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Abstract. In this work, we present and investigate a multiscale model to

simulate 3D growth of glioblastomas (GBMs) that incorporates features of the
tumor microenvironment and derives macroscopic growth laws from micro-

scopic tissue structure information. We propose a normalized version of the

Shannon entropy as an alternative measure of the directional anisotropy for
an estimation of the diffusivity tensor in cases where the latter is unknown.

In our formulation, the tumor aggressiveness and morphological behavior is

tissue-type dependent, i.e. alterations in white and gray matter regions (which
can e.g. be induced by normal aging in healthy individuals or neurodegenerative

diseases) affect both tumor growth rates and their morphology. The feasibility
of this new conceptual approach is supported by previous observations that

the fractal dimension, which correlates with the Shannon entropy we calculate,

is a quantitative parameter that characterizes the variability of brain tissue,
thus, justifying the further evaluation of this new conceptual approach.

1. Introduction. Glioblastoma multiforme (GBM) is by far the most common
and aggressive type of gliomas in humans, occurring most often in the subcortical
white matter of the cerebral hemispheres. These tumors have drawn significant
attention since most patients with GBMs die in less than a year and, despite ex-
tensive research, little advance in the treatment of GBMs has occurred in the last
decades [19].

Understanding GBM dynamics and morphology based on computational mod-
eling is of great interest to the scientific community because it offers the potential
to both provide new fundamental insights into the phenomenon of cancer and to
allow more realistic and accurate prediction of tumor evolution. A number of GBM
growth models exist in the literature [3, 5, 10, 11, 17, 23, 12, 1, 20, 13, 22, 18]. How-
ever, for anisotropic models, diffusion tensor images (DTI) are required, which are
not always easily accessible, especially in the case of model validation procedures
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using legacy patient data. We therefore propose a model to estimate diffusivity
properties based on information gained from concepts of information theory using
magnetic resonance images (MRI) only.

The concept of fractal dimension (DF ) was introduced in 1982 by Mandelbrot
[16] as a quantitative parameter that characterizes the morphometric variability of
a complex object with widespread applications in the neuroscience field [8], serving
e.g. as inter- and intra-feature descriptor of different cerebral tissue microstructures.
In nonlinear dynamics, many specific fractal dimensions have been proposed. The
most important theoretical fractal dimensions are the Hausdorff dimension, informa-
tion dimension, box-counting dimension, and correlation dimension [21, 2]. Previous
works have shown that the DF is a sensitive metric to detect changes in white and
gray matter induced by neurodegenerative diseases [6, 7, 14]. In 2004, Takahashi
et al. [24] verified the morphological complexity variability of white matter in nor-
mal aging based on MRI datasets. Therefore, the variability of the morphological
complexity of a cerebral structure is directly related to its DF , thus this metric
can be used as a surrogate marker for detecting brain tissue abnormalities, for dis-
tinguishing different cerebral structures and as well as an indicator of biological
aging.

Another important quantity in information theory is the entropy, which quantifies
the amount of information contained in a distribution. It has been shown in the
literature that entropy and fractal dimension are related quantities. Microstructures
containing well defined features exhibit lower fractal dimensions and consequently
lower entropies. White matter is made up of oriented myelinated nerve fibers, thus,
presenting lower morphometric complexity (i.e., lower DF ) [6, 7] and consequently
lower entropy when compared to gray matter which is made up mostly of nerve cell
bodies.

Part of our work is motivated by experimental observations made by Giese et
al. (1996) [9] on the GBM invasion speed which plays an important role in the
understanding of its dynamics. Results of this study indicated that the GBM growth
rate depends of the invaded tissue microstructures and it was verified that tumor
cells spread faster in white matter than in gray matter.

In the present work, we will first present the relationships between the general-
ized entropy and the information dimension. Thereafter, we will introduce the use
of normalized directional Shannon entropies as an alternative measure of cerebral
tissue diffusional anisotropy which may lead to additional important information
about the tissue microstructure surrounding the GBM and patient-specific tumor
behavior.

In summary, we calculate the generalized entropy of specific domains in the brain,
which is correlated to the information dimension, which in turn has been shown
to depend on gray matter/white matter content. These two main brain material
constituents exhibit different tumor cell spread characteristics. Therefore, the gen-
eralized entropy in different direction segments offers the potential to characterize
diffusivity properties for spreading tumor cells.

2. Methods.

2.1. Generalized entropy and information dimension. A common way to cal-
culate a fractal dimension is based on the Shannon entropy S1 which is a particular
case of the generalized Rényi entropy. Given a vector X = {x1, x2, . . . , xn} with
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probabilities p1, p2, . . . , pn, the generalized entropy of order α, where α > 0 and
α 6= 1 is defined as [21]:

Sα(X) =
1

(1− α)
log2

(
n∑
i=1

pαi

)
, (1)

In the limit for α going to 1 the generalized Rényi entropy converges to Shannon’s
entropy (by l’Hôpital’s rule), and Eq. 1 becomes

S1 = −
n∑
x=1

pi log2(pi), (2)

The information dimension D1 quantifies how the average information needed to
identify an occupied box scales with size ε as the scale of boxes gets smaller. Its
relationship to the Shannon entropy reads as follows [21]:

D1 = − lim
ε→0

S1

log2(ε)
(3)

2.2. Directional-dependent entropy calculation. In this subsection we de-
scribe the proposed approach for the calculation of the anisotropic information
comprising the source volume Ω, i.e., microstructures existing in the region of in-
terest (ROI) surrounding the GBM (Fig. 1a). The proposed conceptual approach
has been evaluated on a T2-weighted magnetic resonance (MR) data set acquired
from a healthy male subject, 46 years old. For illustrative purposes, the origin of the
tumor was assumed to be localized in the right anterior temporal lobe and centered
in the cubic grid containing all N = 27 subdomains Γ (Fig. 1b). Each subdomain is
divided into six volumetric sectors in which is uniquely determined by the intersec-
tion of a sphere of radius r with a cone, where the apex of the cone coincides with
the center of the sphere (Fig. 1d). The volumetric sectors of each subdomain are
oriented along the directions X+, X−, Y +, Y −, Z+ and Z− in the image space
(Figs. 1c-1e). The information content of each volumetric sector was extracted by
binning the voxel intensities (grayscale levels) into 256 quantized levels, and their
probabilities pi were assessed by computing the total number of voxels intensities
into their respective bins divided by the total number of voxels confined into all N
subdomains Γ. In real world data, there always exists a small enough r greater than
the voxel size which will yield approximately the same entropy for basic elements
facing opposite directions, i.e., S+x

1 ≈ S−x1 , S+y
1 ≈ S−y1 , and S+z

1 ≈ S−z1 since
the same microstructure will be present in an infinitesimal symmetric sector around
each grid point. This procedure allows the calculation of the directional entropies
and the characterization of different microstructures surrounding the ROI. Finally,
the mean directional entropies for each subdomain Γn were computed as follow:

Sζ1 = (S+ζ
1 + S−ζ1 )/2, for ζ = 1, 2, and 3.

2.3. Diffusivity model. In the late 1980s, Murray et al. [17] presented a model
to describe the diffusion of cancer cells through brain tissue. This model consists of
a partial differential equation which describes concentration fluctuations of cancer
cells through cerebral tissues and is usually written as

∂c(x, t)

∂t
= ∇ · (D(x)∇c(x, t)) + ρ(x, t)c(x, t), (4)

where c(x, t) is the concentration of the diffusing cancer cells at location (x, y, z) and
time t, D(x, y, z) is the diffusion tensor, and ρ(x, t) represents the rate of growth
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Figure 1. Characterization of the anisotropy based on the direc-
tional Shannon entropies for estimation of the diffusivity tensor. a)
For visualization purposes, the levels for the voxels comprising the
ROI were modified. b) Cubic grid containing N = 27 subdomains.
c) Projection of the 3D-data confined in the ROI Ω onto an image
plane for visualization of changes of tissue microstructure. d-e)
Subdamin composed of six volumetric sectors. The information
confined into these structures are used to estimate the directional
entropies in the X, Y, and Z directions, which are depicted in red,
green and blue colors, respectively.

of cells (cell proliferation and cell loss) in its specific brain location. An important
characteristic to be observed is that in anisotropic media the diffusion tensor is a
function of its spatial location, characterizing the microscopic tissue structure, as
shown in Eq. 5).

∂c(x, t)

∂t
=

3∑
i,j=1

(
∂Dij(x)

∂xi

∂c(x, t)

∂xj
+Dij(x)

∂2c(x, t)

∂xi∂xj

)
+ ρ(x, t)c(x, t) (5)

The tumor origin (most active region) is assumed to be centered in the defined
ROI Ω, and it has been used as a source-volume for the diffusion of cancer cells with
a maximum cancer cell holding capacity estimated to be Cmax = 104 cellsmm−3 [25,
17, 4]. Cmax was used for normalizing the calculated concentrations, consequently,
the concentrations range from 0 to 1. A cell production rate equivalent to 1% of
Cmax has been assumed in our simulations. Zero-flux boundary conditions were
assumed for the elements located at the boundary surface ∂Ω delimited by the
source volume Ω.

n ·D(x)∇c(x, t) = 0, ∀x ∈ ∂Ω (6)

where n is an outer unit vector normal to the boundary ∂Ω of Ω.

2.4. Diffusivity tensor estimation from normalized directional entropies.
As previously discussed, microstructures containing well defined features exhibit
relatively lower entropies and higher diffusivity. Thus, a linear relationship between

the directional entropies and diffusivity was assumed, mapping the infimum inf{Sζ1}
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to the highest and the supremum sup{Sζ1} to the lowest diffusivity, respectively. Pre-
vious studies have shown that cancer cells diffuse faster in white matter than in gray
matter [9], suggesting that the diffusivity in gray matter is a fraction of the exper-
imentally observed maximum diffusivity in white matter (DWM = 10−3mm2s−1).
Therefore, the diffusivity in gray matter is defined as DGM = β × DWM and in
our simulations we assumed β = 1/100 which is in accordance with previous stud-
ies [17, 25]. The directional entropies at non-grid positions in the domain Ω were
evaluated by using the bicubic interpolation method, and the volume space com-
prising the ROI was discretized and the PDEs (Eqs. 5 and 6) were solved by using
the forward-time central space method (FTCS) [15]. The proposed method for
diffusivity-driven tumor growth modelling is summarized below:

Diffusivity-driven tumor growth modelling

1: Definition of the source volume Ω surrounding the GBM by using a grid con-
taining N subdomains Γ (Figs. 1a-1b)

2: Evaluation of the directional entropies for all N subdomains, where each subdo-
main Γ (Fig. 1d) is composed of six partial volumes (S+x

1 , S−x1 , S+y
1 , S−y1 , S+z

1 ,
and S−z1 ), corresponding to the spatial heterogeneity in the X, Y , and Z direc-
tions, as shown in Figs. 1c-1e

3: Computation of the mean directional entropies for each subdomain Γn, as Sζ1 =

(S+ζ
1 + S−ζ1 )/2, for ζ = 1, 2, and 3

4: Determination of the infimum and supremum of the set of all computed direc-
tional entropies for all N subdomains Γ.

5: Evaluation of the directional entropies at non-grid positions in the domain Ω by
using the bicubic interpolation method. This operation is followed by mapping
the resulting vector field containing the directional entropies to experimentally
reported diffusivity coefficients (DWM ), determining the diffusion tensor Dij(x)
for all voxels: D(x) = [D11 0 0, 0 D22 0, 0 0 D33]

6: Imposition of a zero-flux boundary conditions for the elements located at the
boundary surface ∂Ω (Eq. 6), and definition of the maximum cancer cell holding
capacity at the center of the volume of interest Ω.

7: Discretization of the anisotropic parabolic equation and its corresponding
boundary conditions (Eqs. 5 and 6) by using the FTCS. The truncation error
of this scheme approaches to zero in the limit that δt → 0, δX → 0, assuming
δt

(δx)2 ≤
1
2 [15].

3. Results. The directional Shannon entropies, as well as the magnitude of the
gradient of the resulting Shannon entropy were computed in different regions of
the subcortical white matter. Obtained directional Shannon entropies are shown in
Figs. 2a-2c for a specific region of the brain in the directions X, Y , and Z, respec-
tively. In Fig. 2d, the magnitude of the gradient of the resulting Shannon entropy
is plotted. At this specific brain location, a grid containing 27 subdomains with
a radius r = 0.25 mm was used to characterize the cerebral tissue microstructure
changes surrounding the GBM seed. As these plots demonstrate, entropies calcu-
lated in one direction segment can vary considerably depending on the reference
location (e.g. approximately by a factor of two, as shown in Fig. 2b), suggesting a
pronounced influence. Moreover, we note that in this special case the directional
entropies Sx1 and Sy1 (Figs. 2a and 2b, respectively) are similar, however Sz1 yields
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qualitatively different results, as can be noted visually from Fig. 2c. These changes
in entropy within the x − y plane versus the ones calculated in the orthogonal z
direction are directly attributed to the diffusion anisotropy in our model. Therefore,
symmetry is broken and the z direction turns out to be a distinguished direction
for cell diffusion at this specific location. As a result, a scalar diffusion coefficient
would be inadequate to capture these effects and anisotropy must be taken into
account.

In Fig. 3, the progression of the three-dimensional spatial evolution of a glioblas-
toma multiforme after three months is shown using the estimated diffusivity tensor.
It is important to note that the contours indicate the normalized concentration of
tumor cells. We observe small but clearly discernible deviations from a spherical
growth law as the distorted shape in Fig. 3b shows. These results indicate that
diffusion anisotropy should be taken into account for realistic tumor morphology
calculations.
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Figure 2. a) Resampled Sx1 Shannon entropy. b) Resam-
pled Sy1 Shannon entropy. c) Resampled Sz1 Shannon entropy.
d) Magnitude of the gradient of the resulting Shannon en-

tropy: ‖ ∇‖S1‖ ‖ =

[(
∂‖S1‖
∂x

)2
+
(
∂‖S1‖
∂y

)2
+
(
∂‖S1‖
∂z

)2] 1
2

, where:

‖S1‖ =
[
(Sx1 )

2
+ (Sy1 )

2
+ (Sz1 )

2
] 1

2

. The directional entropies were

resampled at regular intervals of 0.25× 0.25× 0.25 mm3 using the
bicubic interpolation method.

4. Discussion. Clinically, the identification of the origin of the tumor, staging, as
well as its extension are very important parameters to be considered when mod-
elling growth dynamics, which may be indirectly accessed by quantifying the glucose
consumption (cells metabolic activity) revealed by positron emission tomography
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Figure 3. a) Three-dimensional simulation showing the progres-
sion of glioblastoma multiforme at three months. b) Contours in-
dicate the normalized distribution of the tumor cells predicted by
the mathematical model using the concept of directional entropies
for quantification of different cerebral tissue microstructures and
subsequent estimation of the diffusivity tensor.

(PET). For these reasons, the characterization of the different microstructures sur-
rounding the tumor seed is highly desired. In this work, the estimation of the
diffusivity tensor was achieved by calculating the directional entropies. By com-
bining both the cancer cell diffusion gradients in different cerebral tissues and the
brain tissue morphological complexity information, we can generate a map that
allows us to convert the directional entropies obtained from MRI datasets into a
numerical measure of diffusion, which reflects the macroscopic characteristics of tu-
mor cell spread resulting from the microstructure surrounding the tumor seed in a
patient-specific manner. The computed directional entropies were linearly mapped
into experimental observed diffusivity coefficients, this theoretically assumed rela-
tionship is justified by the continuous transition of individual voxels from white to
gray matter.

Our approach could also be used to model the possible development of a necrotic
core, where the diffusion of nutrients at the center of the tumor is decreased below a
critical level, which results in a decreased proliferation of tumor cells. This clinical
condition most likely to generate a loss of structural organization induced by the
abnormal growth of brain tissue and surrounding edematous brain, which is char-
acterized by a higher entropy, thus consequently, by a relatively lower diffusivity.
Finally, we believe that our methodology could be useful in understanding relation-
ships between the spatial brain anisotropy with respect to the GBM’s origin and
their invasive potential. These relationships could be used to quantify the tumor
aggressiveness in a given patient at a specific location, and could also be used as a
tool for treatment planning optimization.
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