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Abstract. Many infectious diseases have seasonal outbreaks, which may be

driven by cyclical environmental conditions (e.g., an annual rainy season) or
human behavior (e.g., school calendars or seasonal migration). If a pathogen

is only transmissible for a limited period of time each year, then seasonal

outbreaks could infect fewer individuals than expected given the pathogen’s
in-season transmissibility. Influenza, with its short serial interval and long

season, probably spreads throughout a population until a substantial fraction

of susceptible individuals are infected. Dengue, with a long serial interval
and shorter season, may be constrained by its short transmission season rather

than the depletion of susceptibles. Using mathematical modeling, we show that
mass vaccination is most efficient, in terms of infections prevented per vaccine

administered, at high levels of coverage for pathogens that have relatively long

epidemic seasons, like influenza, and at low levels of coverage for pathogens
with short epidemic seasons, like dengue. Therefore, the length of a pathogen’s

epidemic season may need to be considered when evaluating the costs and

benefits of vaccination programs.

1. Introduction. Mathematical models can be used to help understand the dy-
namics of infectious disease outbreaks [19, 21, 2]. With an estimate of the trans-
missibility of a pathogen, often summarized as R0, one can use models to gain
insight into the relationship between the transmissibility of a disease, the fraction
of a population it can infect, and the fraction of a population that needs to be
vaccinated to prevent outbreaks [8, 2, 17, 31]. However, these relationships are less
straightforward when a pathogen’s transmissibility is not constant over time.

Transmission of many pathogens is seasonal, and outbreaks tend to occur during
the same time each year. Seasonal transmission can be driven by cyclical environ-
mental (e.g., rainfall or temperature) or behavioral and demographic (e.g., school
calendars or seasonal migration) forces [13, 10, 12, 23]. The length of an outbreak
might therefore be constrained by the length of the season. Previous modeling work
has shown that adding seasonality to disease transmission models can improve fits
to annual or biennial disease cycles observed in surveillance data [27, 18], alter the
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multi-year dynamics of disease incidence [3, 26, 1, 15], increase understanding of
disease persistence and local extinction [18], and test novel intervention strategies
that take advantage of timing [30, 1, 15]. Here, we use a simple mathematical
model to explore the effects that seasonal forcing could have on the effectiveness
and efficiency of mass vaccination. We hypothesize that the most efficient coverage
level, defined as the number of infections averted per vaccination, can be affected
by seasonal forcing.

2. Mathematical model of infectious disease transmission. We model epi-
demics of infectious disease using a Susceptible–Infectious–Recovered (SIR) model
[19] with an additional compartment to represent vaccinated individuals. The sys-
tem of ordinary differential equations (ODEs) that describe the model dynamics
are:

dS

dt
= −βSI (1)

dV

dt
= −(1−VE)βV I (2)

dI

dt
= βSI + (1−VE)βV I − γI (3)

dR

dt
= γI (4)

where S is the number of individuals who are susceptible to infection, V is the
number who are vaccinated (and susceptible to infection), I is the number who are
currently infected, R is the number who are recovered from infection (and immune
to future infection), β is the transmissibility of the pathogen, γ is the recovery
rate of infected individuals, and VE is the vaccine efficacy against infection. We
focus our attention on epidemics which run their course in relatively short time
compared to the demographic changes in the population such as influenza, cholera
and dengue. As a result, a fixed population size and density-dependent transmission
is assumed. Mass vaccination is modeled by initializing the model with a proportion
of the population in the vaccinated compartment. Vaccinated individuals are less
susceptible to infection by a factor of 1−VE. We assume that vaccine protection is
leaky, so that vaccinated individuals are not fully protected but instead are infected
at a lower rate than non-vaccinated individuals.

The basic reproductive number, R0, is the average number of people that a
typical infected individual infects in a fully susceptible population [2]. For an SIR
model, R0 = βN/γ, where N is the total population size, which we assume to be
constant. The final size p, or the fraction of people infected during an epidemic,
can be computed using the final size expression 1−p = e−R0p. In our simple model
of seasonality, we assume that an epidemic only lasts for t days, then transmission
stops, which is equivalent to setting β to 0 at time t. We define the size of an
epidemic on day t to be the sum I +R at time t.

When a sufficient fraction of a population is vaccinated, an outbreak can not
grow in size [8]. This critical vaccination threshold is (1 − 1

R0
)/VE. Here, we

assume that protection conferred by vaccines is leaky, so vaccinated individuals have
a reduced rate of infection but may be partially susceptible. When fraction f of a
population is vaccinated with a leaky vaccine, the effective reproductive number,
Rf , is: Rf = (1 − f)R0 + f(1 − VE)R0. The final size assuming a leaky vaccine

can be found by solving: p = 1 − (1 − f)e−R0p − fe−R0(1−VE)p. The derivation
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of Rf and the final size of a partially vaccinated population can be found in [24,
Appendix A.3].

3. Results. The pathogen’s transmissibility (which we express in terms of R0, the
basic reproductive number) and serial interval (the average time between the onset
of symptoms in an individual and the onset in secondary cases) can be used to
compute the speed and magnitude of an epidemic.

3.1. Modeling uninterrupted epidemics. When epidemics are allowed to run
their course without the effects of seasonality, the proportion of the population
they infect, the attack rate, does not depend on their speed of transmission and
can be computed using the final size expressions from Section 2. Increasing the
serial interval, while keeping R0 constant, simply delays the peak of the epidemic
but does not change the peak’s height (when the height is defined as the number of
infected people at a given time rather than the incidence), or the maximum number
of infected people at the epidemic peak (Figure 1a). The relationship between R0

and the attack rate does not depend on the serial interval (Figure 1b, black curve).
We show that when epidemics are not interrupted by seasonality, the attack

rate is a concave function (the second derivative is negative) of the vaccination
coverage up to the critical vaccination fraction, i.e., the attack rate of the epidemic
drops more and more rapidly with increasing coverage until the critical vaccination
fraction is reached (Figure 1c).

Theorem 3.1. Assuming that the vaccine is fully protective, the final size of the
non-interrupted epidemic simulated with the model described in Equations 1–4 is a
decreasing concave function of the vaccination coverage up to the critical vaccination
threshold and becomes zero afterwards.

Proof. In the model with a perfect vaccine that protects completely, vaccinated and
recovered individuals are indistinguishable. Vaccinated individuals can therefore be
moved to the recovered compartment initially, i.e., R(0) > 0 and the total number
of cases at the end of the epidemic is given by R(∞)−R(0). The simplified model
with the vaccinated compartment removed is:

dS

dt
= −βSI (5)

dI

dt
= βSI − γI (6)

dR

dt
= γI (7)

Dividing Equation 5 by Equation 7 implies that dS
dR = −βSγ . Separating the variables

and applying the initial conditions it leads to:

S(∞) = S(0)e−
β
γ (R(∞)−R(0)) (8)

which converted to fractional form (s = S
N , r = R

N ) is

s(∞) = (1− f)e−
βNp
γ (9)

where f = R(0)
N is the vaccinated fraction (coverage) while p = R(∞)−R(0)

N is the
final size, i.e., the proportion of the population which becomes infected by the end
of the epidemic. Since all individuals at the end of the epidemics are vaccinated,



252 DENNIS L. CHAO AND DOBROMIR T. DIMITROV

recovered or naive susceptibles then s(∞) = 1−p−f and therefore f = 1− p

1−e−
βNp
γ

.

Differentiating twice with respect to p gives us:

df

dp
= − 1

1− e−lp
+

e−lplp

(1− e−lp)2 =
elp
(
1− elp + lp

)
(−1 + elp)

2 (10)

d2f

dp2
=

2e−lpl

(1− e−lp)2 +

(
− 2e−2lpl2

(1− e−lp)3 −
e−lpl2

(1− e−lp)2

)
p (11)

= −
elpl

(
2 + lp+ elp(−2 + lp)

)
(−1 + elp)

3 (12)

where l = βN
γ .

We consider the function g(x) = 1 − ex + x which appears in the numerator of
df
dp . We have that g′(x) = 1− ex < 0 and therefore g(x) is decreasing for x > 0. As

a result g(x) < 0 for x > 0 since g(0) = 0. It implies that df
dp < 0.

Similarly, let we consider h(x) = 2+x+ex(−2+x) which appears in the numerator

of d2f
dp2 . We have that h′(x) = 1 − ex + xex and h′′(x) = xex. Therefore h′(x) is

increasing and positive for x > 0 since h′(0) = 0. As a result h(x) is increasing and

positive for x > 0 since h(0) = 0. It implies that d2f
dp2 < 0.

Therefore, the vaccine coverage (f) is a decreasing concave function in terms of
the final size (p) and the critical vaccination threshold is fcr = f(0). Moreover,
by Inverse Function Theorem, the final size can be expressed as a function of the
coverage (p(f)) over the interval [0, fcr]. This function is differentiable with respect

to f and its derivatives satisfy dp
df = 1

df
dp

< 0 and d2p
df2 = −d

2f
dp2

(
dp
df

)3

< 0.

This completes the proof that the final size (p) is a decreasing concave function
in term of the vaccine coverage (f) up to the critical vaccination threshold (fcr). It
is clear that for coverage greater than fcr the final size remains zero. This completes
the proof of Theorem 3.1.

3.2. Modeling seasonal epidemics. We model an epidemic season by stopping
transmission after a fixed time elapses, 90 days, which could correspond to a change
in seasons or another external factor that reduces transmission. If a pathogen is only
transmissible for a limited time, then slower epidemics may infect fewer individuals
than they would given unlimited time. Figure 1a plots three epidemic curves that
have the same R0 (and thus the same attack rate) but different serial intervals.
Here, we emphasize that the attack rate for an epidemic interrupted by seasonal
forces is usually lower than the final size that one would expect for an uninterrupted
epidemic. If the epidemic stops on day 90, a rapid epidemic might have already run
its course, a slower epidemic might be interrupted after it peaks, and an even slower
epidemic might be interrupted during its exponential growth phase (Figure 1a). The
speed of an epidemic can therefore affect the relationship between transmissibility
and the attack rate (Figure 1b). This effect is greatest when the transmissibility
of a pathogen is low (R0 is close to 1) and the serial interval is long (Figure 1b).
Thus, both the transmissibility (R0) and serial interval of the pathogen need to be
considered when seasonal forces limit the duration of epidemics.

If epidemics are interrupted, then the relationship between vaccination coverage
and the infection attack rate of the epidemic can qualitatively change. As the vacci-
nated proportion of a well-mixed population increases, epidemics become slower and
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Figure 1. The effects of limiting the duration of an epidemic. We
modeled epidemics with an R0 of 2.0 with serial intervals of 5, 10,
or 15 days. The models are initialized with a population of 1000
individuals, one of whom is initially infected. (a) The number of
infected individuals over time with when the serial interval is 5
days (blue circles), 10 days (red triangles), and 15 days (purple
xs). The epidemics are stopped at day 90, indicated by the vertical
dashed line, to represent the end of an epidemic season. Note that
the y-axis is the number of infected individuals and not infection
incidence. (b) The attack rate of an epidemic vs R0. The black
line shows the effect of increasing R0 on the infection attack rate
when outbreaks are not interrupted using the final size expression.
The same relationship is plotted when the epidemics are stopped
on day 90 and the serial interval is 5 days (blue circles), 10 days
(red triangles), and 15 days (purple xs). Other initial conditions
were the same as in panel (a). (c) The effect of vaccine coverage
on the attack rate. Initial conditions were the same as in panel
(a), and vaccinated individuals are infected at rate 65% less than
non-vaccinated susceptibles. The final size expression was used to
compute the attack rate of uninterrupted outbreaks. The criti-
cal vaccination threshold is indicated by the vertical dashed gray
line. (d) The efficiency of mass vaccination vs coverage. We define
efficiency to be the number of infections averted per vaccination
administered, which we would like to maximize. The horizontal
dotted line represents the simplifying assumption that mass vacci-
nation only reduces the risk of infection among vaccinated individ-
uals (by 65%) and not among non-vaccinated individuals.
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smaller until the critical vaccination fraction is reached, at which point, outbreaks
do not occur (Figure 1c).

Limiting the time during which a pathogen can be transmitted affects the rela-
tionship between vaccination coverage and the size of the epidemic. Our analysis
suggests that if a pathogen’s serial interval is short relative to the length of its sea-
son, the relationship between vaccination coverage and the epidemic’s attack rate
takes a sigmoid shape with an inflection point that occurs below the critical vacci-
nation fraction (Figure 1c). With longer serial intervals, the effects of interrupting
the epidemic are even larger and the attack rate may become a convex function
(the second derivative is positive) of vaccination coverage (Figure 1c). The shape
of this curve determines the incremental benefit of vaccinating more individuals.

Mass vaccination can become either more or less efficient as vaccination coverage
increases, depending on the speed of transmission relative to the length of the
epidemic season. We define the efficiency of mass vaccination to be the number of
cases averted per vaccination administered. The shape of the curve describing the
attack rate vs vaccination coverage (Figure 1c) determines the efficiency profile of
mass vaccination (Figure 1d), which we describe more formally below.

Theorem 3.2. Consider an interrupted epidemic. The efficiency of the vaccina-
tion measured as the number of infections prevented per vaccination depends on
the functional expression of the attack rate in terms of the vaccination coverage as
follows:

1. If the final epidemic size is a concave function of the vaccination coverage,
then efficiency improves with increasing vaccination coverage up to the critical
vaccination threshold and worsens at higher levels.

2. If the final epidemic size is a linear function of the vaccination coverage, then
efficiency is constant up to the critical vaccination threshold and worsens at
higher levels.

3. If the final epidemic size is a convex function of the vaccination coverage, then
efficiency decreases with increasing vaccination coverage.

4. If the final epidemic size is a sigmoid function of the vaccination coverage,
then efficiency improves with increasing the vaccination coverage up to an
“optimal value” below the critical vaccination threshold and worsens at higher
levels.

Proof. The efficiency of the vaccination E is defined as the number of infections

prevented divided by number of vaccinations. Therefore, E = p(0)−p(f)
f where f is

the vaccination coverage while p(f) and p(0) represent the final size of the epidemic
with vaccination coverage f and without vaccination, respectively. We focus on
E up to the critical vaccination threshold (fcr). When coverage increases beyond
fcr the number of vaccinations increases while the number of prevented infections
remain unchanged. Therefore E decreases and the efficiency of the vaccination
always worsens.

For f ∈ (0, fcr) we have:

dE

df
=
p(f)− p(0)− fp′(f)

f2
. (13)

By the Mean Value Theorem there exists f̄ < f such that p′(f̄) = p(f)−p(0)
f and

dE
df = p′(f̄)−p′(f)

f .
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1. If p(f) is a concave function then p′(f) is decreasing. As a result dE
df > 0

for f < fcr, i.e., the efficiency of the vaccination improves with increasing
vaccination coverage up to the critical vaccination threshold.

2. If p(f) is a linear function then p′(f) is constant. Therefore dE
df = 0 and the

efficiency is constant up to the critical vaccination threshold.
3. If p(f) is a convex function then p′(f) is increasing. As a result dE

df < 0 for

f < fcr, i.e., the efficiency worsens with increasing the vaccination coverage.
4. Suppose p(f) is a concave function for f ∈ (0, f∗) and convex function for f ∈

(f∗, fcr) where f∗ < f . Therefore dE
df > 0 for f < f∗ and dE

df < 0 for f∗ < f <

fcr and E will have a maximum at f∗. The efficiency of vaccination improves
with increasing vaccination coverage up to f∗ and worsens afterwards.

This completes the proof of Theorem 3.2.

For an uninterrupted epidemic, the concave relationship between the attack rate
and coverage implies that the efficiency of mass vaccination increases as coverage
increases from zero to the critical vaccination fraction, after which it decreases
(Figure 1d). The efficiency decreases at high vaccination coverage levels because
vaccinating in excess of the critical vaccination fraction does not prevent additional
infections. Therefore, coverage at exactly the critical vaccination fraction is the
most efficient.

For interrupted epidemics, the efficiency can initially either increase or decrease
with increasing coverage. For interrupted epidemics with a sigmoid attack rate vs
coverage curve (the curve is concave then convex), vaccination efficiency improves
with increasing vaccination coverage only up to the inflection point, and the most ef-
ficient coverage levels are below the critical vaccination fraction. When an epidemic
is interrupted early, during its exponential growth phase (attack rate vs coverage is a
convex function), mass vaccination becomes less efficient as coverage increases, and
there is no optimal coverage to reach. Note that the efficiency of mass vaccination
at levels below the critical vaccination fraction is often better than that predicted
for the uninterrupted epidemic. For all scenarios considered, efficiency decreases
when coverage exceeds the critical vaccination fraction, which is to be expected.

We explored how seasonality may regularly interrupt outbreaks of specific patho-
gens. Using the mathematical model, we plot how much of seasonal epidemics with
different combinations of R0 and serial interval are potentially interrupted when the
epidemic season is exactly 60 days, 90 days, 120 days, and 150 days (Figures 2a–d).
As observed above, epidemics with long serial intervals and low values of R0 are the
most interrupted by shorter seasons, with a nearly linear trade-off between R0 vs
serial interval when following the isoclines on these plots. Seasonal influenza has a
short serial interval (about 3 days [7]) and a long season in the temperate northern
and southern hemispheres, from the fall through the spring (maybe as long as 8
months) [28], so influenza outbreaks are not likely to be interrupted by the end of
the season (Figure 2d). This implies that the optimal vaccination coverage, in terms
of infections averted per number of people vaccinated, would be close to the critical
vaccination threshold. In contrast, seasonal dengue outbreaks may be limited by
dengue’s long serial interval (perhaps 20 days [25]) and the limited time during which
rainfall, high humidity, and high temperatures are optimal for the breeding of its
primary vector, Aedes aegypti, and the rapid incubation of the virus [16, 29, 20].
Dengue season may last for up to 6 months in some regions, but the period of highest
transmissibility is likely shorter and curtailed by the reduction in temperature and
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humidity by the end of each rainy season [4], so we conservatively assume that high
dengue transmission occurs in a 3-month window (Figure 2b). If dengue epidemics
are greatly curtailed by the short season, then the optimal vaccination coverage
could be well below the critical vaccination threshold, though higher-than-optimal
levels of coverage could still be cost-effective.

4. Discussion. Using a mathematical model, we have shown how the interruption
of epidemics by seasonal external drivers can have large effects on epidemic size and
the effectiveness and efficiency of mass vaccination. Mass vaccination can be either
more or less effective than expected, depending on when epidemics are interrupted.
When seasonality is not a factor, and an epidemic exhausts itself by infecting a
sufficient number of susceptibles, then vaccination coverage at the level critical vac-
cination fraction is efficient and averts the most infections per dose administered.

(a) 60 days (b) 90 days
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Figure 2. The relationship between transmissibility, serial inter-
val, and season length on the magnitude of the effect of a limited
transmission season. Colors represent the proportion of an epi-
demic interrupted when the season is (a) 60, (b) 90, (c) 120, and
(d) 150 days long for different values of R0 and the serial inter-
val. Regions in red indicate parameters for which epidemics are
completely averted by a short season, and dark blue regions corre-
spond to parameters for which the epidemic size is not reduced by
the season length. The regions of parameter space corresponding
to dengue and influenza are indicated in panels (b) and (d), respec-
tively.
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Influenza, with its long season and short serial interval, might be such a pathogen,
and influenza seasonality might drive the timing but not the magnitude or dura-
tion of epidemics. When a pathogen’s season length interrupts its outbreaks, then
the critical vaccination fraction may not be the most efficient coverage target. We
suspect that this affects epidemics of some vector-borne diseases, such as dengue,
because of the relatively short season and the long serial intervals associated with
incubation periods in both the host and the vector. For epidemics that are in-
terrupted early, during their exponential growth phase, low levels of vaccination
will avert the most infections per dose. For epidemics that are interrupted after
their peak, while they are waning, intermediate levels of vaccination below the crit-
ical vaccination threshold are most efficient. In general, transmission of pathogens
with relatively low transmissibility, long serial intervals, and short seasons are most
likely to be affected by seasonal interruptions, and we suggest that this be consid-
ered when evaluating the effectiveness of mass vaccination or other interventions
and when estimating transmissibility using the number of annual cases.

The simple mathematical model used here might not be appropriate for all
pathogens. Pathogens with “long cycle” transmission, like cholera, may be more
affected by seasonal interruption than predicted from an SIR model, which cap-
tures short cycle (person-to-person) but not long cycle (environmental) transmis-
sion. Transmission models that include long cycle transmission could be used to
study seasonality of enteric pathogens [6, 5, 9], while models that explicitly include
vectors, such as [22], could be used to study vector-borne pathogens. However, the
SIR model is sufficient for the qualitative analyses presented here. Other major
simplifying assumptions in our model are the simplified treatment of seasonality,
in which a pathogen is highly transmissible during its season and not at all trans-
missible outside its season, and the assumption that a population is only seeded
with the pathogen at the beginning of the season. The magnitude and frequency
of seeding might play a significant role in seasonal epidemic dynamics, which we
did not explore here. For diseases that occur less regularly in time and space, the
pathogen might be introduced to a population later in the season, which we did not
consider in our analyses. In addition, we only analyzed the transmission of disease
during a single epidemic season. Multi-year dynamics of transmission and immunity
would require more complicated models possibly specific to each pathogen and host
population.

Although our results suggest that low levels of vaccination might be most “effi-
cient” for some diseases, we do not suggest deliberately limiting vaccination coverage
for the sake of efficiency. Beyond the ethical arguments that support access to vacci-
nation for everyone [11], other public health goals, such as the local elimination of a
pathogen or the prevention of disease outbreaks or invasion, still require high levels
of vaccination coverage. Levels of coverage higher than the theoretical “optimal”
might be required to prevent outbreaks in the real world [14]. However, excessively
high coverage levels, well beyond the critical vaccination threshold, might not be
the best use of resources if these levels are difficult to reach [32].
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