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Abstract. The body mass growth of organisms is usually represented in terms

of what is known as ontogenetic growth models, which represent the relation
of dependence between the mass of the body and time. The paper is con-

cerned with a problem of finding an optimal experimental design for discrim-

inating between two competing mass growth models applied to a beef farm.
T-optimality was first introduced for discrimination between models but in this

paper, KL-optimality based on the Kullback-Leibler distance is used to deal

with correlated obsevations since, in this case, observations on a particular
animal are not independent.

1. Introduction. The technology involved in breeding livestock has undergone a
significant development, resulting in the high productivity rates of farms. In order
to optimize the efficiency of beef production systems, it is of great importance to
know the behaviour of weight gain in cattle throughout time. The growth of beef
specialized breeds is characterized by models based on non-linear sigmoid curves.
The most popular are the well-known [10], [41], [7], [35] (generalized logistic) and
[21]. The shape and characteristics of these curves can vary depending on factors
such as the environment, production system, type of breed and so on.

This study has been carried out in a beef farm called Navalázaro, located in
the northwest of the region of Córdoba, Spain, and concerns a specific beef cattle
breed called Limousine. The farm abides by both the European and the Spanish
law related to good practices when treating animals (Council Regulation, EC, No.
1/2005 of 22th of December 2004 on the protection of animals during transport
and related operations and amending Directives 64/432/EEC and 93/119/EC and
Regulation, EC, No 1255/97 (OJ L 3 of 5.1.2005) and Spanish Royal Decree No.
692/2010 of 20th of May 2010 ). Furthermore, the farm is aware of the fact that
animal welfare is not only affected by veterinarian cares but also by implementing
an ethical code by which animals are going to feel in a comfortable environment.

Just after weaning, which happens around six months after birth, calves are
sent from the farm to the growing facility, where they remain for approximately 12
months before being sent to the abattoir. During this period the animal’s weight
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must be kept under control. This permits to make the best choice regarding the
type and amount of fodder to give, based on its developmental stage and, in turn,
will influence the quality and quantity of the meat.

The weight control is adjusted by using growth models such as the above men-
tioned. This paper considers the problem of constructing optimal experimental
designs to discriminate between Brody and Richards models. These two models are
nested (the extended model reduces to the simpler model for a specic choice of a
subset of the parameters) and appear frequently in livestock researches ([49], [22],
[24], [14]).

Several studies have compared growth models for cattle ([11], [28], [25], [20])
whereas [16] and [6] compared Brody and Richards curves. The Brody equation
has been the most used in beef cattle studies because of its ease of computation
and its goodness of fit ([44], [36], [26]), though in some studies Richards model was
reported to fit data better than Brody ([16], [6], [28]).

Although the article is focused on discriminating between these two models, a
decision-making problem with more than two models may be considered in further
research.

Optimal design theory has been applied to growth models can be found in the
literature (e.g. [17], [29]), but in these cases, optimal designs have been calculated
for uncorrelated observations. There is also an extensive literature on optimal de-
sign of experiments for correlated observations. [43] accomplished the study for
regression models from a theoretical point of view, while [34] worked on the frame-
work of spatial statistics. An example of a numerical method for the construction of
optimal designs for time-dependent models in the presence of correlation is shown
in [47]. [50] introduced a new design methodology for constructing asymptotic op-
timal designs for correlated data, and recently, [18] made some progress providing
explicit results on optimal designs for linear regression models with correlated obser-
vations which are not restricted to the location scale model. However, the literature
does not address optimal design of experiments for a growth model with correlated
observations.

Next, basic concepts of the general theory of T-optimality are briefly introduced
as well as the KL-optimality criterion. Section 3 explains how the design has been
constructed for discriminating between two models and following that, in Section 4,
robustness issues are discussed with respect to the choice of the nominal values of
the parameters and with respect to the specification of the dependence structure.

2. Optimal design theory. Design of Experiments is used to help us determine
how to change the inputs of processes in order to identify the factors associated
with changes in the response y, which is usually expressed as follows,

y = η(t, θ) + ε t ∈ χ,

where η(t, θ) is the expected value of y, θ represents the r -dimensional vector of
unknown parameters and t represents the time-points at which the response is
observed. These times vary in a compact design space χ. The error ε follows a
Gaussian process with zero mean and a covariance structure of y depending on the
period of time between measurements (isotropic),

Cov
(
y(ti), y(tj)

)
= c(|ti − tj |, β), (1)

where c(·, β) is called the covariance function.
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An exact experimental design of size n consists of a collection of n points (experi-
mental conditions) ξ = (t1, . . . , tn)′, in a given compact space χ. After realizing the
experiment at those values, n responses will be available. Some of the experimental
conditions in the design may be repeated but, in this paper, designs will consist
of a list of n distinct times since replicates of measurements at the same time on
the same calf do not make sense from a practical point of view. Optimal Design of
Experiments theory allows us to find the best design in the sense of obtaining an
optimal estimator of the parameters of the model by minimizing a function of the

variance-covariance matrix of θ̂ through what it is defined as criterion Φ [38]. The
best design over all the designs on χ following the criterion Φ is called a Φ-optimal
design.

A feature common to all non-linear models is that the optimal design will depend
upon the value of the parameter θ. Since the purpose of the design is to estimate
θ, the dependence of the design on the value of the parameter is unfortunate, but
unavoidable for optimal designs with non-linear models. For that reason, it is
necessary to use a prior estimator θ(0), called nominal value, which usually represents
the best guess for the parameter θ at the beginning of the experiment, and then
to consider designs which minimizes the criterion function. The resulting design
is called locally optimal design [12]. A sensitivity analysis is then convenient to
evaluate the impact in guessing wrongly the nominal values of the parameters.

2.1. T-optimality and KL-optimality criteria. In order to determine an op-
timal design for discriminating between two rival models η1(t, θ1) and η2(t, θ2), [5]
proposed to fix one of them, say η(t, θ) = η1(t, θ1) (more precisely its correspond-
ing parameters θ1), considering it as the “true” model, and then to determine the
design which maximizes

T21(ξ) = min
θ2∈Ω2

∫
[η(t)− η2(t, θ2)]2 ξ(dt),

where η(t) = η1(t, θ(0)
1 ) is completely determined using some nominal values of

θ1 ∈ Ω1, i.e. θ1 = θ(0)
1 . This criterion has been studied by numerous authors ([40],

[19] or [30] among others). In particular, [48] considered multiple response, that is,
different outcomes from the same experiment. However, there was independence
between different experiments and the correlation was just between the responses
for “the same” unit (experiment). Thus, they could still use approximate designs
and T–optimality is applicable as a direct extension. In this paper we consider a
different problem since there is correlation between different experiments. Then,
approximate designs can not be used, the general equivalence theorem is not valid
anymore and the sample size has to be fixed in advance.

T -optimality is essentially a maximin problem. The minimization is carried out
since we first assume the worst-case scenario, that is, when η2(t, θ2) is as close as
possible to the “true” model. Then, we maximize T21(ξ) to find the best among
those worst possible situations. Except for very simple models, T -optimal discrimi-
nating designs are not easy to find and even their numerical determination is a very
challenging task. As mentioned above, an important drawback of this approach
consists of the fact that the criterion and, as a consequence, the corresponding
optimal discriminating designs depend sensitively on the parameters of one of the
competing models. In contrast to other optimality criteria this dependence appears
even for linear models. Therefore, T -optimal designs are locally optimal since they
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can only be implemented if some prior information regarding these parameters is
available.

For the correlated case, the definition of T21(ξ) can be given as follows ([2]),

T21(ξ) = min
θ2∈Ω2

(η(t)− η2(t, θ2))
′
Σ−1(η(t)− η2(t, θ2)), (2)

where Σ is the covariance matrix whose generic (i, j) entry is defined as in (1).
It is a natural generalization of the T-optimality criterion function for correlated
observations when the covariance structures of the rival models are exactly the
same. Optimal exact designs are computed by maximizing this criterion. Actually,
this criterion is again a particular case of KL-optimality and therefore it maximizes
the test power for discrimination.

Let f1(y, t, θ1) and f2(y, t, θ2) be two rival density functions, where f1(y, t, θ(0)
1 )

is assumed to be the true model. With this notation, the KL distance between the
true model and f2(y, t, θ2) is defined as

I(f1, f2, t, θ2) =

∫
f1(y, t, θ(0)

1 ) log

[
f1(y, t, θ(0)

1 )

f2(y, t, θ2)

]
dy, t ∈ χ,

where the integral is computed over the sample space of the possible observations.
[27] developed this quantity, motivated by considerations of information theory.
They used the notation I(f1, f2, . . .) as a measure of the loss of information when
f2 is fitted to approximate f1. Therefore, the KL-optimality criterion is defined as
follows ([30]),

I12(ξ) = min
θ2∈Ω2

∫
χ

I(f1, f2, t, θ2) ξ(dt). (3)

A design which maximizes I12(ξ) is called KL-optimal design.

Theorem 2.1. Given two competing Gaussian processes with means η1(t, θ(0)
1 ) and

η2(t, θ2), and covariance structures Σ1 and Σ2, respectively, the KL-optimality cri-
terion leads to the expression,

2I(f1, f2, t, θ2) = − log
|Σ1|
|Σ2|

− n+ tr(Σ−1
2 Σ1)+

(
η1(t, θ(0)

1 )−η2(t, θ2)
)′

Σ−1
2

(η1(t, θ(0)
1 )− η2(t, θ2).

Proof.

I(f1, f2, t, θ2) =

∫
f1(y, t, θ(0)

1 ) log

[
f1(y, t, θ(0)

1 )

f2(y, t, θ2)

]
dy

= E1

[
log

f1(y, t, θ(0)
1 )

f2(y, t, θ2)

]
.

As f1(y, t, θ(0)
1 ) and f2(y, t, θ2) follow a Gaussian distribution,

E1

[
log

f1(y, t, θ(0)
1 )

f2(y, t, θ2)

]
= E1

[
log f1(y, t, θ(0)

1 )− log f2(y, t, θ2)
]

= −1

2
E1

[
log
|Σ1|
|Σ2|

]

−1

2
E1

[
(y − η1(t, θ(0)

1 ))
′
Σ−1

1
(y − η1(t, θ(0)

1 ))
]
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+
1

2
E1

[
(y − η2(t, θ2))

′
Σ−1

2
(y − η2(t, θ2))

]
For simplicity, let denote η1(t, θ(0)

1 ) and η2(t, θ2) as η1 and η2, respectively. The
second term of the expectation E1 is,

E1

[
(y − η1)

′
Σ−1

1 (y − η1)
]

= tr

(
Σ−1

1 E1

[
(y − η1)

′
(y − η1)

])

= tr
(

Σ−1
1 Σ1

)
= n.

And the third,

E1

[
(y − η2)

′
Σ−1

2
(y − η2)

]
= E1

[[
(y − η1) + (η1 − η2)

]′
Σ−1

2

[
(y − η1) + (η1 − η2)

]]

= tr
(

Σ−1
2 Σ1

)
+ 2E1

[
(y − η1)

′
Σ−1

2
(η1 − η2)

]
+ E1

[
(η1 − η2)

′
Σ−1

2
(η1 − η2)

]
= tr

(
Σ−1

2 Σ1

)
+ 2Σ−1

2
(η1 − η2)E1[y − η1]

+(η1 − η2)
′
Σ−1

2
(η1 − η2) = tr

(
Σ−1

2 Σ1

)
+ 0 + (η1 − η2)

′
Σ−1

2
(η1 − η2).

Therefore,

I(f1, f2, t, θ2) = −1

2
log
|Σ1|
|Σ2|

− 1

2
n+

1

2
tr
(

Σ−1
2 Σ1

)
+

1

2
(η1 − η2)

′
Σ−1

2
(η1 − η2).

Remark 1. For Σ1 = Σ2 = Σ,

I(f1, f2, t, θ2) =
1

2
(η1 − η2)

′
Σ−1(η1 − η2),

which is the criterion (2). Therefore, the criterion defined in (3) is an extension of
the extended T-optimality criterion for correlated observations when the covariance
matrix is assumed equal for the rival models.

3. Experimental designs to compare Richards and Brody models. As men-
tioned above, these two models have already been compared for cattle, though in
none of them this comparison have been carried out by using optimal designs. They
are general models for ontogenetic growth in organisms based on principles for the
allocation of metabolic energy between the maintenance of existing tissue and the
production of new ones [37]. Richards model provides the mass of the organism at
any time t:

η(t, θ) = M
(
1−B exp{−kt}

)A
where t is the age, M represents the asymptotic maximum body mass (asymptotic
mature weight) , B is a time scale parameter and k and A being the rate of approach
to mature weight and a shape parameter that allows for a variable inflection point,
respectively. Brody model is nested within Richards since it is a particular case of
it when A = 1.

The presence of correlation has been considered because the observations on a
single calf may not be independent. The fact of carrying out a measurement at
the same time on the same animal has no utility from a practical point of view.
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Therefore, we will introduce a so-called nugget effect in the covariance structure
in order to avoid collapsing of design points. This effect produces a shift in these
points which leads to an optimal design without replicated points. The conception
of the nugget term was first introduced in Geostatistics by [32]. It is also widely
used in Gaussian processes [39] and Spatial Statistics [13, 42]. For an isotropic
correlation structure the variance-covariance matrix for two observations tends to
a singular form when the distance tends to zero. This behavior is due to the lack
of microvariation allowed for by the assumed covariance function. Then optimal
designs tend to avoid collapsing points. If the nugget effect is introduced in the
covariance structure more meaningful and practically relevant designs arise. In
particular, sometimes it may be proved that the distance between the points of a
two-point D-optimal design is an increasing function of the nugget effect [45]. These
correlation functions are typically used in the literature [13]. [1] provided a general
result to obtain a large class of feasible models for a covariance structure. We will
define the covariance structure by using a function which exponentially decays with
increasing time-distance between the measurements,

Cov(yti , ytj ) =

{
σ2 ρ exp{−β |ti − tj |} for ti 6= tj ,
σ2 (1− ρ) for ti = tj ,

(4)

where ρ is the nugget term [45].

3.1. Hypothesis test for discrimination. Let consider two competing Gaussian
processes with means η1(t, θ1) and η2(t, θ2) given by Richards and Brody functions,
respectively,

η1(t, θ1) = M1

(
1−B1 exp{−k1t}

)A1

η2(t, θ2) = M2

(
1−B2 exp{−k2t}

)
,

with correlation structures defined by (4). In this situation, the density functions
associated to these two processes are

fk(y, t, θk) =
1

(2π)n/2|Σk|1/2
exp{(y − ηk(t, θk))

′Σ−1

k (y − ηk(t, θk))} k = 1, 2

where Σk is the variance-covariance matrix whose generic (i, j) entry is defined as
in (4).

To discriminate between Richards and Brody models, the following hypotheses
test may be considered:

H0 : f2(y, t, θ2)
H1 : f1(y, t, θ(0)

1 )

}
where θ(0)

1 are nominal values of the parameter θ1. In this test the alternative
hypothesis is assumed to be “true” (this means Richards model is assumed to be
“true”) since we want to maximize the test power. The likelihood ratio for an
observation y at time t will be

L =
f2(y, t, θ2)

f1(y, t, θ(0)
1 )

,

and a common statistical test is that based on the statistic

R = −2 log(L) = 2 log

{
f1(y, t, θ(0)

1 )

f2(y, t, θ2)

}
,

in such a way that the hypothesis H0 will be rejected for large values of R. The
expectation of this statistic for one design point, under H1, is
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EH1
(R) = 2

∫
f1(y, t, θ(0)

1 ) log

[
f1(y, t, θ(0)

1 )

f2(y, t, θ2)

]
dy = 2 I(f1, f2, t, θ2). (5)

The larger EH1
(R) and I(f1, f2, t, θ2) are, the larger the power function of R is.

This is because hypothesis H0 is rejected when this statistic is greater than a critical
value. Using equation (5) for an exact design and the corresponding observations,
we obtain,

I12(ξ) = min
θ2∈Ω2

{∫
χ

∫
f1(y, t, θ(0)

1 ) log

[
f1(y, t, θ(0)

1 )

f2(y, t, θ2)

]
dy ξ(dt)

}
∝ min
θ2∈Ω2

{EH1(R)}.

Therefore, the KL-optimal design maximizes the power function in the worst case
[30].

3.2. Algorithm to calculate the KL-optimal design. In order to compute op-
timal designs, the numerical algorithm developed by [9] is adapted to KL-optimality.
It is an exchange-type algorithm that starts from an arbitrary initial n-points de-
sign. In case of exact designs, this number of points is fixed by the practitioner and
none of them are repeated. At each iteration one support point is deleted from the
current design and a new point is included in its place to maximize the value of the
criterion function. Next, the algorithm is detailed:

Step 1. Select an initial design ξ(0)
n = {t(0)1 , . . . , t(0)n } such that, t(0)i 6= t(0)j , i, j ∈ I =

{1, 2, . . . , n} and i 6= j.

Step 2. Compute

θ̃(0)

2 = arg min
θ2∈Ω2

I(f1, f2, t, θ2) and ∆(ξ(0)

n )= I(f1, f2, t, θ
(0)

2 )

Step 3. Determine
(i∗, t∗) = arg max

(i,t)∈I×χ
∆(ξ(0)

n,ti
t),

where ∆(ξ(0)

n,ti
t) means that the support point ti in the design ξ(0)
n is exchanged by

t ∈ χ. If
∆(ξ(0)

n,ti∗
t∗)−∆(ξ(0)
n )

∆(ξ(0)
n )

< δ,

where δ is the given tolerance, then STOP. Otherwise,

ξ(1)

n = {t(0)1 , . . . , t∗i∗ , . . . , t
(0)

n },

and we go to step 1, taking ξ(1)
n as initial design.

Before calculating the value of θ̃(0)

2 we must know the nominal value of θ1, θ
(0)
1 .

This nominal value has been obtained by using the Maximum-Likelihood Estimation
from historical data,

θ(0)
1 = arg max

θ1

log
1

(2π)n/2|Σ1|1/2
exp{(y − η1(t, θ1))

′Σ−1
1 (y − η1(t, θ1))},

The values of y = (y1, . . . , yn) correspond to the weight of a single calf at eight
different ages (see Appendix) and they were provided by Navalázaro farm. Once
the Maximum-Likelihood method has been carried out,

θ(0)

1 = (M (0)

1 , B(0)

1 , k(0)

1 , A(0)

1 , β(0)

1 , ρ(0)

1 ) = (796, 0.66, 0.0044, 3.89, 0.04, 0.95). (6)

These values of θ(0)
1 are used as nominal values for computing a locally optimal

design.
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3.3. Calculation of KL-optimal design. As mentioned at the introduction,
calves are sent to the growing facility just after their weaning, all of them be-
ing weighed upon their arrival. Accordingly, one cannot determine a priori exactly
the age at which the animals will be weighed for the first time. As the distribution
of birth can be considered uniform over time, this design specifies that the first
measure after weaning will be taken at time t1 ∼ U(170, 190), since approximately
every 20 days a group of animals are sent to the growing facility. Around eighteen
months after birth (540 days), the yearlings are sent to the abattoir where they will
be killed for consumption as food. Therefore, the first measurement will be made
as soon as possible after weaning, that is, t1 ∼ U(170, 190) and the last one when
they are about 540 days old, that is, t8 = t1 + 540− 180 = t1 + 360. The design ξ
will consist then of measuring at times

{t1, t2, t3, t4, t5, t6, t7, t8},
where t1 ∼ U(170, 190), t8 = t1 + 360 and for the rest of the times,

ti = t1 +

i∑
j=2

hj i = 2, . . . , 7,

7∑
j=2

hj ≤ 540− 180 = 360. (7)

The values of h2, h3, h4, h5, h6, h7 > 0 have to be optimized by using the algorithm.
Since t1 is a random time, we cannot control a priori the exact age at which the calf
will be weighed. Thus, we will optimize the periods of time between measurements.
Once this minimization has been carried out, we have the locally KL-optimal design,

ξ∗ = {t1, t1 + 30, t1 + 60, t1 + 80, t1 + 90, t1 + 110, t1 + 240, t1 + 360}.
The relative efficiency of any design ξ compared with another ζ is computed by
dividing the values of the KL-optimality criterion. We compare the values

effξ,ζ =
I12(ξ)

I12(ζ)
.

The efficiency can sometimes be multiplied by 100 and be reported in percentage
terms. If this efficiency is higher than 1 then the power test for discrimination
between the two models is higher with the design ξ than with the design ζ. We
intend to compare the relative efficiency of ξ with respect to the measurements
taken at the growing facility (see Appendix), which from now on will be expressed
as ξf :

ξf = {t1, t1 + 50, t1 + 100, t1 + 150, t1 + 205, t1 + 255, t1 + 310, t1 + 360},
where t1 ∼ U(170, 190). This design consists of eight points representing the age
at which the calves were weighed at the growing facility. Through the efficiency we
measure how much better ξ∗ is compared to ξf ,

effξf ,ξ∗ =
I12(ξf)

I12(ξ∗)
= 66 %.

4. Robustness analysis.

4.1. Sensitivity analysis versus the choice of the nominal values. In this
section it will be checked how the quality of the optimal design would be affected
by a wrong choice of the nominal value. Let us call θ∗ as any possible true value of
the parameters and θ(0) being the nominal values used for the computation of the
KL-optimal design ξ∗

θ(0)
. The efficiency
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effξ∗
θ(0)

,ξ∗
θ∗

=
I12(ξ∗

θ(0)
)

I12(ξ∗
θ∗)

,

measures the goodness of the design ξ∗
θ(0)

obtained under the nominal values, where
ξ∗θ∗ is the actual optimal design. Table 1 illustrates the robustness of the KL-optimal
design ξ∗ with respect to the choice of the parameters M1, B1, k1 and A1. Shifting
around 10% the parameters k1, A1 and B1 keeps the efficiency over 70%, even when
the variations of the parameter M1 is large (from 756 to 835 kg). On the other hand,
Figure (1) shows the robustness of ξ∗ with respect to the choice of the parameters ρ
and β. The higher the value of ρ is, the greater the decrease in the value of efficiency
will be.

k1 = 0.0039 k1 = 0.0044 k1 = 0.0048

A1=3.5

756 796 835

0,59 63 68 69
0.66 71 74 74
0.73 71 73 72

756 796 835

65 69 71
72 76 76
72 74 73

756 796 835

67 71 72
74 78 77
74 76 74

A1=3.89

756 796 835

0.59 92 96 96
0.66 98 99 98
0.73 95 96 93

756 796 835

92 96 95
98 100 98
95 96 92

756 796 835

93 96 95
98 99 98
95 96 92

A1=4.28

756 796 835

0.59 75 76 74
0.66 77 78 74
0.73 72 71 67

756 796 835

73 74 72
76 76 72
71 70 65

756 796 835

71 72 70
74 74 71
69 68 63

Table 1. Relative efficiencies (in %) of the design ξ∗ for different
values of the parameters; M1 = 756, 796, 835; B1 =
0.59, 0.66, 0.73

4.2. Sensitivity analysis versus the choice of the correlation structure. We
have considered a well known and widely used model for the trend of the growing of
the weight of animals. We claim a correlation structure has to be considered when
there are repeated measurements. This is convenient from both the practical and
the statistical points of view, resulting in information gain and cost reductions. A
novelty that this paper introduces is the choice of such a correlation structure. The
one used here is rather usual within this framework, but other may also be suitable.

We compare the efficiency of the locally optimal designs obtained with respect
to the choice of these three typical covariance structures:

(a) Dagum function,

Cov(yti , ytj ) =

 σ2

 ρ(1− (ti − tj)β

1 + (ti − tj)β

)γ for ti 6= tj

σ2 (1− ρ) for ti = tj .

(8)

(b) Cauchy function,

Cov(yti , ytj ) =

{
σ2 ρ

(
1 + (ti − tj)β

)−γ
for ti 6= tj

σ2 (1− ρ) for ti = tj .
(9)
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Figure 1. Relative efficiencies of the design ξ∗ for different values of the

correlation and nugget parameters

(c) Gaussian model,

Cov(yti , ytj ) =

{
σ2 ρ exp{−β2 (ti − tj)2} for ti 6= tj
σ2 (1− ρ) for ti = tj .

(10)

Table 2 shows the efficiencies of the locally optimal design ξ∗ with respect to the
designs ξ∗dag, ξ

∗
ca and ξ∗ga, which have been calculated assuming covariance structures

(8), (9) and (10), respectively. The similar behavior of the correlation structures
(Figure 2) allows us to compare the designs obtained with them. The efficiency is
not substantially affected by the choice of these three correlation structures (always
over 75%).

KL-optimal design eff(ξ∗)

ξdag {t1, t1 + 145, t1 + 155, t1 + 170, t1 + 180, t1 + 250, t1 + 300, t1 + 360} 87 %
ξca {t1, t1 + 50, t1 + 60, t1 + 70, t1 + 210, t1 + 260, t1 + 330, t1 + 360} 75 %
ξga {t1, t1 + 30, t1 + 60, t1 + 80, t1 + 90, t1 + 110, t1 + 240, t1 + 360} 77 %

Table 2. Designs based on covariance structures (8), (9) and (10)
and their corresponding efficiencies with respect to ξ∗.

5. Discussion. In this paper we have computed a restricted optimal design for
discrimination between two well-known and widely used models for the trend of
the growing weights of animals. The criterion used in Section 2 generalizes the
T-optimality criterion for correlated observations.

On the other hand, it is important to point out that the results obtained cannot
be extended to other areas of Spain or Europe; not even to other Limousine farms
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Figure 2. Plot of the correlation structures (4), (8), (9) and (10).

due to the wide variability of this breed. Furthermore, the design depends on the
prior values of the parameters of the model assumed to be the true one. This
means a local fitting has to be performed and used for each individual farm, but
the procedures apply straightforward. Moreover, in Navalázaro farm the calves are
sent to the abattoir when they are 18 months old but not every beef farm operates
on the same way since despite at this age the quality of the meat is high, it is also
more expensive and more difficult to place this product in the market. Therefore,
we should not extrapolate from these particular outcomes to other farms.

The introduction of the nugget effect avoids the collapsing of some optimal design
points. The efficiency of the design used in practice with respect to the computed
design is around 66%, which is substantially low. Thus, the restricted optimal
design computed implies an important gain with respect to the traditional one.
Therefore, the choice of a robust correlation structure is an important contribution
of this paper since there is not much literature on optimal design for discrimination
between models in the context of correlated observations and this work provides a
methodology that can be used for any correlation structure. Apart from the fact
that there are not many results regarding practical determination of optimal design
for discrimination between models in the context of correlated observations.

Figure 2 shows that the correlation between two observations in less than 10
days is greater than 0.75, but for a difference of 50 days it decreases to about 0.3
and after 5 months the correlation is quite low. The exponential correlation used
here is one of the most usual within this framework, but others may be suitable.
Besides, the introduction of the nugget effect has produced a shift in the optimal
points which has led to an optimal design without replications. We have performed a
robustness analysis in order to show the importance of a right choice of the structure
of correlation.

The example considered in this paper (in which constant variance is assumed)
agrees with the usual treatment of the problem by [3] and [4]. Nevertheless, a non–
constant variance may be considered breaking the property of isotropy or doing it
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in a similar way as the introduction of the nugget effect. This has been considered
recently by [8], where the efficiency for repeated measurements will be much better
under the presence of heteroscedastic variance.

Another way of dealing with the correlation of the observations would be through
mixed models with random coefficients. As a matter of fact, there is an increasing
interest in finding optimal designs for regression models with random effects, see
e.g. [46] for a recent work. In a different context, [23] considered models with
random effects, but they always tried to find the covariance structure behind (e.g.
in pages 155 or 270). Sometimes the distinction between fixed and random effects
is not clear (e.g. [31], examples in Chapter 1). Furthermore, [15] devotes Chapter 4
to a growth model analyzing different cases for the covariance matrix showing that
our approach is rather usual in this context. In any case, the mixed models are
gaining in popularity and deserve further research in optimal experimental design.

The design computed here is mainly for discrimination between two rival models.
Several issues arise at this respect:

(a) Optimality criteria to estimate the parameters of doing predictions may be
considered using compound criteria for both purposes (May and Tommasi,
2014).

(b) If the choice has to be made among more than two rival models, different
criteria derived from KL-optimality may be used. The authors are currently
working on this topic.

(c) The designs computed or mentioned here are for statistical inference purposes.
In practical terms the farmer would like to know what are the best times for
an optimal control of the weight. This is not exactly the same topic although
there is very much related.

(d) From a statistical point of view, it seems as if eighteen moths is too little
a period of time to reach weight saturation and that calves’ lives schould
be prolonged in order to reach optimal weight. It is clear that weights at
longer periods would help fit the models in a more efficient way, but the
farm decides at which age the calves must sent to the slaughterhouse based
on economic considerations. When calves are around eighteen months old,
the carcass efficiency is optimal and the organoleptic properties are ideal for
consumption. At this stage, the meat is tender and has a good red color since
the animals have a greater movement capacity, implying that the hemoglobin
already reaches the tissues completely. Some people prefer to eat meat from
younger calves (around twelve months) but this meat is not very red and for
most customers it is too tender. Besides, it is sold for a higher price, since
at this age the carcass perfomance is not optimal. After eighteen months,
the carcass efficiency decreases so the economic loss is higher for the farm.
Furthermore, the meat becomes increasingly less red and harder.

Finally, we would like to remark that the realization of the design would comply
both the Spanish and the European regulations and would not affect to the animals
welfare since this implementation only implies to weigh the heifers at different points
in time from those carried out at the growing facility.

Appendix. The following data were provided by Navalázaro farm. Each row cor-
responds to the weight of a single calf at its corresponding age. The first column
refers to the weight of the calf upon arrival at the growing facility, with the last
column referring to its weight before being sent to the abattoir.
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day kg day kg day kg day kg day kg day kg day kg day kg

calf 1 170 215 236 291 277 337 333 402 389 478 434 539 493 617 537 677

calf 2 170 160 238 266 285 333 344 414 386 459 436 502 494 537 534 565

calf 3 170 184 229 298 276 366 338 465 383 517 443 596 493 652 541 720
calf 4 170 161 228 228 287 299 340 367 386 423 440 491 496 555 531 588

calf 5 171 209 226 307 288 422 324 477 394 579 441 631 488 684 541 731

calf 6 171 196 233 276 286 344 338 417 393 500 444 560 493 619 541 655
calf 7 171 187 224 261 286 327 330 374 393 434 429 469 498 524 540 543

calf 8 171 245 227 301 288 374 338 443 378 502 429 607 480 710 530 838

calf 9 171 149 224 252 276 348 328 430 382 505 433 560 482 619 535 654
calf 10 171 225 240 329 285 396 328 452 383 537 429 583 483 667 535 719

calf 11 172 163 224 253 286 358 334 429 379 495 437 583 481 646 531 718

calf 12 172 240 224 308 276 394 336 488 387 567 428 625 497 717 544 768
calf 13 172 168 225 284 274 371 334 458 379 512 445 568 480 597 530 631

calf 14 172 206 229 303 278 385 338 468 381 518 445 574 495 612 537 640
calf 15 173 174 229 288 289 394 340 483 376 536 435 647 489 713 538 784

calf 16 173 218 238 312 285 384 331 453 379 511 435 576 488 634 532 663

calf 17 173 180 224 251 286 345 326 404 386 490 437 556 495 636 539 678
calf 18 173 259 229 324 275 375 324 453 394 557 433 627 484 706 536 803

calf 19 173 199 228 259 273 322 334 403 382 491 430 579 482 677 548 806

calf 20 173 243 236 338 290 412 331 466 389 535 433 585 489 650 546 714
calf 21 173 160 222 305 287 440 331 517 388 597 434 666 491 739 530 785

calf 22 174 204 239 321 275 367 340 463 386 512 445 560 480 567 538 598

calf 23 174 214 237 296 290 370 342 428 386 473 439 508 481 544 547 581
calf 24 175 186 222 274 274 358 340 428 389 452 433 474 497 489 530 497

calf 25 175 180 237 302 281 382 342 472 379 531 432 584 481 620 532 657
calf 26 175 133 226 234 281 339 328 408 391 513 445 566 480 613 540 671

calf 27 176 230 233 297 276 354 339 460 380 538 445 672 483 759 545 925

calf 28 176 230 227 332 287 442 324 492 376 564 440 620 490 648 540 664
calf 29 176 180 240 328 275 406 338 519 388 570 443 608 486 634 544 648

calf 30 177 228 238 298 284 346 335 401 394 469 432 510 493 567 545 594

calf 31 177 202 225 290 282 382 331 459 394 539 445 615 480 645 544 732
calf 32 177 194 228 298 286 391 336 450 391 491 434 524 482 543 531 554

calf 33 178 194 239 281 288 346 343 411 388 468 427 506 495 592 548 637

calf 34 178 187 222 249 277 328 326 404 379 484 431 570 486 636 530 685
calf 35 178 207 223 270 284 353 333 418 389 486 441 559 491 620 530 673

calf 36 178 215 234 313 275 374 342 450 379 490 432 519 494 544 539 559

calf 37 178 258 230 338 275 409 324 495 381 589 433 674 491 770 549 849
calf 38 179 240 230 292 281 356 330 416 385 489 437 576 494 665 545 742
calf 39 179 241 237 327 287 397 342 477 393 561 433 617 492 708 533 777
calf 40 179 186 228 290 288 394 339 463 389 540 429 595 478 653 541 734

calf 41 180 187 223 258 289 371 340 447 390 517 430 573 491 624 540 667

calf 42 180 213 227 286 274 366 336 475 391 569 435 650 480 715 535 805
calf 43 180 268 235 346 283 402 344 472 380 505 429 552 480 599 531 641

calf 44 180 195 239 272 290 344 336 400 378 456 431 533 482 594 530 641
calf 45 180 230 231 304 290 394 331 463 384 550 444 666 478 729 549 834
calf 46 181 206 230 288 273 358 331 464 378 544 443 646 484 697 540 756

calf 47 181 197 234 331 273 407 336 511 382 573 428 642 488 704 533 756

calf 48 181 193 227 256 275 332 328 397 393 481 428 530 483 604 531 659
calf 49 181 207 227 267 276 325 336 402 395 456 430 491 483 527 537 567

calf 50 181 191 234 310 273 369 331 458 384 511 431 569 492 625 547 684
calf 51 182 221 236 297 285 375 333 454 386 539 433 596 493 692 533 738

calf 52 182 204 233 286 277 353 330 428 385 492 431 551 495 601 533 627

calf 53 182 219 240 288 277 334 337 396 381 427 440 474 492 501 531 508
calf 54 182 225 229 292 290 375 324 415 384 494 435 563 487 614 545 662

calf 55 182 250 235 328 285 407 343 503 379 563 441 649 483 716 532 775

calf 56 182 228 223 263 280 307 325 357 385 436 435 509 498 612 546 704
calf 57 183 230 229 293 280 357 344 428 376 449 444 504 496 521 545 549

calf 58 183 232 232 311 286 399 337 473 379 523 429 586 498 659 533 699
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calf 59 183 245 231 348 283 459 333 549 378 610 436 670 495 732 547 742
calf 60 183 226 224 286 287 387 326 445 378 541 439 655 485 739 543 830

calf 61 183 220 230 299 277 386 326 465 392 584 430 631 481 698 543 747

calf 62 183 209 225 281 285 376 325 442 383 517 440 574 497 610 546 640

calf 63 184 222 236 302 278 377 337 473 388 564 430 619 480 692 539 765

calf 64 184 213 240 273 279 316 343 393 382 440 444 513 487 555 538 633
calf 65 185 196 229 258 277 330 332 405 377 464 429 503 497 555 549 586

calf 66 185 209 224 272 290 384 344 473 386 536 444 606 490 664 533 699

calf 67 185 213 228 287 285 381 339 454 377 505 429 566 489 639 539 683
calf 68 185 206 223 293 278 391 329 475 386 555 428 591 486 647 532 682

calf 69 185 164 232 239 281 322 329 403 390 512 431 592 480 669 545 796

calf 70 185 206 238 312 282 399 336 479 394 576 436 638 478 694 547 781
calf 71 185 193 229 239 282 311 338 394 395 476 433 533 495 638 544 711

calf 72 186 208 239 289 275 339 342 451 388 518 429 564 484 633 540 674

calf 73 186 321 232 393 276 455 329 520 393 574 427 611 488 635 533 655
calf 74 186 240 241 315 287 381 331 431 387 506 429 555 496 631 547 690

calf 75 186 243 238 314 277 378 336 458 387 528 437 602 495 683 535 743
calf 76 186 202 230 274 290 380 332 452 391 540 435 619 494 711 545 803

calf 77 186 246 236 323 275 377 334 466 382 515 438 570 486 591 538 634

calf 78 187 228 240 301 283 369 327 422 378 482 432 539 495 600 535 626
calf 79 188 234 240 319 281 374 326 437 380 515 435 590 490 665 535 726

calf 80 188 200 236 293 273 367 331 462 389 539 441 604 483 636 535 669

calf 81 188 187 237 293 278 351 335 424 395 480 441 522 495 558 538 586
calf 82 188 221 232 280 287 353 335 420 376 472 436 563 491 652 540 730

calf 83 189 258 228 309 278 370 325 429 381 487 428 524 488 568 545 626

calf 84 189 200 236 283 279 352 337 430 380 482 433 541 492 597 540 631
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