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Abstract. A spatial-temporal transmission model of 2009 A/H1N1 pandemic
influenza across Chile, a country that spans a large latitudinal range, is devel-

oped to characterize the spatial variation in peak timing of that pandemic

as a function of local transmission rates, spatial connectivity assumptions for
Chilean regions, and the putative location of introduction of the novel virus

into the country. Specifically, a metapopulation SEIR (susceptible-exposed-

infected-removed) compartmental model that tracks the transmission dynam-
ics of influenza in 15 Chilean regions is calibrated. The model incorporates

population mobility among neighboring regions and indirect mobility to and

from other regions via the metropolitan central region (“hub region”). The
stability of the disease-free equilibrium of this model is analyzed and com-

pared with the corresponding stability in each region, concluding that stability
may occur even with some regions having basic reproduction numbers above 1.
The transmission model is used along with epidemiological data to explore
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potential factors that could have driven the spatial-temporal progression of the
pandemic. Simulations and sensitivity analyses indicate that this relatively

simple model is sufficient to characterize the south-north gradient in peak

timing observed during the pandemic, and suggest that south Chile observed
the initial spread of the pandemic virus, which is in line with a retrospective

epidemiological study. The “hub region” in our model significantly enhanced

population mixing in a short time scale.

1. Introduction.

1.1. Spatial-temporal variation of influenza. Increasing our understanding of
the spatial dissemination patterns of influenza is essential for public health surveil-
lance and the implementation of reactive social distancing measures for mitigation
efforts. Factors that have been associated with the spatial-temporal variation in
seasonal influenza activity at the city or regional level include local environmen-
tal characteristics (e.g., temperature, specific humidity [44, 48] that enable local
transmission, school cycles [9, 26] whereby influenza transmission rates tend to de-
cline during school breaks, as well as regional and global population mobility pat-
terns [7, 15, 49]). For instance, a study based on 30 years of influenza-related mor-
tality found a significant correlation between influenza activity across U.S. states
and the rates of movement of people to and from their workplaces (workflows) com-
pared with geographical distance [49]. Another study using influenza hospitalization
records among older adult populations across U.S. states found a significant gradi-
ent in the peak timing of influenza at the state level whereby western states tended
to peak earlier than northeastern states [51]. Similarly, another study based on
weekly laboratory-confirmed influenza A from Canadian and U.S. influenza surveil-
lance systems showed a slight gradient in peak timing from the southwest regions
in the U.S. to northeast regions of Canada and the U.S. This study also found that
regional influenza epidemics were more synchronized across the U.S. (3–5 weeks)
compared with Canada (5–13 weeks) [41].

1.2. The 2009 A/H1N1 pandemic influenza in Chile. In the context of the
recent 2009 A/H1N1 influenza pandemic, population contact rates linked to school
cycles or intervention strategies [11,13,23,52], demographic factors [36], local trans-
missibility [11–13], and global mobility patterns, driving the timing of introduction
of the virus across countries [29], have been associated with the complex spatial and
temporal evolution of the 2009 A/H1N1 influenza pandemic. The 2009 A/H1N1 in-
fluenza pandemic spread across Chile during the winter months of 2009 soon after
the first cases had been confirmed in Mexico and California, USA [37]. The first
two cases of novel 2009A/H1N1 influenza in Chile were confirmed in metropolitan
Santiago on May 17, 2009 [37]. However, a retrospective study based on emer-
gency room visit and laboratory viral surveillance conducted in the southern city
of Puerto Montt, capital of Los Lagos region, suggested that this city could have
experienced both earlier pandemic onset and a faster transmission rate compared
to the metropolitan area of Santiago [37]. Indeed, an analysis of epidemiological
data of the 2009 A/H1N1 influenza pandemic in Chile showed that this country
experienced a latitudinal gradient in pandemic peak timing in 2009, with southern
regions experiencing earlier pandemic activity compared to northern regions [12]
(Figure 1 (b)). Specifically, the southernmost regions (Biob́ıo, Araucańıa, Los Ŕıos,
Los Lagos, Aysén, and Magallanes) exhibited an early A/H1N1 pandemic peak, oc-
curring about 16–39 days earlier relative to the northernmost Chilean region (Arica
y Parinacota). The same study found that this geographical variation in pandemic
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Figure 1. (a) Chile comprises 15 regions that follow a north-
south pattern spanning a large latitudinal gradient. (b) The 2009
A/H1N1 influenza pandemic peak timing across the 15 Chilean re-
gions relative to May 1st 2009 shows a significant gradient in pan-
demic peak timing, with southern regions experiencing earlier pan-
demic activity compared to northern regions. (c) Schematic rep-
resentation of population’s mobility patterns incorporated in our
metapopulation model comprising 15 Chilean regions from north
to south of Chile. Arrows indicate that individuals in each region
are allowed to move to and from neighboring regions as well as the
metropolitan region (“hub”) located in central Chile.

peak timing in Chile was significantly associated with differences in latitude and
climatic conditions, with latitude, maximum temperature and specific humidity ac-
counting for 69–80% of this variability in pandemic peak timing [12]. In fact, this
south-north gradient in pandemic peak timing reported for Chile is consistent with
a decreasing trend in transmissibility in the same direction, which was found to be
statistically associated with maximum temperature and specific humidity. This is
also consistent with experimental studies suggesting that influenza transmission is
more efficient under dry and cold conditions [33–35,43,44,46].

1.3. This contribution. Here we develop a spatial-temporal transmission model
of 2009 A/H1N1 pandemic influenza. We tailor this model to the pandemic pro-
gression in Chile, a country that spans a large latitudinal gradient, in order to
characterize the spatial variation in pandemic peak timing of influenza in terms
of local transmission rates, spatial connectivity assumptions across Chilean regions
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Region population Region population

1 Arica y Parinacota 213816 9 Maule 968336
2 Tarapacá 300021 10 Biob́ıo 1971998
3 Antofagasta 547463 11 Araucańıa 913065
4 Atacama 292054 12 Los Ŕıos 364592
5 Coquimbo 707654 13 Los Lagos 798141
6 Valparáıso 1734917 14 Aysén 99609
7 Metropolitana 6685685 15 Magallanes 159468
8 O’Higgins 877784 Chile (total) 16634603

Table 1. Official data for population (2009) [25]. Note that we
number regions consecutively from north to south; our numbering
does not coincide with the official governmental numbers of regions.

and the putative location of introduction of the virus into the country. More specif-
ically, we employ epidemic modeling together with epidemiological data to explore
the spatial-temporal progression of pandemic influenza in Chile by testing a range
of transmission scenarios to investigate the robustness of the south-north gradient
observed during the 2009 influenza pandemic in Chile. We analyze the relationship
between the stability of the Disease-Free Equilibrium (DFE) for the model and the
stability of the local DFE in each region, to arrive at the conclusion that local
stability implies global stability, but the reciprocal implication does not necessary
hold, by providing a counterexample for which the DFE is stable whereas the basic
reproduction number at some region is above 1.

2. Spatial-temporal SEIR model. Classical SEIR (susceptible-exposed-infec-
tious-recovered) epidemiological models describe disease transmission in homoge-
neous populations by classifying individuals into one of four different epidemiologi-
cal states [3,8,16,18,28,39,50]. However, these single-population models rely on the
strong assumption that the entire population is mixing homogeneously (e.g., each
individual in the population has the same probability of contacting any other indi-
vidual in the population). Hence, these models do no consider any aspects about
the spatial spread of the disease across large geographic areas which could differ in
demographic, environmental, and other characteristics that could influence disease
transmission.

2.1. Formulation of the SEIR transmission model. We employ a SEIR trans-
mission model with n = 15 contiguous populations sorted from north to south Chile
(Figure 1 (a) and Table 1) according to the 15 administrative regions. We model
two types of population mobility: 1) movement to and from adjacent regions and 2)
long-distance population mixing via the central metropolitan (“hub”) region that is
connected to all regions (see Figure 1 (c)). Therefore, region 1 corresponds to the
northernmost region, region n is the southernmost region, and region j0 denotes
the metropolitan (“hub”) region. The metropolitan region in Chile (the greater
Santiago area) comprises the main airport and several bus terminals. Virtually all
trips by bus or air between northern and southern regions involve a stopover in the
hub region, as do many flight connections whose origin and destination are both
located either north or south of the hub region, e.g. travelling between the Biob́ıo
and Magallanes regions usually is via the hub region.

We keep track of the numbers of susceptible, exposed, infectious and recovered
individuals in each of the 15 Chilean regions at time t, denoted by Sj(t), Ej(t),
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Ij(t) and Rj(t) for j = 1, . . . , n, respectively, via dynamic equations. Moreover,
we do not model disease-induced deaths as the 2009 A/H1N1 influenza pandemic
generated very low mortality rates in most areas of the world including Chile, our
population of interest. In fact, the A/H1N1 pandemic mortality rate for Chile has
been estimated at 2 deaths per 100,000 people [45].

The disease transmission is described by the following system of 4n ordinary
differential equations, where the total population size in each region j is given by
Nj(t) = Sj(t) + Ej(t) + Ij(t) +Rj(t):

dSj

dt
= −βj

SjIj
Nj

+Mj(S),

dEj

dt
= βj

SjIj
Nj
− κEj +Mj(E),

dIj
dt

= κEj − γIj +Mj(I),

dRj

dt
= γIj +Mj(R) for j = 1, . . . , n.

(1)

The local transmission rate in each region j is given by a constant βj , where we
model an increasing transmissibility gradient from north to south Chile (as previ-
ously reported in [12]) by assuming that

β1 < β2 < · · · < βn. (2)

Moreover, as usual, 1/κ is the latent period, 1/γ is the infectious period andMj(X)
for X ∈ {S,E, I,R} is the movement operator in region j. The mobility of individ-
uals in our model is governed by the following rules:

• Nearest-neighbor mobility for all regions j = 1, . . . , n. Individuals in region
j are allowed to move to regions j − 1 and j + 1 at respective rates m̂j−1,j
and m̂j+1,j except that individuals in the northernmost region 1 can only
move to region 2, and similarly, individuals in the southernmost region n
can only move to region n − 1 (see Figure 1 (c)). Here we assume that
m̂j−1,j = m̂j,j−1 =: mj−1/2.

• We also consider long-range movement to the rest of the country via a “hub
region” denoted by index j0 that corresponds to the metropolitan region in
central Chile (Figure 1 (c)). That is, individuals in region j move to region
j0 (the “hub region”) at rate mh,j for j = 1, . . . , n, and similarly individuals
in j0 move to other regions at the same rate mh,j .

The above assumptions regarding population mobility lead to the following explicit
definition of the operator Mj(X) for j = 1, . . . , n:

Mj(X) =



m3/2X2 +mh,1Xj0 − (m3/2 +mh,1)X1 for j = 1,

mj0−1/2Xj0−1 +mj0+1/2Xj0+1 +
∑n

i=1mh,iXi

−(mj0−1/2 +mj0+1/2 +
∑n

i=1mh,i)Xj0 for j = j0,

mn−1/2Xn−1 +mh,nXj0 − (mn−1/2 +mh,n)Xn for j = n,

mj−1/2Xj−1 +mj+1/2Xj+1 +mh,jXj0

−(mj−1/2Xj−1 +mj+1/2Xj+1 +mh,j)Xj otherwise.

The matrix M = (mij)1≤i,j≤n such thatMj(X) = (M(X1, . . . , Xn)T)j is given by

M = −∆−Σ, (3)



48 R. BÜRGER, G. CHOWELL, P. MULET AND L. M. VILLADA

where we define

∆ :=


m3/2 −m3/2

−m3/2 m3/2 +m5/2 −m5/2

. . .
. . .

. . .

−mn−3/2 mn−3/2 +mn−1/2 −mn−1/2
−mn−1/2 mn−1/2

 ,

Σ :=



mh,1 −mh,1

. . .
...

mh,j0−1 −mh,j0−1

−mh,1 · · · −mh,j0−1
n∑

j=1
j 6=j0

mh,j −mh,j0+1 · · · −mh,n

−mh,j0+1 mh,j0+1

...
. . .

−mh,n mh,n


.

(4)

With this notation, we rewrite (1) for the vectors S,E, I,R ∈ Rn as

dS

dt
= −ϕ(S,E, I,R) +MS,

dE

dt
= ϕ(S,E, I,R)− κE +ME,

dI

dt
= κE − γI +MI,

dR

dt
= γI +MR,

(5)

where the j-th component ϕj of ϕ = (ϕ1, . . . , ϕn)T is given by

ϕj(S,E, I,R) = βjϕ(Sj , Ej , Ij , Rj),

where we define the scalar function

ϕ(Sj , Ej , Ij , Rj) :=
SjIj

Sj + Ej + Ij +Rj
=
SjIj
Nj

.

2.2. Some comments on the SEIR transmission model. To put the formula-
tion of the SEIR transmission model into the proper perspective, we first mention
that an overview on discrete spatial heterogeneity concepts for compartmental epi-
demic models is provided by van den Driessche [19]. This includes, in particular, the
approach by Sattenspiel and Dietz [40], which was the first epidemic patch model
to involve geographic mobility, and which was later extended in [6]. These models
include quite involved descriptions of the mobility and transmission processes since
for each compartment of the underlying epidemic model (e.g., SIR or SEIR model),
both the region of origin and the region of visit at time t are kept track of, which
gives rise to 3n2 or 4n2 ordinary differential equations. For our purpose it is suffi-
cient to keep track of the compartments in each region at each moment irrespective
of origins of the individuals involved, for which a model of the type (1) is sufficient.
In fact, most analyses of multigroup epidemic models refer to that situation (cf.,
e.g., [1, 20, 30–32, 47]). Further simplifications inherent in (1) (in comparison with
the cited papers) arise from the assumption that the time scale of the pandemic
is short enough so that natural birth and death rates can be neglected but long
enough to warrant symmetric mobility rates as expressed by the rules governing
mobility, and which cause the matrix M to be symmetric. The latter assumption
of dominantly short-period travels is also supported by the observation that the
pandemic took part in the southern winter of 2009, well after the summer school
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holiday period during which substantial part of the metropolitan population would
undertake trips of several weeks to other regions.

In light of all these assumptions it is straightforward to verify that the mobility
model satisfies a conservation law of mixing in the following sense. Since M is
symmetric and satisfies

−mii =
∑
j=1
j 6=i

mij for all i = 1, . . . , n, (6)

we obtain for each compartment X ∈ {S,E, I,R} and the pure mobility process
(i.e., we set the epidemiological rate parameters β, κ and γ to zero) the identity

d

dt

n∑
i=1

Xi =

n∑
i=1

Mi(X) =

n∑
i,j=1

mijXj =

n∑
i=1

(
n∑

j=1,j 6=i

mijXj +miiXi

)

=

n∑
i=1

n∑
j=1,j 6=i

mij(Xj −Xi) =

n∑
i,j=1

mijXj −
n∑

i,j=1

mijXi = 0.

(7)

A thorough analysis of the properties of the movement matrix M in a more general
context is provided by Arino [4].

Furthermore, we assume that the mobility (travel) behaviour of all groups (epi-
demiological compartments) is the same; in particular infectious people travel to
various regions during the pandemic. This assumption is also made explicitly in var-
ious alternative treatments and is usually justified by the (assumed) mild nature of
the disease (cf., e.g., [19, p. 184], [40, p. 76], [4, p. 70] and [31, p. 1378]). Specifically
for our case, [45] is a comprehensive reference because it presents a multi-country
analysis of influenza mortality data during the 2009 A/H1N1 influenza pandemic.

2.3. Stability of disease-free equilibrium (DFE) points. We now look for
disease-free equilibrium (DFE) points, i.e., equilibrium points with E = I = R = 0.
The equilibrium condition is obtained by setting the right-hand sides of equations
(5) to zero and for E = I = R = 0 it is equivalent to MS = 0, that is, S ∈ N (M),
where N denotes the nullspace of its matrix argument. The following proposition
deals with this situation.

Proposition 2.1. The matrices ∆ and Σ are positive semidefinite with a common
nullspace N (∆) = N (Σ) spanned by e := (1, . . . , 1)T. For any choice of

mi+1/2 > 0 for i = 1, . . . , n− 1; mh,i > 0 for i = 1, . . . , n, i 6= j0, (8)

the matrix M is negative semidefinite and N (M) = 〈e〉.

Proof. For a vector y = (y1, . . . , yn)T ∈ Rn we have

yT∆y = m3/2y
2
1 +

n−1∑
i=2

(mi−1/2 +mi+1/2)y2i +mn−1/2y
2
n − 2

n−1∑
i=1

mi+1/2yiyi+1

=

n−1∑
i=1

mi+1/2(yi − yi+1)2 ≥ 0.

Since ∆ is symmetric, this identity implies that

y ∈ N (∆)⇔ yT∆y = 0⇔ yi = yi+1 for i = 1, . . . , n− 1⇔ y = αe
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for some α ∈ R. Similarly we calculate

yTΣy =

n∑
i=1
i6=j0

mh,i

(
y2i + y2j0

)
− 2

n∑
i=1
i6=j0

mh,iyiyj0 =

n∑
i=1
i6=j0

mh,i(yi − yj0)2 ≥ 0,

and y ∈ N (Σ)⇔ yTΣy = 0⇔ yi = yj0 for i = 1, . . . , n⇔ y = α̃e for some α̃ ∈ R.
In light of (8) and

yTMy = −yT∆y − yTΣy, (9)

it now follows that yTM ≤ 0. As mentioned above, M = MT implies N (M) =
{y : yTMy = 0}, and (9) therefore yields that N (M) = N (∆) ∩N (Σ) = 〈e〉.

Corollary 2.1. The disease-free equilibrium (DFE) point for the metapopulation
model with local and non-local migration (5) is given by

Sj = NTotal/n; Ej = Ij = Rj = 0 for j = 1, . . . , n.

Proof. The DFE points are characterized by E = I = R = 0 and, as seen above,
S ∈ N (M), which is spanned by e, i.e., Sj = S∗, for j = 1, . . . , n. Since

NTotal =

n∑
j=1

(Sj(t) + Ej(t) + Ij(t) +Rj(t)) for all t,

it follows that NTotal = nS∗, that is, Sj = S∗ = NTotal/n.

The basic reproduction number (R0) quantifies the expected number of secondary
cases generated by a primary infectious individual during the infectious period in
a completely susceptible population [16]. In our model with different transmission
rates across regions, the local reproduction number R0,j for region j is given by
R0,j = βj/γ. We are interested in the analysis of the stability of the DFE for system
(5), which captures the overall transmissibility for the entire metapopulation.

To analyze the stability of these equilibria we linearize (5) about (S̄, Ē, Ī, R̄) ∈
R4n. Assuming that (Ŝ, Ê, Î, R̂) is a small displacement from equilibrium, we get
the first-order approximations (in the displacement)

ϕj(S̄ + Ŝ, Ē + Ê, Ī + Î, R̄+ R̂)

≈
(
Īj
N̄j
− ĪjS̄j

N̄2

)
Ŝj +

(
S̄j

N̄j
− ĪjS̄j

N̄2
j

)
Îj −

ĪjS̄j

N̄2
j

Êj −
ĪjS̄j

N̄2
j

R̂j ,

ϕj(S̄ + Ŝ,0 + Ê,0 + Î,0 + R̂) ≈ S̄j

N̄j
Îj = Îj .

The linearized version of (5) can be written in matrix-vector form as

d

dt


Ŝ

Ê

Î

R̂

 = Z


Ŝ

Ê

Î

R̂

 , Z =


M 0 −G 0
0 M −C G 0
0 C M −D 0
0 0 D M

 ,
with the following notation, where In is the n× n identity matrix:

G := diag(β1, . . . , βn), C := κIn, D := γIn.
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The stability of the DFE amounts to asserting whether Re(λ(Z)) ≤ 0 for any
eigenvalue λ(Z) of Z. Since the eigenvalues of M are nonpositive and

det(Z − λI4n) = det(M − λIn)2 det(Z1 − λI2n), Z1 :=

[
M −C G
C M −D

]
,

it follows that Re(λ(Z)) ≤ 0 is equivalent to Re(λ(Z1)) ≤ 0. Note that Z1 is the
coefficient matrix of the (Ê, Î) subsystem, i.e.,

d

dt

(
Ê

Î

)
= Z1

(
Ê

Î

)
.

Proposition 2.2. For any (compatible) matrices A, B, C and D we have

det

[
A B
C D

]
= detAdet(D − CA−1B). (10)

Furthermore, if all matrices have the same dimension and C and A commute, then

det

[
A B
C D

]
= det(AD − CB). (11)

Proof. Assertion (10) follows from elementary properties of the determinant func-
tion and the identity[

A B
C D

]
=

[
I 0

CA−1 I

] [
A B
0 D − CA−1B

]
.

If C and A commute, then (11) follows from

detA det(D − CA−1B) = det
(
A(D − CA−1B)

)
= det(AD −ACA−1B)

= det(AD − CB).

In light of the previous discussion, we see that the DFE is stable if all zeros λ(Z1)
of det(Z1 − λI2n) satisfy Re(λ(Z1)) ≤ 0. Satisfaction of this condition is difficult
to analyze for a general mobility matrix (3), (4) and transmission parameters β,
even using a next-generation matrix analysis (see [17,21]), but two simple sub-cases
(namely either β = βe or M = 0, which are certainly unrealistic) can be handled
easily (Lemmas 2.1 and 2.2). For general values of these parameters we can only
provide a sufficient criterion of stability of the DFE (Lemma 2.3) in terms of the
basic reproduction number in each region being below 1.

The following result was already obtained in [5]. We include it here for the sake
of completeness.

Lemma 2.1. Assume that β = βe. Then the all-susceptible equilibria are stable if
and only if

R0 = β/γ < 1. (12)

Proof. With βi = β, G = βIn and applying Proposition 2.2 to det(Z1−λI2n), we
deduce that

det(Z1 − λI2n) = det
([
M − (κ+ λ)In

][
M − (γ + λ)In

]
− κβIn

)
.
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Since M is symmetric and negative semidefinite, we have M = PM̃PT for an
orthogonal matrix P and M̃ = diag(µ1, . . . , µn), where µi ≤ 0. At least one µi

equals zero (say, µ1 = 0) since M is singular. Since

PT
([
M − (κ+ λ)In

][
M − (γ + λ)In

]
− κβIn

)
P

=
[
M̃ − (κ+ λ)In

][
M̃ − (γ + λ)In

]
− κβIn

is diagonal and detP = detPT = ±1, we get

det
([
M − (κ+ λ)In

][
M − (γ + λ)In

]
− κβIn

)
= det

(
PT
{[
M − (κ+ λ)In

][
M − (γ + λ)In

]
− κβIn

}
P
)

= det
([
M̃ − (κ+ λ)In

][
M̃ − (γ + λ)In

]
− κβIn

)
=

n∏
i=1

(
(µi − κ− λ)(µi − γ − λ)− κβ

)
.

Thus, the eigenvalues λ±i , i = 1, . . . , n of Z1 are the roots of the quadratic equations

(µi − κ− λ)(µi − γ − λ)− κβ = 0, i = 1, . . . , n,

namely

λ±i =
1

2

(
2µi − γ − κ±

√
(2µi − γ − κ)2 − 4

(
(µi − γ)(µi − κ)− κβ

))
for i = 1, . . . , n. Since µi ≤ 0 and γ, κ > 0, we have Reλ±i < 0 if and only if

(µi − γ)(µi − κ) > κβ. (13)

In view of (µi− γ)(µi−κ)−κγ = µi(µi−κ− γ) > 0, a sufficient condition for (13)
to hold is γ > β, i.e., (12). This condition is also necessary, as can be deduced from
evaluating (13) for µi = µ1 = 0.

Lemma 2.2. Assume that mi+1/2 = 0 and mh,i = 0 for all i. Then the all-
susceptible equilibria are stable if and only if R0,i = βi/γ < 1 for i = 1, . . . , n.

Proof. Proposition 2.2 applied to det(Z1 − λI2n) yields

det(Z1 − λI2n) = det
([
−(κ+ λ)In

][
−(γ + λ)In

]
− κG

)
= det

(
diag

(
(γ + λ)(κ+ λ)− κβi

))
=

n∏
i=1

(λ2 + (κ+ γ)λ+ κ(γ − βi)).

The roots of this polynomial are

λ±i =
1

2

(
−γ − κ±

√
(γ + κ)2 − 4κ(γ − βi)

)
for i = 1, . . . , n. Since γ, κ > 0, we have Reλ±i < 0 if and only if γ > βi.

It remains to analyze the remaining cases, for which βi are different and M 6= 0.
As in the previous cases, we perform a simple and direct analysis of the eigenvalues
of the matrix Z1 governing the dynamics of the exposed-infectious population.

Lemma 2.3. A sufficient condition for the DFE to be stable is

R0,i = βi/γ < 1 for i = 1, . . . , n. (14)
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Proof. We apply the Gershgorin circle theorem columnwise to Z1. Since the matrix
M has negative diagonal entries, nonnegative off-diagonal entries and satisfies (6),
the circles corresponding to the first n columns of Z1 have center mjj−κ and radius∑

i6=j mij + κ = −(mjj − κ), and therefore are included in C− = {z ∈ C : Re z ≤ 0}
and its intersection with C0 = {z ∈ C : Re z = 0} is {0}. Likewise, the circles
corresponding to the last n columns of Z1 have center cj = mjj − γ and radius∑

i6=j

mij + βj < −mjj + γ = −cj , (15)

and are therefore also included in C− and their intersection with C0 is empty.
We conclude that all Gershgorin circles of Z1 are included in C− and therefore all

eigenvalues of Z1 have nonpositive real parts. Furthermore, using that the matrices
M − κIn and M − γIn are irreducible we conclude that Z1 is irreducible. Since
the strict inequality holds in (15), we know that ZT

1 is an irreducibly diagonally

dominant matrix, and therefore ZT
1 and Z1 are regular. Thus, 0 is not an eigenvalue

of Z1, and we conclude that all its eigenvalues have strictly negative real part.

The other implication, namely that violation of (14), i.e., R0,i ≥ 1 for some i,
would imply that the DFE is unstable, is not true. This can be seen by a numerical
counterexample. For n = 3 and j0 = 2, consider mh,i = 0 for i = 1, 2, 3, m3/2 =
m5/2 = 0.1 and κ = γ = 1. We set β1 = β2 = 0.5 and β3 = 1.1; note that β3/γ > 1.
Then we have

Z1 =


−1.1 0.1 0 0.5 0 0
0.1 −1.2 0.1 0 0.5 0
0 0.1 −1.1 0 0 1.1
1 0 0 −1.1 0.1 0
0 1 0 0.1 −1.2 0.1
0 0 1 0 0.1 −1.1

 .
For this matrix we obtain the eigenvalues

{λ±1 , λ
±
2 , λ

±
3 } = {−2.1892,−1.9358,−1.7376,−0.5697,−0.3400,−0.0277},

so all eigenvalues of Z1 have negative real part, and therefore the DFE is stable,
despite β3/γ > 1.

This situation is the opposite to that found in [20] for other epidemiological
models, in the sense that van den Driessche and coauthors prove that R0,i ≤ R0, so
that R0 < 1 implies R0,i < 1 for all i, but they show examples for which R0,i < 1
for all i, and yet R0 > 1.

3. Epidemiological and population data. We relied on a large individual-level
dataset comprising all hospitalizations for severe acute respiratory infection (here-
after referred to as SARI) reported by all public and private hospitals to the Chilean
Ministry of Health during 01-May to 31-December 2009 to characterize peak tim-
ing of the 2009 A/H1N1 influenza pandemic across 15 Chilean regions. A total
of 1809 SARI hospitalizations (29.4%) were laboratory confirmed with A/H1N1
pandemic influenza. A previous study [12] reported a latitudinal gradient in peak
pandemic timing, representing a 16–39-day lag in disease activity from the south-
ern regions relative to the northernmost region (P < 0.001) as shown in Figure 1
(b). Maximum temperature and specific humidity together with other geographical
differences in latitude of Chilean regions explained 68.5% of the variability in peak
timing (P = 0.01). There was also a decreasing gradient in reproduction number
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Figure 2. Model fits provided by our metapopulation model to
the pandemic peak timing data of the 2009 A/H1N1 influenza pan-
demic across Chilean regions. The vertical dashed line marks the
region where the initial number of infectious individuals is intro-
duced.

from south to north Chile. The regional mean R0 estimates were 1.6–2.0, 1.3–1.5,
and 1.2–1.3 for southern, central and northern regions, respectively [12].

To parametrize population size for each of the Chilean regions, we also obtained
regional estimates of population size for 2009 from the Instituto Nacional de Es-
tad́ısticas [25], see Table 1.

4. Parameter estimates and initial conditions. The latent period was set at
1/κ = 1.5 d and the infectious period was set at 1/γ = 1.5 d in line with influenza
epidemiology [12]. The local basic reproduction number across Chilean regions
varied according to a prior study [12]. Hence, the local transmission coefficient βj
for region j was chosen as

βj = γ

(
1.2 + 0.4

j − 1

n− 1

)
, j = 1, . . . , n, (16)

such that R0,j = βj/γ satisfies R0,1 = 1.2 (northernmost region) and increases
linearly across regions from north to south until R0,n = 1.6 (southernmost region).
Moreover, we consider a simple scenario, denoted in what follows by “Scenario 1”
in which the mobilities are given by two constants, namely

mj−1/2 = m for all j = 2, . . . , n, mh,j = mh for all j = 1, . . . , n. (17)

(This will be contrasted later with the results obtained by an alternative Scenario 2
with variable mobilities.) We estimated the mobility parameters m and mh and
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Figure 3. Predictions of pandemic peak timing based on our best
fit parameter values (18) when the initial introduction of infectious
cases varies from northern, central or southern regions.

the initial number of infectious individuals I0 by least-squares fitting our metapop-
ulation transmission model to data on pandemic peak timing of the 2009 A/H1N1
influenza pandemic across the 15 Chilean regions. This yields

m = 0.0046, mh = 0.0065, I0 = 216. (18)

Moreover, the entire regional populations were assumed to be susceptible at
the beginning of the pandemic. We assessed model fits that assumed that the
initial number of infectious individuals were located in northern, central or southern
regions (see Figure 2), with the conclusion that placing a set of infectious individuals
in region 10 (Biob́ıo) yields the best fit to our pandemic peak timing data.

5. Results and uncertainty and stability analysis. Our model that considers
an initial set of infectious individuals in region 10 (Biob́ıo) yielded the best fit to our
pandemic peak timing data of the 2009 A/H1N1 influenza pandemic across regions
of Chile as shown in Figure 2. Our next best fit model was obtained when the
initial number of infectious individuals were assumed to be located in the region 11
(Araucańıa), south of region 10 (Biob́ıo). Other model fits were of poorer quality
particularly those with initial infectious introductions assumed in northern regions
(Figure 2). The spatial-temporal progression of the pandemic simulated using our
best-fit parameter values with an initial infectious focus in the Biob́ıo region is
shown in Figures 3 and 4. These results suggest that the pandemic peak timing
follows a south-north gradient whenever the initial introduction of infectious cases
occurs in central or southern regions. The global basic reproduction number was
estimated at R0 = 1.56 based on the best-fit parameter estimates.
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Figure 4. Spatial-temporal progression of pandemic influenza
simulated across 15 Chilean regions based on our best model fit
to peak timing data. The initial number of infectious individuals
is set in the southern Biob́ıo region. Parameters are given by (18).
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Figure 5. Predictions of pandemic peak timing when a varying
fraction of infectious individuals are allowed to move to other re-
gions according to the mobility parameters of (a) Scenario 1 (based
on our best-fit parameter values), (b) Scenario 2. The vertical
dashed line denotes region 10 (Biob́ıo) where the initial number of
infectious individuals is introduced.

We evaluated the sensitivity of our results with respect to variations of the trans-
mission and mobility parameters. First of all, our results did not change significantly
when only fraction of infectious individuals were allowed to move to other regions
(Figure 5). Moreover, we computed the basic reproduction number R0 by the next-
generation method [21] to evaluate the influence of the mobility parameters on the
global values of R0. Here we limit ourselves to Scenario 1, (17), so that we can
plot R0 as a function of m and mh, see Figure 6. We found that the global R0
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Figure 6. Basic reproduction number R0 as a function of param-
eters m and mh. Global R0 decreases as the mobility parameters
m and mh increase. The arrow points to the best fit estimates of m
and mh obtained by fitting our metapopulation transmission model
to data on pandemic peak timing of the 2009 A/H1N1 influenza
pandemic in Chile as explained in the text.

j mj−1/2 mh,j j mj−1/2 mh,j j mj−1/2 mh,j

1 2.0 6.0 6 4.6 0 11 2.5 5.0
2 2.5 6.0 7 4.6 0 12 2.0 5.0
3 3.0 6.5 8 4.0 0 13 1.5 6.5
4 3.5 5.0 9 3.5 0 14 1.5 5.0
5 4.0 5 10 3.0 6.5 15 1.5 6.0

Table 2. Non-homogeneous mobility parameters, to be multiplied
by 10−3, chosen for Scenario 2.

declined as the mobility parameters m and mh increased. For the special case when
m = mh = 0, R0 is given by the maximum regional R0,j , which is given by 1.6 as
originally set for the southernmost Chilean region. For both Scenario 1 and 2 we
also assessed the influence of the values of the mobility parameters, i.e. m and mh

for Scenario 1 and m and mh for Scenario 2, if these are reduced gradually. The
results are shown in Figures 5 (a) and (b), respectively.

To study the effect of variations in the mobility parameters, we first define a
second, and possibly more realistic mobility scenario by choosing the parameters
mj−1/2 and mh,j according to the values given in Table 2. These values roughly
represent fluctuations in the territorial connectivity of Chile, in the sense that long
distances between, say, the capitals of regions 1 and 2 (or 2 and 3) probably dis-
courage habitants from these regions to undertake trips (so the values of mj−1/2 are
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Figure 7. Scenario 1: (a–d) peak timing obtained by mobility pa-
rameters (17), (18) (blue curve), and 20 trajectories (red curves)
of peak timing obtained by aleatoric variation (19), (20) of these
parameters with the indicated values of ε. The transmission pa-
rameters β always have the values (16).

small), in contrast to the short distance e.g. between regions 6, 7 and 8 (large val-
ues of mj−1/2). On the other hand, it is reasonable to assume that travel involving
the hub region, and which is not included in the overland mobility rates mj−1/2,
corresponds to air travel, and is not done from regions relatively close to the hub
region. For this reason we choose mh,j = 0 in Scenario 2 for regions 6 to 9. The
blue curve in Figure 7 (it is the same in all plots) shows the result of peak timing for
Scenario 1, and the blue curve in all plots Figure 8 shows the corresponding result
for Scenario 2. We observe that the results are very similar, which leads to the
conjecture that the results are possibly only moderately sensitive to the choice of
the mobility parameters. To test this hypothesis we proceed by Monte Carlo-type
sampling as follows. We define the vectors

m := (m3/2, . . . ,mn−1/2), mh := (mh,1, . . . ,mh,n), m∗ := (m,mh). (19)

Assume now that (θ1, . . . , θ2n−1) is vector of random variables assuming values in
(−1, 1). We then perturb the parameter vector m∗ by

m̃∗ =
(
I2n−1 + εdiag(θ1, . . . , θ2n−1)

)
m∗, (20)

where ε ≥ 0 is a parameter that controls the relative size of the perturbation
(note that ‖m̃∗ −m∗‖∞/‖m∗‖∞ ≤ ε). Each of the plots of Figure 7 includes 20
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Figure 8. Scenario 2: (a–d) peak timing obtained by the mobil-
ity parameters given in Table 2, and 20 trajectories (red curves)
of peak timing obtained by aleatoric variation (19), (20) of these
parameters with the indicated values of ε. The transmission pa-
rameters β always have the values (16).

alternative results for the peak timing of Scenario 1 obtained for aleatoric variations
(19), (20) of m∗ (based on m and mh given by (17), (18)) with four different values
of ε. Figure 8 shows the corresponding results for Scenario 2, where the aleatoric
variations are applied to m∗ as defined by Table 2.

In Figures 7 and 8, no aleatoric variations are applied to the parameters β,
which are given by (16). To study the sensitivity of the results of peak timing
with respect to these parameters, we now keep the mobility parameters constant
(namely we employ m∗ as given by (17) and (18) for Scenario 1) but apply aleatoric
variation to the vector β defined by β̃ = (In + ε diag(θ1, . . . , θn))β. Figures 9 (a),
(c) and (e) show the variation in peak timing as produced by aleatoric variations
to β as given by (16), while Figures 9 (b), (d) and (f) show corresponding results
for the choice β = γe, which corresponds to R0,j = 1 for j = 1, . . . , n.

We observe that the peak timing curves for Scenario 1 and 2 without aleatoric
variation of the mobility parameters (the blue curves in the plots of Figures 7
and 8, respectively), are quite similar; both indicate that peak times occur first in
the southern and then in the northern regions. Moreover, the aleatoric variations
produce curves (drawn in red in Figures 7 and 8) that stay fairly close to those
produced by using the original mobility parameters, but where the width of the
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Figure 9. Peak timing for Scenario 1 for mobility parameters (17),
(18). The blue curves correspond to the fixed choice of β given by
(a, c, e) (16), (b, d, f) β = γe. The (a) 20, (b–f) 10 red curves
correspond to peak timings obtained under aleatoric variation of β
with the indicated values of ε.

neighborhood that contains the curves obtained by aleatoric variation increases
with ε. All of the red curves still roughly reproduce the north-south gradient in
peak timing. These results (obtained under variation of m∗ with β fixed) contrast
with those of Figure 9, obtained under variation of β keeping m∗ fixed. It turns out
that only slight variations of β produce significant variations in the pattern of peak
timing. These results seem to indicate that the results are less sensitive to variations
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in the mobility parameters than to variations in the transmission coefficients in each
region.

6. Conclusions and discussion. We have used epidemic modeling to gain a bet-
ter understanding of the underlying mechanisms that shaped the spatial-temporal
progression of the 2009 A/H1N1 influenza pandemic in Chile. Our results show
that a relatively simple spatial SEIR transmission model that incorporates two key
features namely: 1) heterogeneity in local transmission rates previously estimated
to be associated with local environmental conditions [12] and 2) population mixing
modeled through people’s mobility to regions nearby and all other regions via a
“hub region” corresponding to the metropolitan central region in Chile (Figure 1
(c)) is able to reproduce broad features of the spatial and temporal pattern of the
2009 pandemic in Chile (Figure 2). These results further support that our SEIR
metapopulation model provides a suitable basic framework to describe the 2009
A/H1N1 influenza pandemic at the regional level; see e.g., [38]. Moreover, our find-
ings suggest that the south-north gradient in pandemic peak timing observed in
Chile in 2009 is consistent with the pandemic virus starting local transmission in
central or southern regions of Chile while it is unlikely that the pandemic started
in northern regions (Figure 2). Indeed our findings are in line with a retrospective
study based on emergency room visits and laboratory viral surveillance conducted
in the southern city of Puerto Montt, capital of Los Lagos region, suggesting that
this region could have experienced both earlier pandemic onset and a faster trans-
mission rate compared to the metropolitan area of Santiago [37]. Importantly, our
results suggest that our relatively simple modeling framework provides a useful ba-
sis to model spatial-temporal spread of pandemic influenza. Moreover, our results
suggest that future influenza pandemics are likely to roughly follow a similar south-
north gradient in peak timing with southern regions experiencing earlier pandemic
peak than northern regions. Hence, our findings may inform pandemic preparedness
and control of pandemic influenza. In this context we comment that the progression
of peak timing is not an obvious consequence of (2) since 1) population size across
regions varies substantially (see Table 1) and hence rates of susceptible depletion
are not equal across areas, 2) the local transmission rate is influenced by movement
of individuals not only from neighboring areas but also from the hub region and 3)
the presence of a hub region (metropolitan area) that connects all regions of Chile
plays a role of an homogenizer of transmission dynamics, which does not make ob-
vious the result of a gradient in peak timing that matches the actual data, and 4)
initial conditions also matter, as shown in Figure 3.

Our results also indicate that the hub region in our metapopulation model
that corresponds to the metropolitan region of Chile plays the critical role of en-
hancing population mixing across regions in a relatively short period of time (see
also [22, 24]). Hence, in our model the pandemic virus quickly spreads across the
entire territory soon after the initial cases are seeded in any region of the coun-
try. Overall, the peak timing tended to occur first in the region where the initial
cases were first introduced, but it then rapidly spread throughout the country and
was locally modulated by the corresponding transmissibility level as measured by
the local R0 in each region, which followed a decreasing trend from the southern-
most to the northernmost regions of Chile. In contrast to the transmission model
with hub, our transmission model with only spatial local diffusion was not able
to generate realistic pandemic profiles that were qualitatively consistent with the
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2009 A/H1N1 pandemic data from Chile. Not surprisingly, the spatial model with
nearest-neighbor diffusion alone generated the best fits to peak timing data when
the initial cases were introduced in the southernmost regions of Chile (not shown),
but it would require unrealistically high levels of population mobility to neighboring
regions.

It is interesting to note that the south-north spreading wave of 2009 pandemic
activity in Chile is reminiscent of the spread of the 2009 pandemic in Brazil, with
the southernmost regions of this country being hit earlier and experiencing greater
severity than northern regions [42]. This suggests that our transmission model with
a hub represented by the highly connected areas of the south of Brazil (e.g., São
Paulo, Rio do Janeiro) and a similar south-north gradient in transmissibility could
be able to generate a qualitatively similar pattern to that observed in 2009 in that
country. By contrast, seasonal influenza has been observed to originate from low-
population regions in the equatorial north of Brazil and travel to highly populous
regions in the subtropical south over a 3-month period [2], together with a weak
transmissibility gradient [14].

Although we have focused on characterizing the pandemic peak timing of the
spreading wave of 2009 A/H1N1 influenza, the timing of pandemic onset could not
be well characterized using our dataset comprising severe acute respiratory infec-
tions (SARI), which capture the most severe cases of the severity pyramid. As
previously reported [12], the metropolitan region experienced early introductions of
the A/H1N1 influenza virus in May 2009, but local outbreaks did not immediately
follow, which suggests that local climatic conditions at the time did not enable wide-
spread transmission in the region. Instead, epidemiological investigations revealed
that the well-connected southern city of Puerto Montt experienced full-scale trans-
mission of novel A/H1N1 influenza as of late April 2009 before the confirmation of
the first case in the country [37].

It is worth noting that we did not attempt to quantify the exact magnitude
and progression of the spread of the 2009 A/H1N1 influenza pandemic because our
SARI data for Chile only allowed the approximate identification of the timing of
evolution of the pandemic (e.g. peak timing) across regions rather than a more ac-
curate assessment of pandemic burden over time and across regions. Furthermore,
the quantification of the magnitude of the pandemic in terms of attack rates would
probably not only require further data (e.g, serological studies) but also more com-
plex models than those employed here. For instance, we did not model the effect
of winter vacation periods on transmission rates although the winter school break
in 2009 took place after the pandemic had already reached peak levels across most
parts of the country [12]. In addition, we did not account for the high antiviral use
rates that characterized Chile, a country where treatment with oseltamivir was rec-
ommended for all symptomatic individuals with influenza that were 5 years of age
and older [37]. In fact, although treatment of oseltamivir (Tamiflu) has been shown
reduce influenza-related mortality in retrospective studies (e.g., [10]), its effect on
reducing illness/infectiousness is debated as recently pointed out in a systematic
review by Jefferson et al. [27]. Even more importantly, because less than 0.01% of
those that got infected with 2009 A/H1N1 influenza succumbed to the disease (see
e.g., [45]), its impact on the transmission dynamics of influenza at the population
level is negligible. Hence, we do not explicitly model the impact of oseltamivir on
influenza mortality in our study. Moreover, assessing the benefits of Tamiflu on the
morbidity and mortality burden of influenza is beyond the scope of this study.
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It is worth noting that assuming constant rather than time-dependent mobility
rates via parameters m and mh was sufficient to capture the region-specific epi-
demiological course of the pandemic. This may be explained by the fact that it was
clear that the A/H1N1 pandemic virus was associated with very low rates of severe
disease and death by the time that the first cases of the novel virus were reported
in Chile in early May 2009.

Our findings that the pandemic likely took off from southern regions is in line
with a retrospective study based on emergency room visits and laboratory viral
surveillance conducted in the southern city of Puerto Montt, capital of Los Lagos
region [37]. Our findings could have important implications for pandemic prepared-
ness as our results suggest that future influenza pandemics are likely to follow a
similar spatial temporal pattern to that of the 2009 A/H1N1 influenza pandemic.
This results suggest intensified surveillance strategies in southern regions for the
prompt detection of novel influenza viruses.
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64 R. BÜRGER, G. CHOWELL, P. MULET AND L. M. VILLADA

[12] G. Chowell, S. Towers, C. Viboud, R. Fuentes, V. Sotomayor, L. Simonsen, M. Miller, M.
Lima, C. Villarroel and M. Chiu, The influence of climatic conditions on the transmission

dynamics of the 2009 A/H1N1 influenza pandemic in Chile, BMC Infect. Dis., 12 (2012),

p298 (12pp).
[13] G. Chowell, C. Viboud, C. V. Munayco, J. Gomez, L. Simonsen, M. A. Miller, J. Tamerius,

V. Fiestas, E. S. Halsey and V. A. Laguna-Torres, Spatial and temporal characteristics of the
2009 A/H1N1 influenza pandemic in Peru, PLoS One, 6 (2011), e21287 (10pp).

[14] G. Chowell, C. Viboud, L. Simonsen, M. Miller and W. J. Alonso, The reproduction number

of seasonal influenza epidemics in Brazil, 1996–2006, Proc. Biol. Sci., 277 (2010), 1857–1866.
[15] V. Colizza, A. Barrat, M. Barthelemy, A. J. Valleron and A. Vespignani, Modeling the world-

wide spread of pandemic influenza: Baseline case and containment interventions, PLoS Med.,

4 (2007), e13 (16pp).
[16] O. Diekmann, H. Heesterbeek and T. Britton, Mathematical Tools for Understanding Infec-

tious Disease Dynamics, Princeton Series in Theoretical and Computational Biology, Prince-

ton University Press, 2013.
[17] O. Diekmann, J. A. P. Heesterbeek and J. A. J. Metz, On the definition and the computation of

the basic reproduction ratio R0 in models for infectious diseases in heterogeneous populations,

J. Math. Biol., 28 (1990), 365–382.
[18] P. van den Driessche, Deterministic compartmental models: Extensions of basic models, In

F. Brauer, P. van den Driessche and J. Wu (Eds.), Mathematical Epidemiology, Springer-

Verlag, Berlin, 1945 (2008), 147–157.
[19] P. van den Driessche, Spatial structure: Patch models. In F. Brauer, P. van den Driessche and

J. Wu (Eds.), Mathematical Epidemiology, Springer-Verlag, Berlin, 1945 (2008), 179–189.
[20] P. van den Driessche, L. Wang and X. Zou, Impact of group mixing on disease dynamics,

Math. Biosci., 228 (2010), 71–77.

[21] P. van den Driessche and J. Watmough, Reproduction numbers and sub-threshold endemic
equilibria for compartmental models of disease transmission, Math. Biosci., 180 (2002), 29–

48.

[22] X. Fei, C. Connell McCluskey and R. Cressman, Spatial spread of an epidemic through public
transportation systems with a hub, Math. Biosci., 246 (2013), 164–175.

[23] J. R. Gog, S. Ballesteros, C. Viboud, L. Simonsen, O. N. Bjornstad, J. Shaman, D. L. Chao,

F. Khan and B. T. Grenfell, Spatial transmission of 2009 pandemic influenza in the US, PLoS
Comput. Biol., 10 (2014), e1003635 (11pp).

[24] M. Herrera-Valdez, M. Cruz-Aponte and C. Castillo-Chavez, Multiple outbreaks for the

same pandemic: Local transportation and social distancing explain the different waves of
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