in contrast, shows a low-pass coherence function,
similar to standard IF models with more realistic intrinsic current noise [51].

Both theory I and II capture this band-pass filtering of information qualitatively.
However, because the intrinsic noise for the example is quite low, we are not com-
pletely in the linear response regime and thus the quantitative agreement of theory I
with the simulated coherence is not good around its maximum. In contrast, theory
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Figure 3. Spectral measures for low intrinsic variability
(CV = 0.1) and different values of the signal strength using
theory I, Eq.(18). Comparison of squared spectrum (a,d), spike
train power spectrum (b,d), and coherence (c,f) to theoretical pre-
dictions for the renewal model (left) and the non-renewal model
(right).

II, based on Eq.(19) for the power spectrum, reproduces the simulation data quite
well. In the following, we explore how robust the band-pass filter effect is and how
well the two theories can describe spectrum and coherence for different intrinsic
variability (different CVs) and different values of the signal amplitude (different
values of ε).

3.2. Dependence of information transmission on signal amplitude and
intrinsic variability. In Fig. 3 we compare the spectral statistics considered before
for different values of the stimulus amplitude and for a low value of the spontaneous
CV, implying a low intrinsic variability of the model. In this figure we use theory I
for calculating the power spectrum and the coherence function. Because this theory
holds true for weak stimuli only, power spectrum and coherence agree reasonably
well with numerical simulations for a very small amplitude of ε2 = 0.01. For this
value, the band-pass filter effect is also most pronounced, i.e. the coherence in
Fig. 3f has a pronounced peak around f = 1/2, corresponding to half the firing rate
r0. In contrast to this, the corresponding coherence function for the renewal model
(Fig. 3c) attains its global maximum at zero frequency.

By increasing the signal amplitude, the coherence for both renewal and nonre-
newal models attains the shape of a low-pass information filter and its overall ampli-
tude increases significantly. At the same time the agreement with the simple theory
becomes worse. This is due to the broadening of peaks in the spike-train power spec-
tra, which become increasingly similar for renewal and non-renewal model. With
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Figure 4. Spectral measures for regular firing and differ-
ent values of the signal strength using theory II, Eq.(19).
Comparison of squared spectrum (a,d), spike train power spectrum
(b,d), and coherence (c,f) to theoretical predictions for the renewal
model (left) and the non-renewal model (right).

a strong signal, the kind of reset does not matter anymore for the spiking statis-
tics because the external signal “noise” (common to both renewal and non-renewal
models) completely dominates the dynamics.

In Fig. 4 we show the same simulation data together with theoretical results
using theory II for the power spectrum and the coherence function. The involved
convolution-like expression in Eq.(19) captures the power spectrum and the re-
sulting coherence function in an excellent manner even for comparatively strong
stimulation. Theory II can thus describe faithfully how the information filtering
effect due to positive ISI correlations is diminished and eventually destroyed for
growing amplitude of the signal. We reiterate that this is expected because in the
limit of strong external signal any feature of the intrinsic (spontaneous) dynamics
is eliminated. In particular we expect for high cut-off frequency of the stimulus (i.e.
an almost perfect white-noise stimulus) that the positive ISI correlations vanish
for strong stimulation. This is just another manifestation of the fact that the two
models do not differ anymore in this limit.

What is a weak signal? This depends a lot on the amount of intrinsic variability,
as demonstrated in Fig. 5, where we show the same spectral statistics as before but
for a spontaneous CV of 0.5 instead of 0.1. For such an intermediate level of the
intrinsic variability, we illustrate in Fig. 5 that band-pass filtering of information
is robust (see panel f), i.e. a maximum at non-vanishing frequency is observed for
all signal amplitudes in the non-renewal model. The renewal model (cf. Fig. 5c)
still acts as a low-pass filter of information. In addition, we note that theory I
in this case provides a reasonable approximation for the power spectrum and the
coherence even for the largest amplitude of ε2 = 0.5. The reason for this is that the
intrinsic variability linearizes the dynamical response. Put differently, the inherent
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Figure 5. Spectral measures for rather irregular firing
and different values of the signal strength using theory I,
Eq.(18). Comparison of squared spectrum (a,d), spike train power
spectrum (b,d), and coherence (c,f) to theoretical predictions for
the renewal model (left) and the non-renewal model (right).

nonlinearity of resetting in the IF model is “washed out” by a sufficient amount of
noise in the values of threshold and reset. As a consequence of this linearization,
theory II yields only a minor improvement of the agreement between simulations
and theory and is for this reason not shown here.

Finally, we discuss in Fig. 6 measures of information transmission and filtering
as functions of the coefficient of variation in the presence of the stimulus. Note that
this so-called evoked CV differs from the CV of the spontaneous activity (i.e. CV
in the absence of a stimulus) that we used so far. For all data shown the evoked
CV is varied by changing the spontaneous CV; both are connected by a monotonic
relationship as demonstrated in Fig. 6d and h.

The statistics shown in Fig. 6a and b confirms what we already have seen in single
coherence functions of the renewal model. For the entire range of the evoked CV

the renewal model displays a clear low-pass filtering of information: the frequency f̂
of the global coherence maximum is zero (Fig. 6a) and the quality is one (Fig. 6b).
For the non-renewal model, we observe for most values of the CV a pronounced
band-pass filtering of information with a frequency slightly below 0.5 (Fig. 6e), i.e.

f̂ ≈ r0/2 (because, for all parameter sets, r0 = 1). The extent of band-pass filtering
in the non-renewal model depends in a non-trivial way on the spiking variability
(CV) and on the signal amplitude (Fig. 6f). The largest value is achieved for a weak
stimulus and low intrinsic variability. Note, that at this particular combination of ε
and CV the total information rate, Eq.(24), does not have to be maximal. Generally,
the mutual information rate increases with signal amplitude and decreases with
spike variability (here varied by increasing the threshold and reset variability). Both
observations can be expected.
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Figure 6. Characteristics of the information transmission
and filtering as functions of spiking variability for renewal
model (left) and non-renewal model (right). Shown are:
frequency at which the coherence has its global maximum (a,e),
quality of coherence, Eq.(23) (b,f), and lower bound on the mu-
tual information rate, Eq.(24) (c,g). All statistics are determined
from simulation data and plotted vs evoked coefficient of variation
(CV in presence of broadband stimulus), which is also measured
in simulations. The evoked CV was varied by changing the CV
of the spontaneous activity, a parameter that enters the model
through the distributions of threshold and reset, Eq.(6). Evoked
CV is shown as a function of spontaneous CV in (d,h). All data
are obtained from numerical simulations of the models.

3.3. Analytical conditions for low-pass and band-pass filtering of infor-
mation. Even in the simple theory I the expressions for the coherence function
are rather involved and it seems infeasible to determine the global maximum of
the coherence analytically. As an approximate way to quantify band-pass filtering
of information - or rather the deviation from low-pass filtering - we expand the
coherence at low frequencies to second order

CI(f) ≈ CI(0) + C
(2)
I (0)

f2

2
. (27)
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Note that the coherence is an even function and therefore all odd derivatives vanish
at zero frequency. Furthermore, with a view on Fig. 2c it seems justified to use
theory I for the coherence at low frequencies where its agreement with simulations
is better than around the maximum of the coherence function.

We can take the second derivative of the coherence, C
(2)
I (0), its curvature, as a

proxy for information filtering. If the curvature is positive, the coherence does not
have a global maximum at zero frequency, i.e. it is not a low-pass filter. If the
curvature is negative, it is an indication that the information transmission drops
with increasing frequency, which is the hallmark of a low-pass filter of information.
It is clear that with this locally defined measure we cannot make strict statements
about global maxima of a function. However, specifically in our system we have
observed numerically that the curvature at zero frequency is a reliable indicator of
the filtering properties.

How can we calculate C
(2)
I (0)? Because the only frequency dependence of the

coherence arises from the power spectrum, in the approximation of theory I de-
termined by CI(f) ∼ S−10 (f), the curvature can be expressed by the spontaneous

power spectrum and its derivatives, S0(0), S
(1)
0 (0), S

(2)
0 (0). The latter in turn are

related to the derivatives of the ISI’s characteristic function at zero frequency, which
are given by the moments of the ISI in the absence of a stimulus according to

dn

dfn
F̃1,0(f)|f=0 = (2πi)

n 〈Tn〉. (28)

Using this approach and applying it to the renewal and non-renewal models em-
ploying the expressions for the spontaneous power spectra, Eq.(14) and Eq.(15), we
can express the curvature of the coherence at zero frequency by the moments of the
ISI. For sake of simplicity we use the abbreviation µn =< Tn > (not to be confused
with the base current µ of our models).

For the renewal model we obtain

C
(2)
R (0) =

2π2r30ε
2

6fcµ2

3µ3
2 − 4µ1µ2µ3 + µ2

1µ4

(r0µ2 + µ2
1 (r20ε

2/(2fcµ2)− r0))
2 . (29)

The sign of the curvature is determined by the numerator of the fraction, i.e.

sign
(
C

(2)
R (0)

)
= sign

(
3µ3

2 − 4µ1µ2µ3 + µ2
1µ4

)
,

= sign
(
−1− (3 + β2)C2

V − 4β1C
3
V + 3C4

V

)
. (30)

In the last line we expressed the moments in terms of the coefficient of variation
(CV ), the skewness (β1), and the kurtosis (β2) (cf. Eq.(41) in the appendix, sec. (4)).
From these expressions that are valid for any distributions of threshold and reset
we can conclude that for low spike variability (CV → 0) the renewal model acts as

a low-pass filter because in this limit sign
(
C

(2)
R (0)

)
→ sign(−1). For the inverse

Gaussian probability density skewness and kurtosis can be expressed by the CV
only (c.f. Eq.(43) in the appendix, sec. (4)), which yields

sign
(
C

(2)
R (0)

)
= sign

(
−1 + 6C4

V

)
. (31)

Hence, the analytical condition for low-pass information filtering in the renewal
model reads

CV < CV,crit = (1/6)
1/4 ≈ 0.6389. (32)
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If the CV of the spontaneous activity in the renewal process is below the critical
value CV,crit, the model will act as a low-pass filter of information, while higher val-
ues imply (a mild form of) band-pass filtering, which is also observed in simulations
(not shown).

Using the same approach in the non-renewal model leads to expressions of com-
parable simplicity as in the renewal case. The curvature of the coherence for the
non-renewal model is given by

C
(2)
NR(0) =

8π2r30ε
2

6fcµ2

(
3µ3

2 − 4µ1µ2µ3 + µ2
1µ4 − 3µ2

1µ
2
2 − 3µ3

1µ3

)
(r0µ2 + µ2

1 (r20ε
2/(2fcµ2)− 2r0))

2 . (33)

Again the sign of the curvature is determined by the numerator leading to

sign
(
C

(2)
NR(0)

)
= sign

(
3µ3

2 − 4µ1µ2µ3 + µ2
1µ4 − 3µ2

1µ
2
2 − 3µ3

1µ3

)
.

= sign
(
2 + 3β1CV + (β2 − 6)C2

V − 4β1C
3
V + 3C4

V

)
(34)

In the last line we expressed the moments by the higher cumulants. Here we can
already detect an important difference to the renewal case: in the limit of low spiking
variability, CV → 0, the curvature becomes positive. For the inverse Gaussian
probability density used in our model the curvature Eq.(34) can be further simplified

sign
(
C

(2)
NR(0)

)
= sign

(
2 + 6C2

V + 12C4
V

)
. (35)

Thus, the curvature is for all values of the CV positive, which implies a band-pass
filter of information in the non-renewal case irrespective of the spiking variability
as long as the model operates in the linear-response regime.

4. Summary and discussion. In this paper we have studied two simple integrate-
and-fire model neurons with noise in the threshold and reset values. The statistical
distributions of threshold and reset were for both models chosen as an inverse Gauss-
ian probability density, such that the resulting ISI density of the IF model has also
the form of an inverse Gaussian, a simple statistical distribution that fits the ISI
density of some neurons surprisingly well [21, 17]. The two models differ in their
reset rule, leading to the statistical independence of ISIs (renewal model) or to a
positive correlation between adjacent ISIs (non-renewal model). By comparing the
signal transmission of an additional time-dependent current stimulus in both models
we could describe the effect of positive ISI correlations on information transmission.

Both models were simple enough to admit the derivation of analytical expres-
sions or at least reasonable approximations for spectral measures that characterize
neural information transmission. The most important measure was the spike train
power spectrum that is strongly shaped by the absence or presence of positive
ISI correlations. Because of its special relevance for our problem we applied two
different approximations (previously developed in [28]) for the power spectrum in
the presence of the broadband stimulus. In particular theory II by [28] showed a
good agreement to numerical simulations for a wide range of signal amplitudes and
different values of the intrinsic variability as quantified by the CV.

Our analytical and numerical results demonstrated unequivocally that positive
ISI correlations reduce the coherence at low frequencies and increase it at intermedi-
ate frequencies. Positive ISI correlations imply an autonomous long-term variability,
which is not related to the signal and which shapes the background noise spectrum
such that noise power is shifted from higher frequencies to low frequencies. The
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result is a band-pass information filter that does not necessarily transmit less infor-
mation than its renewal counter part (cf. Fig. 6c and g). Our study has furthermore
shown, that the effect is most pronounces for weak stimuli (where the simpler theory
I provides a sufficient description of power spectrum and coherence), whereas for
stronger stimulation the external signal dominates the spike train power spectrum
such that differences between renewal and non-renewal models become small.

For our simple models and in the limit of weak stimulation we could derive
explicit expressions for the curvature of the coherence (using the simpler theory I
from Ref. [28]). These allowed us to formulate precise conditions for having a local
maximum (negative curvature) or minimum (positive curvature) of the coherence at
zero frequency, which can be regarded as a proxy for low-pass or high-pass filtering
of information, respectively. Indeed, for values of the coefficient of variation between
0 and 1/2 the renewal model always displays a negative curvature and, in line with
this, the global maximum of the coherence is attained at zero frequency, similar
to the case of nonlinear IF models with more realistic current noise [51]. The non-
renewal model possesses always a positive curvature at f = 0 and a global maximum
at non-vanishing frequency.

The non-renewal model inspected in this paper is still limited to exclusive corre-
lations between adjacent intervals. It remains an open question whether threshold
and reset rules could be generalized to obtain a model with ISI correlations that
extend beyond lag one and in which spectral measures can still be analytically cal-
culated. Apart from such abstract generalizations, it would also be of interest to
explore the information-filtering effects of positive ISI correlations in biophysically
more realistic neuron models. As mentioned in the introduction, positive ISI corre-
lations can arise from different sources: external stimulation, intrinsic channel noise,
or subthreshold adaptation. We expect that the noise-shaping effect discussed for
our simple model will also emerge in biophysical models that incorporate the sources
of nonrenewal behavior directly. Whether the information-filtering effect in a more
realistic model is more or less pronounced than in our setup can only be revealed
in future studies.
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Bildung und Forschung (FKZ:01GQ1001A). BL wants to thank Maurice Chacron
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Appendix.

Spontaneous power spectrum of the non-renewal model. According to
Eq.(13) the power spectrum of a stationary point process can be calculated if we
know the characteristic functions of the Tn (the n-th order intervals defined as

the sum of n subsequent ISIs). These are the Fourier transforms F̃n(f) of the
probability densities Fn(Tn). In the non-renewal model, the n-th order interval
can be regarded as the sum of 2n sub-intervals that go from reset to zero, τ̂i, and
from zero to threshold, τi, respectively (see Fig. 7). Note that the non-renewal ISI
sequence is equivalent to a moving average process of order one; for results on such
processes (some of which are derived below for completeness), see for instance [23].



478 SVEN BLANKENBURG AND BENJAMIN LINDNER

Figure 7. Subdivision of the ISIs into sub-intervals.

Many of these sub-intervals are pairwise identical because of the mirroring rule
(τi = τ̂i+1), leading to the following expression:

Tn = τ̂1 + τ1 + τ̂2 + τ2 + · · ·+ τ̂n + τn = τ0 + τn + 2

n−1∑
j=1

τj . (36)

In the last step we have expressed Tn by a sum of independent variables, the prob-
ability density of which is given by the convolution of the probability densities of
the single variables and the characteristic function of which is given by the product
of the single characteristic functions

F̃n = F̃τ (f)2F̃2τ (f)n−1 = F̃τ (f)2F̃τ (2f)n−1, (37)

where we used F̃2τ (f) = F̃τ (2f). Inserting this for F̃n in the general formula
Eq.(13) and simplifying the resulting geometric series, we end up with the analytical
expression for the spike train power spectrum of the non-renewal model in the
spontaneous case

SNR,0(f)/r0 =

=

∣∣∣∣1−√F̃1,0(2f)

∣∣∣∣2 + F̃1,0(f)

(
1−

√
F̃1,0(2f)

)∗
+ F̃ ∗1,0(f)

(
1−

√
F̃1,0(2f)

)
∣∣∣∣1−√F̃1,0(2f)

∣∣∣∣2
, (38)

which can be further simplified to Eq.(15). This result holds true with arbitrary
distributions of threshold and reset. It is easily evaluated for the case of the in-
verse Gaussian considered in this paper, for which the Fourier transform is given in
Eq.(16).

Serial correlation coefficient of the non-renewal model. We use the same
subdivision of ISIs as in the previous subsection and write the covariance between
two intervals Ti and Ti+k as follows

〈∆Ti∆Ti+k〉 = 〈TiTi+k〉− 〈Ti〉〈Ti+k〉 = 〈(τi−1 + τi)(τi+k + τi+1+k)〉− 〈(τi−1 + τi)〉2,
(39)

where all the τi are statistically independent and identically distributed variables.
It is simple to show that this covariance vanishes for k > 1. For k = 1 we obtain

〈∆Ti∆Ti+k〉 = 3〈τ〉2 + 〈τ2〉 − 4〈τ〉2 = 〈∆τ2〉 =
〈∆T 2〉

2
, (40)
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which results in the serial correlation coefficient stated in Eq.(9), a well-known result
from the literature on moving-average processes [23, 7].

Raw and standardized moments of the inverse Gaussian ISI density.
Skewness β1 and kurtosis β2 as used in the main text are related to the raw moments
µn = 〈Tn〉 by

β1 =
µ3 − 3µ1

(
µ2 − µ2

1

)
− µ3

1

(µ2 − µ2
1)

3/2
,

β2 =
µ4 − 4µ1µ3 + 6µ2

1µ2 − 3µ4
1

µ4
1 − 2µ2

1µ2 + µ2
2

. (41)

For an inverse Gaussian probability density given in Eq.(5), the moments read as
follows

µ1 = 1/r0, µ2 =
(
1 + C2

V

)
/r20,

µ3 =
(
1 + 3C2

V + 3C4
V

)
/r30, µ4 =

(
1 + 3C2

V + 15C4
V + 15C6

V

)
/r40, (42)

while skewness and kurtosis are given by

β1 = 3CV, β2 = 3 + C2
V. (43)
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