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Abstract. Radiation therapy is one of the important treatment procedures of

cancer. The day-to-day delivered dose to the tissue in radiation therapy often
deviates from the planned fixed dose per fraction. This day-to-day variation of

radiation dose is stochastic. Here, we have developed the mathematical formu-

lation to represent the day-to-day stochastic dose variation effect in radiation
therapy. Our analysis shows that that the fixed dose delivery approximation

under-estimates the biological effective dose, even if the average delivered dose

per fraction is equal to the planned dose per fraction. The magnitude of the
under-estimation effect relies upon the day-to-day stochastic dose variation

level, the dose fraction size and the values of the radiobiological parameters

of the tissue. We have further explored the application of our mathematical
formulation for adaptive dose calculation. Our analysis implies that, com-

pared to the premise of the Linear Quadratic Linear (LQL) framework, the
Linear Quadratic framework based analytical formulation under-estimates the

required dose per fraction necessary to produce the same biological effective

dose as originally planned. Our study provides analytical formulation to calcu-
late iso-effect in adaptive radiation therapy considering day-to-day stochastic

dose deviation from planned dose and also indicates the potential utility of

LQL framework in this context.

1. Introduction. Radiation therapy is one of the key treatment procedures of
cancer. The delivery of radiation dose to the tissue usually involves administra-
tion of dose by daily fractions. In such fractionated radiation therapy, commonly
constant magnitude of dose is planned to be delivered to the tissue in each daily
fraction [12]. However, the magnitude of day-to-day delivered dose deviates from
the planned dose. The deviations from the planned dose occur due to various under-
lying factors, e.g. errors regarding the positioning of the patients, beam placement
and geometric variation of the organ [17]. It may be mentioned that the dose
delivered in each fraction is a sample of stochastic (random) quantity [1].

The consequence of stochastic variation of a parameter on the response of the
system had been often disregarded in the dynamical analysis of physical as well as
biological systems [6] and such variation of the parameter is frequently considered
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as nuisance [3]. As per deterministic viewpoint, it is often implied that the re-
sponses of systems are governed by the averaged value of the parameter undergoing
stochastic variation [6]. However, due to the progress of the theory of stochastic
processes, it is now known that the responses of diverse systems, with considera-
tion of stochastic variation of parameter, are often markedly different from their
responses when the parameter remains at the constant average value [6]. Such di-
vergences of the responses under the influence of stochastic variation of photon flux
have been demonstrated in various systems, ranging from chemical reaction [18],
photo-chemical property of bio-molecules [7] to multi-cellular circadian system [16].

In adaptive radiation therapy (ART), the treatment plan is adapted during the
course of the therapy utilizing the feedback information regarding the measurements
in order to recompense or minimize the effect of variation of treatment plans [17].
Commonly, the intent of adaptation of the treatment plan is to curtail the error
in the magnitude of the delivered dose from the planned dose during fractionated
radiation therapy. However, in this context, the resultant biological effect may be
different than that was originally planned, even though the total dose delivered
during the fractionated dose delivery protocol is the same as the planned dose
[15]. Therefore, the utilization of the notion of pertinent biological objective is
generally preferred for dose adaptation compared to the above mentioned notion
of dose error compensation [15]. The deterministic Linear-Quadratic (LQ) model
is commonly utilized to elucidate the dose-response relation [2]. However, it is
known that the above-mentioned LQ model is often unsuccessful to represent dose-
response relationship when the magnitude of the administered dose is high [5]. On
the other hand, the deterministic Linear-Quadratic-Linear (LQL) model is capable
of portraying satisfactory dose-response relationships in the low dose and also in
the high dose delivery conditions [5].

To the best of our knowledge, there is no available analytical formulation to
represent the dose-response relation in the context of day-to-day stochastic dose
deviation from the planned dose in fractionated radiation therapy. The primary
objective of this article is to develop the above-mentioned mathematical formulation
which we have pursued employing the frameworks of stochastic differential equation
and Jensen’s inequality for convex function, in order to explore the possible effect
of day-to-day stochastic dose deviation in radiation therapy. Further, we have
explored the applicability of our model in the context of dose adaptation strategy
in fractionated radiation therapy and also contrasted the LQL and LQ framework
based dose adaptation schemes considering day-to-day stochastic dose deviation.

2. Theory.

2.1. Calculation of biological effective dose considering day-to-day sto-
chastic dose variation. We consider a fractionated radiation delivery situation
with planned constant daily dose d per fraction for n consecutive days. Considering
complete repair involving two consecutive fractions in fractionated radiation ther-
apy, the survival fraction after n−th day can be denoted under Linear Quadratic
Liner (LQL) model [5] as:

Sn = exp{n(−αd− βGLQLd2)} (1)

where α, β are the radiation sensitivity parameters and

GLQL = {2/(µt+ δD)}[1− {1− exp(−µt− δD)}/(µt+ δD)]



EFFECT OF DOSE DEVIATION IN RADIOTHERAPY 161

The parameter δ illustrates the bending of dose-response curves [5]. This pa-
rameter is also related to the yield of radiation induced lesion production and the
probability of interaction of the newly formed lesion with the existing lesion [5]. µ
represents the repair-rate of repairable DNA lesions.

The biological effect of radiation (En) is defined as, En = −lnSn = n(αd +
βGLQLd

2). Now we re-write this expression in the differential form as:

dEn = Φ(d)Ψ(En)dn (2)

where Φ(d) = (αd + βGLQLd
2), Ψ(En) = 1. With the aim of elucidating the

effect of day-to-day dose variation in fractionated radiation therapy, we replace d by
dd + ξn in (2), where ξn represents the stochastic variation in day-to-day delivered
dose and dd is the mean delivered dose per fraction. Now from (2), considering
day-to-day stochastic dose variation, the evolution of the biological effect over the
days of fractionated radiation therapy can be denoted by the following generalized
stochastic differential equation (SDE), dEn = Φ(dd + ξn)Ψ(En)dn where Φ(dd +
ξn) = (αdd+βGLQLd

2
d)+(α+2βGLQLdd)ξn+βGLQLξ

2
n. Initially, we represent ξn as

coloured noise using the model of Ornstein-Uhlenbeck (OU) process with E(ξn) = 0
and the exponentially decreasing correlation function, E(ξnξm) = (tcσ

2
d/2)exp(− |

n − m | /tc) [6]. Here, the correlation time is denoted by tc and σd designates
the standard deviation concerned with the day-to-day stochastic dose variation.
Now, we represent the time evolution of En considering day-to-day stochastic dose
variation using the SDEs of following forms:

dEn = λ(dd, σd)Ψ(En)dn+ 1
ωΨ(En)ηndn

and

dξn = − 1
tc
ξndn+ σd√

tc
dWn

where ω symbolizes the distance from the situation when tc → 0. Wn defines the
standard Wiener process [6] and ηn is defined as,

ηn = Φ(dd + ξn)− E{Φ(dd + ξn)} = Φ(dd + ξn)− λ(dd, σd) and

λ(dd, σd) =

∫ +∞

−∞
Φ(dd + z)p(z)dz (3)

where p(z) =
√
πσ2

dexp(−z2/σ2
d) is the probability density corresponding to Ornst-

ein-Uhlenbeck (OU) process. We re-write the expression of Φ(dd + ξn) by substi-
tuting ξn by z as,

Φ(dd + z) = (αdd + βGLQLd
2
d) + (α+ 2βGLQLdd)z + βGLQLz

2 (4)

Now, from (3), we obtain,

λ(dd, σd) = αdd + βGLQL(d2
d + σ2

d/2) (5)

At white noise limit (tc → 0), the time evolution of En can be denoted by the
following form of Stratnovich SDE [6]:

dEn = λ(dd, σd)Ψ(En)dn+ σ̃dΨ(En) ◦ dWn (6)

where σ̃d is defined as

σ̃2
d = 2

∫
R

dzp(z){Φ(dd + z)− λ(dd, σd)}Y (dd + z) (7)

Y (dd + z) represents a particular solution of

F+
1 Y = −{Φ(dd + z)− λ(dd, σd)} (8)
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In (8), F+
1 = −z∂z + (σ2

d/2)∂zz represents the OU process based Kolmogorov back-
ward operator [6]. Now, we re-write (8) as,

{−z∂z + (σ2
d/2)∂zz}Y = −{Φ(dd + z)− λ(dd, σd)} (9)

Following [6], we consider the following polynomial expression of Y ,

Y = κ1z
3 + κ2z

2 + κ3z (10)

At this point, using the expressions of Y (10), Φ(dd + z) (4) and λ(dd, σd) (5) and
comparing the both sides of (9) we deduce: κ1 = 0 , κ2 = βGLQL/2 and κ3 =
(α+ 2βGLQLdd). Further, using the expressions of κ1, κ2 and κ3, we re-write (10)
as,

Y (dd + z) = βGLQLz
2/2 + (α+ 2βGLQLdd)z (11)

Now using the expressions of Y (dd+ z) (11), λ(dd+σd) (5), Φ(dd+ z) (4) and p(z),
we deduce the following expression of σ̃d from (7):

σ̃d =
√

(α+ 2βGLQLdd)σ2
d + β2G2

LQLσ
4
d/2 (12)

Now replacing the expressions of Ψ(En), λ(dd +σd) (5), σ̃d (12), we re-write (6) as,

dEn = {αdd+βGLQL(d2
d+σ2

d/2)}dn+
√

(α+ 2βGLQLdd)σ2
d + β2G2

LQLσ
4
d/2◦dWn

(13)
Further, we transform the Stratonovich SDE (13) to the corresponding Ito SDE
[10]:

dEn = {αdd + βGLQL(d2
d + σ2

d/2)}dn+
√

(α+ 2βGLQLdd)σ2
d + β2G2

LQLσ
4
d/2dWn

(14)
Now we proceed to perform integration on the both sides of (14) utilizing the initial
condition: at n = 0 , En = 0. Using the Ito integral’s zero expectation property
[10], from (14), we deduce,

Esn = n{αdd + βGLQL(d2
d + σ2

d/2)} (15)

Here, we have substituted En by Esn. Esn represents the average biological effect
on the n−th day under consideration of day-to-day stochastic dose variation. Now,
the extended version of the LQL model under consideration of day-to-day stochastic
variation of dose can be written as,

Ssn = exp(−Esn) = exp[n{−αdd − βGLQL(d2
d + σ2

d/2)}]
Further, following the definition of biological effective dose (BED) [2], the expression
of the average biological effective dose under day-to-day stochastic variation of dose
can be written as,

BEDsn = Esn/α = n{dd + (β/α)GLQL(d2
d + σ2

d/2)} (16)

Note that, when σd = 0, replacing dd with d, we obtain the expression of biological
effective dose under day-to-day delivery of constant dose d,

BEDn = n{d+ (β/α)GLQLd
2} (17)

In order to compare BED under consideration of day-to-day stochastic variation of
dose and constant dose delivery conditions, we introduce an augmentation measure,
∆BEDσ(%) = {(∆BEDsn −∆BEDn)/∆BEDn} × 100(%). Now, using (16) and
(17), we obtain

∆BEDσ(%) =
(dd−d)+(β/α)GLQL(d2d−d

2)+(β/α)GLQLσ
2
d/2

(d+(β/α)GLQLd2) × 100(%)
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The non-zero value of ∆BEDσ(%) will be due to i) the contribution of the difference
in the magnitudes of the average dose delivered per fraction (dd) and the constant
planned dose per fraction (d) and also due to ii) the day-to-day stochastic variation
in the delivered dose. Therefore, in order to isolate the contribution of the day-to-
day stochastic variation on ∆BEDσ(%), throughout this article, we will consider
that the average dose delivered per fraction under stochastic condition is equal to
the planned constant dose per fraction (dd = d). Note that the total delivered
doses, during the fractionated therapy under the stochastic and the constant dose
delivery conditions are also equal. Now, we use the condition, (dd = d) in the
above mentioned expression of ∆BEDσ(%) and subsequently obtain the following
expression,

∆BEDσ(%) =
GLQLσ

2
d

2{(α/β)d+GLQLd2}
× 100(%) (18)

When σd > 0, from (18) we observe, ∆BEDσ(%) > 0. Hence, when the day-
to-day delivered dose varies stochastically, the positive value of ∆BEDσ(%) will
imply the under-estimation of biological effective dose under the approximation of
constant dose delivery per fraction, even if the average dose delivered per fraction
is same as the planned dose per fraction. It may be mentioned that at δ = 0, the
expression of GLQL reduces to the expression of the Lea-Catcheside time factor,
GLQ = (2/µt)[1 − {1 − exp(−µt)}/µt] and the dose-response relationship in (1)
transforms to the standard LQ model [5]. Similarly, the mathematical expressions
of the effect of stochastic day-to-day dose variation under LQ model can be obtained
from the corresponding LQL model based formulations by replacingGLQL withGLQ
or by substituting δ = 0.

2.2. Investigation of the effect of day-to-day stochastic dose variation
using the Jensen’s inequality. In the preceding sub-section, we have explored
the effect of day-to-day stochastic (random) dose variation using stochastic calculus.
In this sub-section, we will investigate the same using the Jensen’s inequality [8,
13]. Now, differentiating twice both sides of (17) with respect to d, we obtain,
∂2BEDn/∂d

2 = 2n(β/α)GLQL > 0. This implies that BEDn (17) is a convex
function of d. Let us consider that f(x) is a real convex function of the random
variable x (xi, i = 1, 2, .. n). As per the Jensen’s inequality for the strictly convex
function [8, 13],

f(
∑
xi/n) < {

∑
f(xi)}/n

Similarly, in the context of biologically effective dose under consideration of day-to-
day random variable doses di (i = 1, 2, .. n), we write

BEDn(
∑
di/n) < {

∑
BEDn(di)}/n

When the average delivered dose per fraction under consideration of day-to-day
dose variation is equal to the planned constant dose per fraction (i.e.

∑
di/n = d),

we re-write the inequality as BEDn(d) < {
∑
BEDn(di)}/n. Now, the term on the

left hand side of the inequality corresponds to the BED under the consideration of
daily constant dose d. On the other hand, the term on the right hand side of the
inequality represents the average BED under consideration of day-to-day random
dose variation. Therefore, even if the average delivered dose per fraction under
stochastic condition is equal to the planned constant dose per fraction, the value of
biological effective dose under consideration of day-to-day dose variation is higher
than that under the approximation of daily delivery of constant dose. Therefore,
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constant dose delivery approximation under-estimates BED. Note that we deduced
the same inference using SDE based approach in the previous sub-section.

2.3. Dose adaptation in fractionated radiation therapy. Previously, we men-
tioned a fractionated radiation therapy which continues for n successive days with
daily planned constant radiation dose d. However, the delivered dose per day was
different from the planned dose during the initial nb (nb < n) days of the fraction-
ated protocol. Let us consider that the daily average dose was d and σd represents
the corresponding standard deviation of the day-to-day stochastic dose variation
during those initial days. Under the premise of the LQL model, we are interested
to find out the amount of daily dose (dLQLr ) that is required to deliver for the
remaining n − nb days in order to produce the same biological effective dose as
was originally planned. Now, using the iso-BED criteria for the considered dose
adaptation scheme, from (16) and (17), we write,

BEDn(n, d) = BEDsn(nb, d, σd) +BEDn(n− nb, dLQLr )

i.e. n{d+ (β/α)GLQLd
2} = nb{d+ (β/α)GLQL(d2 + σ2

d/2)}
+(n− nb){dLQLr + (β/α)GLQL(dLQLr )2}

Subsequently we obtain,

dLQLr = − α/β

2GLQL
+

α/β

2GLQL

√
1− 4GLQL

(α/β)

{
nbGLQLσ2

d

2(n− nb)(α/β)
−
(
d+

GLQLd2

(α/β)

)}
(19)

Now we compute,

∆d(%) = {(d− dLQLr )/d} × 100(%) (20)

where, ∆d(%) denotes the percentage difference of the required dose per fraction
from the planned constant dose per fraction during the remaining days of the ther-
apeutic protocol in order to produce the same biological effective dose as was origi-
nally planned. Similarly, using iso-BED criteria under the context of the LQ model,
the expression of dLQr can be obtained after replacing GLQL by GLQ in (19). Now
we compare the daily doses required to deliver for the remaining n − nb days in
order to produce the same biological effective dose as was originally planned under
the LQL and the LQ models using the following expression:

∆dLQL−LQ(%) = {(dLQLr − dLQr )/dLQr } × 100(%) (21)

Positive value of ∆dLQL−LQ(%) will imply the under-estimation of required daily
dose under the premise of the LQ model than that under the premise of LQL model.

3. Results.

3.1. Effect of day-to-day stochastic dose variation on the biological effec-
tive dose. In order to compute ∆BEDσ(%) (18), we have considered a fractionated
radiation therapy protocol with n = 35 days, d = 2 Gy, dose-rate = 1.0 Gy/minute
[12]. We have considered the following ranges of variations of the radiobiological
parameters: α/β (0.4-16 /Gy) [9], µ (0.003-0.14 /minute) [9], δ (0.053-0.452 /Gy)
[5]. However, we will vary the value of the parameter δ from 0 to 0.452/ Gy, as
δ = 0 represents the situation concerned with the LQ model. We have varied the
level of dose variation (σd) up to 30% [4]. The positive values of ∆BEDσ(%) im-
plies the under-estimation of biological effective dose under constant dose delivery
approximation in fractionated radiation therapy (Fig 1 (a-c)). When the day-to-day
delivered dose varies stochastically, the magnitude of under-estimation of biological
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effective dose (∆BEDσ(%)) increases as the daily variation of radiation dose (σd)
increases (Fig 1 (a-c)). The under-estimation effect is higher in the tissues with
lower values of α/β ratio (Fig 1a). However, there was no substantial change in
the magnitude of this under-estimation effect as the repair rate (µ) increases (Fig
1b). We have previously mentioned that at δ = 0, the LQL model reduces to the
LQ model. The positive value of the δ parameter implies the departure from the
premise of the LQ model. As the magnitude of the δ parameter increases from 0,
the above mentioned under-estimation effect decreases (Fig 1c). The magnitude of
under-estimation of the biological effective dose is the most sensitive to the change
in the magnitude of the α/β ratio of the tissue and the least sensitive to the change
in the value of the tissue’s repair-rate parameter (Fig 1d).

Figure 1. The 3D surface plots of ∆BEDσ(%) (18) as the func-
tion of the magnitude of day-to-day stochastic variation of delivered
dose (σd) and the magnitudes of the radiobiological parameters α/β
ratio, µ and δ are displayed in (a), (b) and (c) respectively. The
colorbars display the values of ∆BEDσ(%). The percentage de-
creases in the magnitude of ∆BEDσ at σd = 10% due to the 10%
increase in the value of the α/β ratio, µ and δ from their respective
fixed values (α/β= 3.0 Gy, µ =0.07 /minute, δ= 0.253 /Gy) has
been shown in (d). Here, S∆BEDσ (%) denotes the corresponding
percentage decrease in the value of ∆BEDσ.
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3.2. Effect of dose fraction size on ∆BEDσ(%). In this sub-section, we have
compared the magnitudes of the term ∆BEDσ(%) (18) between the radiation ther-
apy protocols with total durations of n = 2 to 35 successive days. We have consid-
ered the following values of the radiobiological parameters: α/β = 3.0 Gy, µ = 0.07
/minute, δ = 0.253 /Gy. Total dose delivered through each fractionated protocol
was the same (70 Gy) and dose-rate was 1.0 Gy/minute. When the value of n is
small, the dose delivered per fraction (i.e. fraction size) is high (e.g., n = 2 involves
the delivery of 35 Gy per fraction). Such high magnitude of dose delivery per frac-
tion has been considered only in the spirit of generality. The magnitude of the
under-estimation of biological effective dose under constant dose delivery approxi-
mation (∆BEDσ(%)) (18) increases as the total radiation dose in the fractionated
radiation therapy is delivered within shorter total duration of the fractionated proto-
col (Fig 2). In other words, the aforesaid under-estimation effect is more prominent
when the fraction size is larger. We have also observed that the magnitude of con-
cerned under-estimation enhances as the magnitude of the day-to-day variation of
the delivered dose (σd) increases in all the fractionated protocols with the durations
of 2 to 35 days (Fig 2).

Figure 2. The 3D surface plot of ∆BEDσ(%) (18) as the func-
tion of the magnitude of day-to-day stochastic variation of delivered
dose (σd) and the total duration of the fractionated radiation ther-
apy (n) has been shown in this figure. The colorbar displays the
values of ∆BEDσ(%).

3.3. Application for dose adaptation. Now we proceed to compute ∆d(%) (20),
which denotes the percentage difference of the required dose per fraction from the
planned constant dose per fraction during the remaining days of the therapeutic
protocol in order to produce the same biological effective dose as was originally
planned. We have computed ∆d(%) (20), considering α/β = 3.0 Gy, µ = 0.07
/minute, δ = 0.253/Gy, d = 2 Gy, n = 35 days, dose-rate = 1.0 Gy/minute. In
the considered dose adaptation scheme, smaller value of nb implies that the dose
adaptation has been started earlier in the fractionated therapeutic protocol. When
dose adaptation starts late in the fractionated protocol, the magnitude of ∆d(%)
increases (Fig 3a). The level of ∆d(%) also increases with the increase in the level
of σd (Fig 3a-d) and with the decreases in the magnitudes of α/β (Fig 3b). We
have observed no appreciable change in the level of ∆d(%) with the increase in the
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magnitude of repair rate (Fig 3c). Further, the magnitude of ∆d(%) decreases as
the value of δ parameter increases from 0 (Fig 3d).

Figure 3. The 3D surface plot of ∆d(%) (20) as the function of
the magnitude of day-to-day stochastic variation of delivered dose
(σd) and nb has been displayed in (a). Figure 3 b-d illustrate the 3D
surface plots of ∆d(%) as the function of σd and the radiobiological
parameters. The colorbars display the values of ∆d(%).

We have also computed ∆dLQL−LQ(%) (21) using δ = 0 - 0.452 /Gy, σd = 25%
and also using the magnitudes of the other parameters mentioned earlier in this
sub-section. Corresponding 3D plot of ∆dLQL−LQ(%) as a function of δ and nb
has been shown in Fig 4a. Further, we have also computed ∆dLQL−LQ(%) using
δ = 0.252 /Gy and the magnitudes of other parameters as mentioned earlier in this
sub-section. Corresponding 3D plot of ∆dLQL−LQ(%) as a function of σd and nb
has been displayed in Fig 4b. Let us recapitulate that the positive magnitude of
∆dLQL−LQ(%) entails the under-estimation of required daily dose under the context
of LQ model than that under the framework of LQL model. We observe that the
LQ model under-estimates the required daily dose compared to that under the
LQL model (Fig 4a-b). This under-estimation effect increases when the magnitude
of the radiobiological parameter δ increases and the dose adaptation scheme starts
late in the fractionated radiation therapy (Fig 4 a, b). Fig 4b shows that the
aforesaid under-estimation effect (∆dLQL−LQ(%)) also becomes prominent when
the magnitude of dose variation (σd) increases (Fig 4b).
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Figure 4. The 3D surface plot of ∆dLQL−LQ(%) (21) as the func-
tion of the magnitudes of nb and δ parameter has been displayed
in a. Figure 4b shows the 3D surface plot of ∆dLQL−LQ(%) as the
function of the magnitudes of nb and σd parameter. The colorbars
display the values of ∆dLQL−LQ(%).

4. Discussion and conclusions. In this article, we have developed the analytical
formulation to represent the effect of day-to-day stochastic dose deviation from the
planned dose in the context of fractionated radiation therapy. We have developed
the formulation using the framework of stochastic differential equation which pro-
vides an essential scaffold to explore the effect of random variation of the parameters
on the response of a system.

On the other hand, the mathematical formulation of Jensen’s inequality also
furnishes a valuable quantitative framework to probe the effect of variation in the
parameters on the response of a system [14]. It is well known that many biological
functions display non-linear signatures. In the biological context, the conceptual
formulation of Jensen’s inequality has important implication when the system por-
trays non-linear parametric response [14]. We have shown in this article that our
aforesaid outcome of day-to-day stochastic dose variation on biological effective dose
as obtained using stochastic calculus can also be corroborated using the Jensen’s
inequality for the convex function.

When the day-to-day delivered dose undergoes stochastic deviation from the
planned constant dose, the constant dose delivery approximation under-estimates
the biological effective dose. The magnitude of this under-estimation is more promi-
nent in the tissues characterized with high α/β ratio, low value of radio-biological
parameter δ. Also, the level of afore-mentioned under-estimation is higher in the
therapeutic protocols where total dose has been delivered within smaller duration
and dose deviation level is high. The analytical formulation was formulated un-
der the premise of the LQL framework instead of the LQ framework, because the
LQ framework often fails to sufficiently illustrate the dose-response relationship in
the high dose delivery situation [5]. In this circumstance, when the day-to-day
delivered dose varies stochastically, our model elucidates that the LQ framework
based analytical formulation under-estimates the required dose per fraction in the
considered dose adaptation procedure, compared to that under the premise of the
LQL framework. Our analysis also shows that this under-estimation effect is more
prominent when dose adaptation scheme starts late in the fractionated radiation
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therapy. Moreover, the magnitude of this under-estimation effect is reliant upon
the value of day-to-day stochastic dose variation level and the value of the radio-
biological parameter δ. Note that when δ = 0, the LQL framework based analytical
formulation developed in this study also renders applicability in the context of the
LQ framework. Additionally, when σd = 0, our formulation transforms to the
standard analytical representation of dose-response relationship concerned with the
fixed magnitude of dose delivery per fraction.

The mathematical framework for calculation of required dose per fraction under
the context of the considered dose adaptation scheme as presented in this article
requires the information regarding the average dose delivered per fraction and the
standard deviation of the doses delivered over different fractions. These parame-
ters can be estimated utilizing the previously delineated methodology [1]. In this
article, we have provided analytical framework for calculation of required dose per
fraction in the context of adaptive radiation dose delivery considering day-to-day
stochastic deviation of radiation dose and also indicated the possible utility of the
LQL framework for the same.

Acknowledgments. The work of SP and PKR were supported by Govt. of In-
dia’s Dept. of Biotechnology (DBT, Glue Grant scheme), Defense Research &
Development Organization, and Dept. of Electronics & Information Technology
(Spatiotemporal dynamics project). Support for the logistics of the work of PKR
is from Tata Innovation Program, DBT, and Office of Principal Science Adviser,
National Knowledge Network, Govt. of India.

REFERENCES

[1] E. Budiarto, M. Keijzer, P. R. M. Storchi, A. W. Heemink, S. Breedveld and B. J. M. Heijmen,

Computation of mean and variance of the radiotherapy dose for PCA-modeled random shape
and position variations of the target, Phys. Med. Biol., 59 (2014), 289–310.

[2] J. F. Fowler, The linear-quadratic formula and progress in fractionated radiotherapy, Br. J.

Radiol., 62 (1989), 679–694.
[3] L. Gammaitoni, P. Hänggi, P. Jung and F. Marchesoni, Stochastic Resonance: A remarkable

idea that changed our perception of noise, Eur. Phys. J. B, 69 (2009), 1–3.
[4] A. Godley, E. Ahunbay, C. Peng and X. A. Li, Accumulating daily-varied dose distributions

of prostate radiation therapy with soft-tissue–based kV CT guidance, J. Appl. Clin. Med.

Phys., 13 (2012), 1–3.
[5] M. Guerrero and M. Carlone, Mechanistic formulation of a lineal-quadratic-linear (LQL)

model: Split-dose experiments and exponentially decaying sources, Med. Phys., 37 (2010),

4173–4181.
[6] W. Horsthemke and R. Lefever, Noise-Induced Transitions in Physics, Chemistry, and Biol-

ogy, 2nd edition, Springer, Berlin, 2006.

[7] B. Huang, W. Wang, M. Bates and X. Zhuang, Three-dimensional super-resolution imaging
by stochastic optical reconstruction microscopy, Science, 319 (2008), 810–813.

[8] J. L. W. V. Jensen, Sur les fonctions convexes et les inégalités entre les valeurs moyennes,
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multicellular circadian clocks, Biophys. J., 96 (2009), 3573–3581.

[17] D. Yan, F. Vicini, J. Wong and A. Martinez, Adaptive radiation therapy, Phys. Med. Biol.,

42 (1997), 123–132.
[18] E. C. Zimmermann and J. Ross, Light induced bistability in S206F2 
 2S03F : Theory and

experiment, J. Chem. Phys., 80 (1984), 720–729.

Received March 16, 2015; Accepted June 12, 2015.

E-mail address: subhadippaul@gmail.com

E-mail address: pkroy@nbrc.ac.in

http://dx.doi.org/10.1016/S0169-5347(99)01664-X
http://dx.doi.org/10.1017/S1460396909990240
http://dx.doi.org/10.1017/S1460396909990240
http://dx.doi.org/10.1017/S1460396909990240
http://dx.doi.org/10.1016/j.bpj.2009.02.031
http://dx.doi.org/10.1016/j.bpj.2009.02.031
http://dx.doi.org/10.1088/0031-9155/42/1/008
mailto:subhadippaul@gmail.com
mailto:pkroy@nbrc.ac.in

	1. Introduction
	2. Theory
	2.1. Calculation of biological effective dose considering day-to-day stochastic dose variation 
	2.2. Investigation of the effect of day-to-day stochastic dose variation using the Jensen's inequality
	2.3. Dose adaptation in fractionated radiation therapy

	3. Results
	3.1. Effect of day-to-day stochastic dose variation on the biological effective dose 
	3.2. Effect of dose fraction size on BED(%) 
	3.3. Application for dose adaptation 

	4. Discussion and conclusions
	Acknowledgments
	REFERENCES

