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Abstract. In this paper we formulate a dynamical model to study the trans-

mission dynamics of schistosomiasis in humans and snails. We also incorporate
bovines in the model to study their impact on transmission and controlling the

spread of Schistosoma japonicum in humans in China. The dynamics of the

model is rigorously analyzed by using the theory of dynamical systems. The
theoretical results show that the disease free equilibrium is globally asymp-

totically stable if R0 < 1, and if R0 > 1 the system has only one positive

equilibrium. The local stability of the unique positive equilibrium is investi-
gated and sufficient conditions are also provided for the global stability of the

positive equilibrium. The optimal control theory are further applied to the

model to study the corresponding optimal control problem. Both analytical
and numerical results suggest that: (a) the infected bovines play an important

role in the spread of schistosomiasis among humans, and killing the infected

bovines will be useful to prevent transmission of schistosomiasis among hu-
mans; (b) optimal control strategy performs better than the constant controls

in reducing the prevalence of the infected human and the cost for implementing
optimal control is much less than that for constant controls; and (c) improving

the treatment rate of infected humans, the killing rate of the infected bovines

and the fishing rate of snails in the early stage of spread of schistosomiasis
are very helpful to contain the prevalence of infected human case as well as

minimize the total cost.

1. Introduction. Schistosomiasis is a parasitic disease caused by blood flukes of
the genus Schistosoma, and it is spread by contact with water that contains the
parasites. According to the World Health Organization (WHO) [20], the global
prevalence of schistosomiasis is estimated to be at least 240 million with another
more than 700 million people at risk of infection. In terms of socioeconomic and pub-
lic health impact, schistosomiasis is second only to malaria as the most devastating
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parasitic disease. Due to the great harmfulness of schistosomiasis to public society,
it is an important issue to increase our understanding of schistosomiasis transmis-
sion dynamics and further to take effective measures in containing or eliminating
its transmission. Mathematical models are powerful tools for gaining insights into
the transmission and control of infectious diseases, and can be used to address such
an important issue. There have been a lot of mathematical models to investigate
transmission dynamics of schistosomiasis ([5, 6, 15, 21, 23] and references therein).
These models have provided useful information for understanding the mechanics of
schistosomiasis transmission.

Most of the schistosomiasis models mentioned above are the snail-schistosome-
human system which considered only one definitive host, i.e., human beings. How-
ever, Schistosome is a multi-host parasite, and the parasite is indirectly transmitted
by snails, intermediate host, between definitive hosts which include not only humans
but also many other mammals that may act as zoonotic reservoirs [14]. Perhaps
it is partly because of the presence of zoonotic reservoirs that schistosomiasis still
remains a major public health concern in China, despite the control program of
schistosomiasis in China launched in 1950 and sustained over 60 years. Thus, in
order to get a comprehensive understanding of schistosomiasis transmission dynam-
ics, much more attentions should be paid to the potential role of zoonotic reservoirs.
Assessing the potential role may help guide us to reduce and eliminate incidence
of schistosomiasis in humans effectively. Over the past decades, studies on the
epidemic dynamics between human and other mammals have been given abroad
attentions ([7, 9, 10, 13, 22] and the references therein).

Besides, most of the papers mentioned above assumed that the recruitment rates
of the definitive host and intermediate host are constants. In fact, the different
species have different recruitment rates. For example, the number of humans in an
area can be regarded as a constant due to the balance of natural birth and death; the
snails may grow exponentially since the natural capacity of snails is sufficiently large,
and the bovines may migrate to different places due to the business transaction.
Thus it is also necessary to incorporate the different growth rates for different hosts
in order to make the model more reasonable.

In this paper, we will formulate a mathematical model to describe transmission
dynamics of schistosomiasis in China. Because substantial literatures recognize
that bovines play a major role in the transmission of Schistosoma japonicum to
human in China [9], we will include two definitive hosts, humans and bovines, and
intermediate host, snails. Then we will use the model to investigate the multi-host
transmission dynamics of schistosomiasis, to assess the impact of bovines on human
schistosomiasis transmission, and to evaluate the effects of various control measures
against schistosomiasis. In recent years, optimal control theory has been often
applied to epidemic models ([1, 3]). In this paper, we will also apply optimal control
theory to the multi-host schistosomiasis model to further study the corresponding
optimal control problems.

The paper is organized as follows. Section 2 introduces the epidemic model
to describe the transmission dynamics of schistosomiasis which incorporates two
definitive hosts, bovines and humans, with different recruitment rates. In section 3,
we calculate the basic reproduction number and stability analysis of the 9 dimension
schistosomiasis system. In Section 4, we study the local and global stability analysis
of the model. Section 5 derives the existence and uniqueness for the optimal control
strategies. We propose some numerical simulations, furthermore summarize some
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suggestions for schistosomiasis prevention and control in Section 6. In the last
section, we conclude with a brief discussion of our theoretical and numerical results.

2. Model formulation. In this section we mainly formulate a mathematical model
to describe transmission dynamics of Schistosomiasis japonica in China. Because a
number of studies reported that bovines are the primary infection source of Schisto-
soma japonicum transmission in China [25], and the other mammals, such as dogs,
pigs, rats and goats, are likely to contribute only minimally to overall transmission
[9], in this paper we only consider the scenario that Schistosomiasis japonica are
transmitted among two definitive hosts, humans and bovines, and one intermediate
host, snails.

According to the transmission of Schistosoma japonicum, we assume that the
total population of humans, Nh(t), is divided into three epidemiological subclasses
which are susceptible, infected and recovered, with sizes denoted by Hs(t), Hi(t)
and Hr(t), respectively. Similarly, the total populations of bovines, Nb(t), and
snails, Ns(t), are divided into susceptible subclass and infected subclass, and their
sizes are denoted by Bs(t), Bi(t), Ss(t), Si(t), where B,S represent bovine and snail
and s, i represent the subclasses of susceptible and infected. We use M(t) and C(t)
to denote the mean spatial density of miracidia and cercaria.

The changes of human population are due mainly to immigrant and emigrant,
and the changes of human population are relatively slow in a short duration, thus
in this paper we assume that the recruitment rate of suspectable human is Λh and
per capita natural mortality rate of human is dh. Similarly, the changes of bovine
population are also mainly due to immigrant and emigrant, and the changes of
bovine population are also relatively slow in a short duration, thus in this paper we
also assume that the recruitment rate of suspectable bovine is Λb and per capita
natural mortality rate of bovine is db. The changes of snail population are mainly
due to birth and death, thus in this paper we assume that the susceptible snails are
recruited into the population at a rate bs(Ss + qSi)(1− Ns

Ks
) because the schistoso-

miasis infection can reduce the reproduction of snails. The natural mortality rate
of snail is assumed to be dh.

A transition diagram between these epidemiological classes is shown in Figure 1.
Susceptible humans, bovines and snails acquire infection with schistosomiasis at the
rates of βchγchC, βcbγcbC and βmsγmsM , respectively, where βch (βcb, βms) is the
transmission probability from cercaria (cercaria, miracidia) to susceptible humans
(bovines, snails), and γch (γcb, γms) is the contact rate between humans (bovines,
snails) and cercaria (cercaria, miracidia). Infected humans are treated at the rate
θir and recovered humans may lose immunity at the rate of θrs. αh, αb, αs denote
the per capita death rates of humans, bovines and snails induced by infection of
schistosomiasis, respectively. Let b be the water surface area, σ be the average
number of cercaria released by an infected snail per capita per unit time, and dc
and dm be the natural death rates of cercaria and miracidia, respectively. The
average number of eggs that are excreted by an infected human (bovine) per unit
time is assumed to be the product of the amount of fecal output, gh(gb), the average
number of schistosomiasis eggs per gram of stool, hh(hb), and hatch ability from
the eggs into miracidia, α.

Based on the transition diagram in Figure 1, the model is described by the
following system of 9 ordinary differential equations:
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Figure 1. Diagram of transitions between epidemiological classes.

Human equations :



dHs

dt
= Λh − βchγchCHs + θrsHr − dhHs,

dHi

dt
= βchγchCHs − (θir + αh + dh)Hi,

dHr

dt
= θirHi − (θrs + dh)Hr,

(2.1h)

Bovine equations :


dBs
dt

= Λb − βcbγcbBsC − dbBs,

dBi
dt

= βcbγcbBsC − (αb + db)Bi,
(2.1b)

Snail equations :


dSs
dt

= bs(Ss + qSi)(1−
Ns
Ks

)− βmsγmsSsM − dsSs,

dSi
dt

= βmsγmsSsM − (αs + ds)Si,
(2.1s)

Cercaria equation :
dC

dt
=
σ

b
Si − (βchγch + βcbγcb + dc)C, (2.1c)

Miracidia equation :
dM

dt
=
αhhgh
b

Hi +
αhbgb
b

Bi − (βmsγms + dm)M.

(2.1m)

3. Reproduction number and steady states. Consider the case bs > ds, and
let

Γ =
{

(Hs, Hi, Hr, Bs, Bi, Ss, Si, C,M) : 0 ≤ Hs, Hi, Hr, Hs +Hi +Hr ≤
Λh
dh
,

0 ≤ Bs, Bi, Bs +Bi ≤
Λb
db
, 0 ≤ Ss, Si, Ss + Si ≤ Ñs,

0 ≤ C ≤ σ(bs − ds)
bbs(βchγch + βcbγcb + dc)

, 0 ≤M ≤ α(hhghΛhdb + hbgbΛbdh)

bdbdh(βmsγms + dm)

}
,
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where Ñs =
(bs − ds)Ks

bs
. Then it can be seen that all solutions of system (1)

starting in Γ remain in Γ for all t ≥ 0. In what follows, we always assume that the
initial points lie in Γ.

Straight forward computation yields that system (1) always has the boundary

equilibrium E00(
Λh
dh
, 0, 0,

Λb
db
, 0, 0, 0, 0, 0), which is the snail free equilibrium (SFE).

After a simple calculation, we can easily prove that if bs ≤ ds the SFE E00 is
globally asymptotically stable in Γ. Thus, in this paper, we always assume that
bs > ds. It is obvious that the SFE E00 is globally asymptotically stable in Γ00 =
{(Hs, 0, 0, Bs, 0, 0, 0, 0, 0) ∈ Γ}, but it is unstable in Γ. Moreover, system (1) has the

other boundary equilibrium E0(
Λh
dh
, 0, 0,

Λb
db
, 0, Ñs, 0, 0, 0), which is the disease free

equilibrium (DFE). Similarly, it is easy to prove that E0 is globally asymptotically
stable in Γ0 = {(Hs, 0, 0, Bs, 0, Ss, 0, 0, 0) ∈ Γ}, but its local stability is completely
determined by the basic reproduction number of system (1), which can be found
from the next generation matrix for system (1).

Noting that system (1) has 5 infected populations, namely Hi, Bi, Si, C and M ,
it follows that, using the notation of Van den Driessche P. and Watmough J. [18],
the matrices F and V, for the new infection terms and the remaining transfer terms,
respectively, are given by

F =


0 0 0 βchγch

Λh

dh
0

0 0 0 βcbγcb
Λb

db
0

0 0 0 0 βmsγms
(bs−ds)Ks

bs
0 0 σ

b 0 0
αhhgh
b

αhbgb
b 0 0 0

 ,

and

V = diag {θir + αh + dh, αb + db, αs + ds, βchγch + βcbγcb + dc, βmsγms + dm} .

A straightforward computation yields that the next generation matrix for schis-
tosomiasis is

FV−1 =



0 0 0
βchγch

Λh
dh

βchγch+βcbγcb+dc
0

0 0 0
βcbγcb

Λb
db

βchγch+βcbγcb+dc
0

0 0 0 0
βmsγms

(bs−ds)Ks
bs

βmsγms+dm

0 0 σ
b(αs+ds)

0 0
αhhgh

b(θir+αh+dh)
αhbgb

b(αb+db)
0 0 0


.

After extensive algebraic calculations, the characteristic equation associated with
FV−1 is

λ5 − σ

b2(αs + ds)

βmsγms(bs − ds)Ks

bs(βmsγms + dm)

( αhhgh
(θir + αh + dh)

×

βchγch
Λh

dh

(βchγch + βcbγcb + dc)
+

αhbgb
(αb + db)

βcbγcb
Λb

db

(βchγch + βcbγcb + dc)

)
λ = 0.

Results in [18] imply that the basic reproduction number of system (1) is

R0 = ρ(FV−1) = 4
√

Rsh
0 Rhs

0 + Rsb
0 Rbs

0 ,
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where ρ(FV−1) represents the spectral radius of the matrix FV−1, and

Rsh
0 =

σ

b

1

αs + ds
βchγch

Λh
dh

1

(βchγch + βcbγcb + dc)
;

Rhs
0 =

αhhgh
b

1

θir + αh + dh
βmsγms

(bs − ds)Ks

bs

1

βmsγms + dm
;

Rsb
0 =

σ

b

1

αs + ds
βcbγcb

Λb
db

1

(βchγch + βcbγcb + dc)
;

Rbs
0 =

αhbgb
b

1

αb + db
βmsγms

(bs − ds)Ks

bs

1

βmsγms + dm
.

Now let us explain the biological interpretations of R0. If system (1) does not
have any infected definitive host and intermediate host and the system is in bal-
ance, then the numbers of the susceptible humans, bovines and snails are Λh

dh
, Λb

db

and Ñs, respectively. Under these conditions, the average increased spatial density
of cercaria generated by infection of one infected snail can be expressed as Rsc =
σ

b

1

αs + ds
since σ

b represents the average increased density of cercaria that one in-

fected snail will lead to per unit of time and 1
αs+ds

is the mean lifespan of the infected
snail. Similarly, the average number of the infected humans generated by per unit

spatial density of cercaria can be defined by Rch = βchγch
Λh
dh

1

βchγch + βcbγcb + dc

since βchγch
Λh
dh

represents the average infected humans caused by per unit spatial

density of cercaria in per unit of time and
1

βchγch + βcbγcb + dc
is the mean lifes-

pan of cercaria. Noting that Rsh
0 = RscRch, it then follows that the parameter

Rsh
0 can be explained as the average number of the infected humans generated by

one infected snail when the system does not have any infected definitive host and
intermediate host and is in balance.

In the same way, the parameters Rhs
0 ,Rsb

0 and Rbs
0 can be explained as the

average number of infected snails, bovines and snails generated by one infected
human, snail and bovine, respectively, when the system does not have any infected
definitive host and intermediate host and is in balance. Therefore, the total number
of secondary infected snails generated by transmission of one infected snail can be
defined by

R0 = (R0)4 = Rsh
0 Rhs

0 + Rsb
0 Rbs

0

when the numbers of the susceptible humans, bovines and snails are Λh

dh
, Λb

db
and

Ñs, respectively.
Now we are able to state the results on the existence of equilibria for system (1).

Theorem 3.1. Assume that bs > ds. The system (1) always has two boundary
equilibria E00, E0, and

1) if R0 ≤ 1, system (1) has no positive equilibrium;
2) if R0 > 1, system (1) has a unique positive equilibrium

E∗(H∗s , H
∗
i , H

∗
r , B

∗
s , B

∗
i , S

∗
s , S

∗
i , C

∗,M∗).
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Proof of Theorem 3.1. The existence of the boundary equilibria E00, E0 has been
illustrated at the beginning of this section. In the following, we only need to prove
the results on the existence of the positive equilibrium. A positive equilibrium of
system (1) is a positive solution to the equations:

f1(Nh, Hi) := Λh − αhHi − dhNh = 0,

f2(Nh, Hi, Hr) := βchγchC(Nh −Hi −Hr)− (θir + αh + dh)Hi = 0,

f3(Hi, Hr) := θirHi − (θrs + dh)Hr = 0,

f4(Nb, Bi) := Λb − αbBi − dbNb = 0,

f5(Nb, Bi) := βcbγcb(Nb −Bi)C − (αb + db)Bi = 0,

f6(C, Si) :=
σ

b
Si − (βchγch + βcbγcb + dc)C = 0,

f7(Hi, Bi,M) :=
αhhgh
b

Hi +
αhbgb
b

Bi − (βmsγms + dm)M = 0,

f8(M,Si, Ns) := βmsγms(Ns − Si)M − (αs + ds)Si = 0,

f9(Ns, Si) := bs(Ns − (1− q)Si)(1−
Ns
Ks

)− αsSi − (ds)Ns = 0,

(2)

where Nh = Hs +Hi +Hr, Nb = Bs + Bi, Ns = Ss + Si. From the first, third and
sixth equations in (2), we have

Nh =
Λh
dh
− αh
dh
Hi, Hr =

θir
θrs + dh

Hi, C =
σ

b(βchγch + βcbγcb + dc)
Si.

By substituting the expressions for Nh, Hr, C into the second equation in (2) we
obtain

Hi =
βchγch

Λh

dh
C

βchγch(αh+dh
dh

+ θir
θrs+dh

)C + (θir + αh + dh)

=
βchγch

Λh

dh
σ

βchγch(αh+dh
dh

+ θir
θrs+dh

)σSi + (θir + αh + dh)b(βchγch + βcbγcb + dc)
Si

:= Hi(Si)Si

Similarly, it follows from the fourth, fifth and sixth equations in (2) that we have

Bi =
βcbγcb

Λb
db
σ

βcbγcb
αb+db
db

σSi + b(αb + db)(βchγch + βcbγcb + dc)
Si

:= Bi(Si)Si

Substituting the expressions for Hi, Bi into the seventh equation in (2) yields that

M =
αhhghHi(Si) + αhbgbBi(Si)

b(βmsγms + dm)
Si := M (Si)Si. (3)

Putting the expression for M into the eighth and ninth equations in (2), the positive
equilibrium, if exists, is the interaction of the two curves
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C1 : Si =
Ns(bs − ds)− bsN

2
s

Ks

αs + (1− q)bs − bs(1−q)
Ks

Ns

= Si(Ns), Ns ∈ (0, Ñs);

C2 : Ns =
b(βmsγms + dm)(αs + ds)

βmsγms(αhhghHi(Si) + αhbgbBi(Si))
+ Si

= Ns(Si), Si ∈ (0, S̃i),

where

S̃i =
Ks(αs + bs(1− q)− a)(a− ds(1− q)− αs)

bs(1− q)2a
,

and a =

√
(1− q)((1− q)bs + αs)(ds +

αs
1− q

).

With extensive algebraic manipulations, we have

S ′i(Ns) =


1

1− q
−

((1− q)bs + αs)(ds + αs

1−q )

(αs + (1− q)bs − bs(1−q)
Ks

Ns)2
, 0 ≤ q < 1;

bs − ds
αs

− 2bsNs
αsKs

, q = 1;

S ′′i (Ns) = −2
((1− q)bs + αs)(ds + αs

1−q )

(αs + (1− q)bs − bs(1−q)
Ks

Ns)3

bs(1− q)
Ks

< 0;

N ′s(Si) = −b(βmsγms + dm)(αs + ds)(αhhghH′i(Si) + αhbgbB′i(Si))
βmsγms(αhhghHi(Si) + αhbgbBi(Si))2

+ 1

> 0;

N ′′s (Si) = −2α2hhghhbgbb(βmsγms + dm)(αs + ds)(Hi(Si)− Bi(Si))2

βmsγms(αhhghHi(Si) + αhbgbBi(Si))3

< 0.

Since Ns ∈ (0, Ñs), H′i(Si) < 0,B′i(Si) < 0 and the fact that

H′′i (Si)Hi(Si) = 2(H′i(Si))2,B′′i (Si)Bi(Si) = 2(B′i(Si))2

was used in the last step. Thus the function Ns = Ns(Si), Si ∈ (0, S̃i) is increasing
and concave, and the function is inverse. Let us denote its inverse function by

Si = Si(Ns), Ns ∈ (Ns(0),Ns(S̃i)], and it then follows from the prosperities of

inverse function that the function Si = Si(Ns), Ns ∈ (Ns(0),Ns(S̃i)] is a convex
and increasing function. Now let us consider two cases:

Case 1. Ns(0) ≥ Ñs. We can easily verify that the condition Ns(0) > Ñs implies

that R0 ≤ 1. In this case, since the intersection of the interval (0, Ñs) and interval

(Ns(0),Ns(S̃i)] is empty, the two curves C1 and C2 do not meet each other (see
the first diagram in Figure 2). Thus if R0 ≤ 1 the system (1) has no positive
equilibrium.

Case 2. Ns(0) < Ñs. This condition implies that R0 > 1. In this case, we have

Si(Ns(0)) ≥ Si(Ns(0)) = 0,

max
Ns∈(0,Ñs)

Si(Ns) = Si(Ns(S̃i) = S̃i.
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Direct mathematical analysis show that the two curves C1 and C2 meet at only one
point due to the fact that the curve C1 is concave and the curve C2 is convex (see
the second graph in Figure 2). Thus the equations (2) has only one positive solution
if R0 > 1, i.e., system (1) has a unique positive equilibrium. This completes the
proof of Theorem 3.1.

Figure 2. Graphs for the function C1 and the inverse function of C2

4. Disease dynamics. In this section, we mainly analyze the local and global
stability of system (1). Using Theorem 2 in [18], we can easily obtain the following
stability result.

Theorem 4.1. If R0 < 1, the DFE E0 is locally asymptotically stable; if R0 > 1,
the DFE E0 is unstable.

In fact, the local stability of DFE E0 implies the global stability, and we have
the following result.

Theorem 4.2. If R0 < 1, the DFE E0 is globally asymptotically stable in Γ \ Γ0.

Proof of Theorem 4.2. If R0 < 1, it follows Theorem 4.1 that the DFE E0 is locally
asymptotically stable. In the following, we only need to prove that E0 is a global
attractor.

Let us consider a positive solution

(Hs(t), Hi(t), Hr(t), Bs(t), Bi(t), Ss(t), Si(t), C(t),M(t))

of system (1). From the equations in system (1), it follows that

dHi

dt
≤ βchγch

Λh
dh
C − (θir + αh + dh)Hi,

dBi
dt
≤ βcbγcb

Λb
db
C − (αb + db)Bi,

dSi
dt
≤ βmsγms

bs − ds
bs

KsM − (αs + ds)Si,

dC

dt
≤ σ

b
Si − (βchγch + βcbγcb + dc)C,

dM

dt
≤ αhhgh

b
Hi +

αhbgb
b

Bi − (βmsγms + dm)M.

(4)
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Consider the following differential equations

dH̃i

dt
= βchγch

Λh
dh
C̃ − (θir + αh + dh)H̃i,

dB̃i
dt

= βcbγcb
Λb
db
C̃ − (αb + db)B̃i,

dS̃i
dt

= βmsγms
bs − ds
bs

KsM̃ − (αs + ds)S̃i,

dC̃

dt
=
σ

b
S̃i − (βchγch + βcbγcb + dc)C̃.

dM̃

dt
=
αhhgh
b

H̃i +
αhbgb
b

B̃i − (βmsγms + dm)M̃.

(5)

We can easily verify that system (5) is a cooperative irreducible linear system in R5
+,

and then the global stability of the origin of system (5) is completely determined by
the stability of Jacobian matrix J = F − V. If R0 < 1, Theorem 2 in [18] implies
that the matrix J is stable. Then we have

lim
t→+∞

H̃i(t) = 0, lim
t→+∞

B̃i(t) = 0, lim
t→+∞

S̃i(t) = 0, lim
t→+∞

C̃(t) = 0, lim
t→+∞

M̃(t) = 0.

By the comparison principle it then follows that Hi(t) → 0, Bi(t) → 0, Si(t) →
0, C(t) → 0,M(t) → 0 as t → +∞. Substituting them into system (1), we can
obtain the limiting system

dHs

dt
= Λh + θrsHr − dhHs,

dHr

dt
= −(θrs + dh)Hr,

dBs
dt

= Λb − dbBs,

dSs
dt

= bsSs(1−
Ss
Ks

)− dsSs.

(6)

Solving the above equations yields that Hs(t) → Λh

dh
, Hr(t) → 0, Bs(t) → Λh

db
, Ss(t)

→ Ñs. Since system (6) is the limiting system of (1), it follows from Theorem 2.3
in paper [4] that the DFE E0 is a global attractor of system (1). This completes
the proof of Theorem 4.2.

Now let us consider the local stability of the unique positive equilibrium E∗ when
R0 > 1. Linearizing system (1) around the positive equilibrium E∗, we obtain the
following Jacobian matrix

J(E∗) =

(
A J12

J21 bs(1− 2N∗s
Ks

+
(1−q)S∗i
Ks

)− ds

)
,

where
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A =



−dh −αh 0 0 0 0 0 0
βchγchC

∗ −a22 −βchγchC∗ 0 0 a26 0 0
0 θir −(θrs + dh) 0 0 0 0 0
0 0 0 −db −αb 0 0 0
0 0 0 βcbγcbC

∗ −a55 a56 0 0
0 0 0 0 0 −a66 0 σ

b

0 αhhgh
b 0 0 αhbgb

b 0 −a77 0
0 0 0 0 0 0 a87 −a88


and a22 = βchγchC

∗+(θir+αh+dh), a26 = βchγch(N∗h−H∗i −H∗r ), a55 = βcbγcbC
∗+

(αb+db), a56 = βcbγcb(N
∗
b−B∗i ), a66 = βchγch+βcbγcb+dc, a77 = βmsγms+dm, a87 =

βmsγms(N
∗
S − S∗i ), a88 = βmsγmsM

∗ + (αs + ds).

After extensive algebraic calculations, its characteristic equation is given by

λ9 +A1(E∗)λ8 +A2(E∗)λ7 +A3(E∗)λ6 +A4(E∗)λ5+

A5(E∗)λ4 +A6(E∗)λ3 +A7(E∗)λ2 +A8(E∗)λ+A9(E∗) = 0,
(7)

where

A1(E∗) = a22 + a55 + a66 + a77 + a88 + (θrs + 2dh) + db

−bs(1− 2N∗s
Ks

+
(1−q)S∗i
Ks

) + ds;

A9(E∗) = − det(J(E∗))

= ♦(S ′i (N
∗
s )− S ′i(N∗s )) > 0,

(8)

where ♦ is a positive constant. The calculation process for det(J(E∗)) is detailed in-
troduced in the Appendix A. Since A9(E∗) > 0, the relations between the roots and

the polynomial coefficients imply
∏9
i=1 λi = −A9(E∗) < 0, where λi, i = 1, 2, · · · , 9,

are the roots of the characteristic equation (7). Then it follows that the equation
(7) has no zero roots and the number of roots with nonnegative real parts are even.
Summarizing the above conclusions, we have

Theorem 4.3. If R0 > 1, the unique positive equilibrium E∗ of system (1) is either
locally asymptotically stable, or the dimension of its unstable and center manifold
are both even.

We are interested in the global behavior of system (1), and many numerical
simulations show that the positive equilibrium is globally asymptotically stable so
long as it exists, i.e., R0 > 1. We conjecture that the simulation result holds for
the system, but unfortunately we can not rigorously classify the global dynamics
of system (1) if R0 > 1. In the rest of this section, we will investigate the global
behavior of system (1) for a special case that q = 1, i.e., the trematode infection
completely inhibits snail reproductive activity. Sufficient conditions are provided in
the following theorem for the special case.

Theorem 4.4. Assume that q = 1. If R0 > 1, for sufficiently small αh, αb, αs
and θir, the unique positive equilibrium E∗ of system (1) is globally asymptotically
stable.
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In order to prove Theorem 4.4, let us consider the following ordinary differential
equations:

dx

dt
= f(x, λ), (9)

where f : U ×∆→ Rn is continuous, where U ∈ Rn and ∆ ∈ Rk and Dxf(x, λ) is
continuous on U×∆. We assume that solutions of initial value problems are unique
and remain in U for all t > 0 and each λ ∈ ∆. We write x(t, z, λ) for the solution
of (9) satisfying x(0) = z.

Lemma 4.5. ([17]) Assume that (x0, λ0) ∈ U × ∆, x0 ∈ IntU , f(x0, λ0) = 0, all
eigenvalues of Dxf(x0, λ0) have a negative real part, and x0 is globally attracting
for solutions of (9) with λ = λ0. If there exists a compact set K ⊂ U such that
for each λ ∈ ∆ and each z ∈ U , x(t, z, λ) ∈ K for all large t, then there exist
ε > 0 and a unique point x̄(λ) ∈ U for λ ∈ B∆(λ0, ε) such that f(x̄(λ), λ) = 0 and
x(t, z, λ)→ x̄(λ) as t→ +∞ for all z ∈ U .

Now we are able to prove Theorem 4.4.

Proof of Theorem 4.4. Firstly, consider the case that αh = 0, αb = 0, αs = 0 and
θir = 0. In this case, adding the corresponding equations of system (1) gives

dNh
dt

= Λh − dhNh;

dHr

dt
= −(θrs + dh)Hr;

dNb
dt

= Λb − dbNh;

dNs
dt

= bsNs(1−
Ns
Ks

)− dsNs.

The asymptotic equilibrium values for Nh, Nb, Ns are Nh → Λh

dh
, Hr → 0, Nb →

Λb

db
, Ns → Ñs as t→ +∞. The limiting system of system (1) is

dHi

dt
= βchγchC(

Λh
db
−Hi)− dhHi,

dBi
dt

= βcbγcb(
Λb
db
−Bi)C − dbBi,

dSi
dt

= βmsγms(Ñs − Si)M − dsSi,

dC

dt
=
σ

b
Si − (βchγch + βcbγcb + dc)C,

dM

dt
=
αhhgh
b

Hi +
αhbgb
b

Bi − (βmsγms + dm)M.

(10)

We can easily check that the Jacobian matrix of system (10) admits positive off-
diagonal elements, and then it follows that system (10) is a cooperative irreducible
system in R5

+. The system (10) has only one boundary equilibrium E0(0, 0, 0, 0, 0),

and the Jacobian matrix of system (10) at E0 can be expressed as Ĵ(E0) = F − V,
where the matrices F and V are defined in Section 3. From the proof of Theorem
2 in [18] it follows that if R0 > 1, the boundary equilibrium E0 of system (10) is
unstable. Following Smith [16], system (10) is strongly concave. Then it follows
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that if R0 > 1 system (10) has an equilibrium E∗, which is globally asymptotically
stable. Since system (10) is the limiting system of (1), it follows from Theorem 2.3
in paper [4] that the unique positive equilibrium E∗ is a globally asymptotically
stable equilibrium of system (1) when αh = 0, αb = 0, αs = 0,µ2 = 0 and θir = 0.

Now we extend the above conclusion by using perturbation arguments to show
that αh = 0, αb = 0, αs = 0,µ2 = 0 and θir = 0 can be replaced by nearly zero.
Using a similar argument as in the proof of Theorem 2.3 in [19], we can conclude
that if R0 > 1 system (1) is uniformly persistent, i.e., there exists a constant δ > 0
such that

lim inf
t→+∞

Hs(t) ≥ δ, lim inf
t→+∞

Hi(t) ≥ δ, lim inf
t→+∞

Hr(t) ≥ δ, lim inf
t→+∞

Bs(t) ≥ δ,

lim inf
t→+∞

Bi(t) ≥ δ, lim inf
t→+∞

Ss(t) ≥ δ, lim inf
t→+∞

Si(t) ≥ δ, lim inf
t→+∞

C(t) ≥ δ, lim inf
t→+∞

M(t) ≥ δ.

This implies that we can take for the compact set K in Lemma 4.5 the set

K = Γ ∩ {(Hs, Hi, Hr, Bs, Bi, Ss, Si, C,M) : Hs ≥ δ,Hi ≥ δ,
Hr ≥ δ,Bs ≥ δ,Bi ≥ δ, Ss ≥ δ, Si ≥ δ, C ≥ δ,M ≥ δ}.

It follows from the above results that E∗ is global attracting for the case that
αh = 0, αb = 0, αs = 0 and θir = 0. Furthermore, straightforward computation
yields that all eigenvalues of the Jacobian matrix of system (1) at E∗ have negative
real parts when αh = 0, αb = 0, αs = 0 and θir = 0. It follows from Lemma 4.5 that
if R0 > 1 for sufficiently small αh, αb, αs and θir the unique positive equilibrium
E∗ of system (1) is globally asymptotically stable. This completes the proof of
Theorem 4.4.

5. Optimal control. In this section, we try to implement anti-Schistosomiasis
control to protect humans and bovines while minimizing the total cost. In fact, the
problem is a typical optimal control problems.

In this paper, we assume the control variables in the set

U = {(µ1, µ2, µ3) : [0, T ]→ R3|µi(t) is a Lebesgue measure on [0, Ui], i = 1, 2, 3},

in which all control variables are bounded and Lebesgue measurable and Ui, i =
1, 2, 3 is denoted to the upper bound of the control variables. In our controls,
the control function µ1(t) represents the enhanced drug treatment rate of infected
humans, and the additional recovered rate of infected human due to enhancing
treatment could be assumed to µ1(t) in this paper. µ2(t) indicates the killing rate
of infected bovines. As well as the control function µ3(t) is the fishing rate of snails.
Consequently, additional reduced rates of infected bovines and snails due to control
are represented by µ2(t) and µ3(t), respectively.

In this paper, we choose the objective (cost) function

J(µ1(t), µ2(t), µ3(t)) =

min

{∫ T

0

(
a1Hi(t) + a2Bi(t) + b1Nh(t) + b2Nb(t) +

3∑
i=1

ci(µi(t))
2

)
dt

}
.

(11)
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subject to

dHs

dt
= Λh − βchγchCHs + θrsHr − dhHs,

dHi

dt
= βchγchCHs − (θir + αh + dh + µ1(t))Hi,

dHr

dt
= (µ1(t) + θir)Hi − (θrs + dh)Hr,

dBs
dt

= Λb − βcbγcbCBs − dbBs,

dBi
dt

= βcbγcbCBs − (αb + µ2(t) + db)Bi,

dSs
dt

= bs(Ss + qSi)(1−
Ns
Ks

)− βmsγmsSsM − (µ3(t) + ds)Ss,

dSi
dt

= βmsγmsMSs − (µ3(t) + αs + ds)Si,

dC

dt
=
σ

b
Si − (βchγch + βcbγcb + dc)C,

dM

dt
=
αhhgh
b

Hi +
αhbgb
b

Bi − (βmsγms + dm)M,

(12)

where, ai, i = 1, 2 are positive constants representing the weight of infected humans
and infected bovines, respectively. bi, i = 1, 2 are weight constants for human and
bovines inspection. ci, i = 1, 2, 3 are weight constants represent for the costs of drug
treatment of infected human, killing bovines and snails fishing. We assume that the
costs are proportional to quadratic form of their corresponding control functions.
Moreover, the coefficients in objective function, ai, bi, i = 1, 2, ci, i = 1, 2, 3, not
only represent the weights, but also balance the different units in objective function
because the magnitudes of the populations of humans, bovines and the control
functions absolutely are on different scales.

Our purpose is to find an optimal control pair (u∗1(t), u∗2(t), u∗3(t)) in order to
seek the minimum value of objective function J(µ∗1(t), µ∗2(t), µ∗3(t)), such that

J(µ∗1(t), µ∗2(t), µ∗3(t))

= min
(µ1(t),µ2(t),µ3(t))

{J(µ1(t), µ2(t), µ3(t)), (µ1(t), µ2(t), µ3(t)) ∈ U} ,

subject to the the system given by (12).
Now we derive the necessary conditions that a pair control and corresponding

states must satisfy. By using the same method in [8], the existence of optimal
control can be proved. In the above minimizing problem, we can easily verify that
the objective function is convex on the closed, convex control set U . The optimal
system is bounded which can determines the compactness needed for the existence
of the optimal control.

In order to find the optimal solution of system (12), first let us define Hamiltonian
functions H for the optimal control system (12) as

H(t,X,U, λ) = L+ λ1
dHs

dt + λ2
dHi

dt + λ3
dHr

dt + λ4
dBs

dt +

λ5
dBi

dt + λ6
dSs

dt + λ7
dSi

dt + λ8
dC
dt + λ9

dM
dt

(13)
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where L is the Lagrangian function L = a1Hi(t) + a2Bi(t) + b1Nh(t) + b2Nb(t) +
3∑
i=1

ciµi(t)
2. With the existence of optimal control system, we now present and

discuss the adjoint system and the characterizations of the optimal control system.
For simplicity, we denote

X(t) = (Hs(t), Hi(t), Hr(t), Bs(t), Bi(t), Ss(t), Si(t), C,M)

and λ = (λ1, λ2, · · · , λ9).

Theorem 5.1. Let (X∗, U∗) be an optimal solution of the proposed control sys-
tem, then there exists a vector function λ = (λ1, λ2, · · · , λ9) satisfying the following
equalities,

λ
′

1 = −b1 + (λ1 − λ2)βchγchC + λ1dh,

λ
′

2 = −(a1 + b1) + λ2(θir + αh + dh + µ1(t))− λ3(θir + µ1(t))− λ9
αhhgh
b

,

λ
′

3 = −b1 − λ1θrs + λ3(θrs + dh),

λ
′

4 = −b2 + (λ4 − λ5)βcbγcbC + λ4db,

λ
′

5 = −(a2 + b2) + λ5(αb + µ2 + db)− λ9
αhbgb
b

,

λ
′

6 = −λ6bs((1−
2Ss
Ks
− (1 + q)Si

Ks
) + (λ6 − λ7)βmsγmsM + λ6(µ3 + ds),

λ
′

7 = −λ6bs(q −
(1 + q)Ss

Ks
− 2qSi

Ks
) + λ7(αs + µ3 + ds)− λ8

σ

b
,

λ
′

8 = (λ1 − λ2)βchγchHs + (λ4 − λ5)βcbγcbBs + λ8(βchγch + βcbγcb + dc),

λ
′

9 = (λ6 − λ7)βmsγmsSs + λ9(βmsγms + dm),
(14)

with transversality conditions (or boundary conditions)

λi(T ) = 0, i = 1, 2, · · · , 9. (15)

Furthermore, an optimal control could be obtained

µ∗1 = max

{
0,min

{
λ2 − λ3

2c1
Hi, U1

}}
,

µ∗2 = max

{
0,min

{
λ5

2c2
Bi, U2

}}
,

µ∗3 = max

{
0,min

{
λ6Ss + λ7Si

2c3
, U3

}}
.

(16)

Proof of Theorem 5.1. The Pontryagin’s Maximum Principle [11] is used to find an
optimal solution.

∂H(t,X,U, λ)

∂U
= 0 at U∗(optimality condition)

λ
′

= −∂H(t,X,U, λ)

∂X
( adjoint condition)

λ(T ) = 0( transversality condition)

(17)

Applying the adjoint conditions to the Hamiltonian (13) with X = X∗, that is

λ
′

1 = − ∂H

∂Hs
, λ
′

2 = − ∂H
∂Hi

, · · ·λ
′

9 = − ∂H
∂M

.
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(14) is obtained. The optimal conditions at U∗ could be calculated as follows.

∂H

∂µ1
= 0,

∂H

∂µ2
= 0,

∂H

∂µ3
= 0,

that is, 
2c1µ

∗
1 − λ2Hi + λ3Hi = 0,

2c2µ
∗
2 − λ5Bi = 0,

2c3µ
∗
3 − λ6Ss − λ7Si = 0.

(18)

Using the bounds on the controls, we can obtain the optimal control solutions of
system (16) . The proof is completed.

6. Numerical simulations. In this section, we mainly present some numerical
simulation results, which assess the impact of bovines on human Schistosoma japon-
icum transmission and explore the effect of various control measures against schis-
tosomiasis.

For the numerical simulations, we choose the values for the parameters based on
available information in the literature as follows:

• The parameters on humans: Λh = 0.914, dh = 0.00003914, αh = 0.0000094, θir
= 0.0075, θrs = 0.2546, βch = 0.000058, γch = 0.033;

• The parameters on bovines: Λb = 0.25, db = 0.00011, αb = 0.0000094, βcb =
0.0000056, γcb = 0.06;

• The parameters on snails: q = 0.6, bs = 0.955, ds = 0.0033, αs = 0.002,Ks =
500000, βms = 0.0004, γms = 0.001;

• Other parameters: σ = 50, b = 7000, dc = 1, dm = 2, α = 0.0999, gh =
100, hh = 100, gb = 10000, hb = 240.

Firstly, we use two measures to assess the impact of bovines on human Schisto-
soma japonicum transmission. One is the direct effect of bovine on human Schisto-
soma japonicum transmission, measured by the population attributable fraction
(PAF) [2] of schistosomiasis infected human cases which transmitted from the
bovines indirectly, defined as

PAF (t) =

Incidence of schistosomiasis infected human cases
which transmitted from the bovines directly at time t

Total incidence of schistosomiasis infected human cases at time t
.

This represents the effect of bovines on schistosomiasis infected human cases at time
t, the fraction of new schistosomiasis infected human cases that are transmitted
from the bovines directly. The other one is the excess prevalence of schistosomiasis
infected human cases, which is defined as the difference between human schisto-
somiasis prevalence when the system includes the bovines and the counterfactual
scenario in which the system does not include the bovines. Furthermore, in order
to assess the effect of killing bovines on human Schistosoma japonicum transmis-
sion, we also measure human schistosomiasis prevalence for different killing rates of
infected bovines.

Figure 3 illustrates the population attributable fraction (PAF) of schistosomi-
asis human incidences. Simulation results indicate that most of the new infected
human cases are attributed indirectly to the infected bovines, and, at the endemic
steady state, roughly 90% of the new human cases infected with schistosomiasis
may be attributed to the infected bovines. Figure 4 shows the human schistosomia-
sis prevalence for the system with bovines and without bovines. Simulation results
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Figure 3. The population attributable fraction (PAF) of schisto-
somiasis human incidences which indirectly transmitted from (a)
the infected bovines (solid line −)and (b) the infected human cases
(dashed line −−), respectively.
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Figure 4. The impact of bovines on human schistosomiasis
prevalence: (a)human schistosomiasis prevalence for the system
with bovines (blue solid line −); (b) human schistosomiasis preva-
lence for the system without bovines (red solid line −), and (c) the
excess prevalence which is defined in Section 6 (dashed line −−).

show that the prevalence of infected human cases can reach 38% if the system has
the bovines but the prevalence of infected human cases will keep at around 9% if the
system does not have the bovines. The excess prevalence of schistosomiasis infected
human cases indicates that the infected bovines may play an important role in the
spread of schistosomiasis among humans. Figure 5 shows the human schistosomi-
asis prevalence for different killing rates of bovines. It follows from Figure 5 that
if killing the infected bovines keep at the rate of 0.05, the human schistosomiasis
prevalence will be reduced from 45% to 20%, and if killing the infected bovines
keep at the rate of 0.5, the human schistosomiasis prevalence will fall to below 10%.



1000 CHUNXIAO DING, ZHIPENG QIU AND HUAIPING ZHU

0 50 100 150 200 250 300
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

Time (in days)S
ch

is
to

so
m

ia
si

s 
In

fe
ct

ed
 H

u
m

an
s 

P
re

va
le

n
ce

(%
)

 

 
system with bovines
system without bovines
u2=0.01
u2=0.05
u2=0.1
u2=0.5

Figure 5. The human schistosomiasis prevalence for different
killing rates of bovines: (a)µ2 = 0 (red solid line −); (b)µ2 = 0.01
(black dashed line −−); (c)µ2 = 0.05 (blue dashed and dot line
−.); (d)µ2 = 0.1 (green dashed line −−); (e) µ2 = 0.5 (red dashed
and dot line −·), and (f) the system without bovines (blue solid
line −).

These results imply that killing the infected will be helpful to prevent transmission
of schistosomiasis among humans.
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Figure 6. Schistosomiasis infected human prevalence for different
control strategies. (a) without any control (red solid line −); (b)
µ1 = µ2 = µ3 = 0.01 (blue solid line −); (c) µ1 = µ2 = µ3 = 0.05
(dashed and dot line −·); (d)optimal control (green solid line −).

Next we examine the effect of various control measures on human Schistosoma
japonicum control. Since the most important thing is to reduce the number of
infected human cases, and the next important is to reduce the number of infected
bovines, it is reasonable to assume that a1 > a2. Based on these assumptions, in
this paper the weights in the objective function are chosen for illustration purpose
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Figure 7. Optimal control law of µ1, µ2, µ3. Solid line (−): con-
trol law of reinforcing the treatment for infected humans, dashed
line (−−): control law of killing the infected bovines, dashed and
dot line(−·): control law of eradicating the snails
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Figure 8. The Lagrangian function with time dependent optimal control

as follows:

a1 = 0.6, a2 = 0.24, b1 = 0.56, b2 = 0.3, c1 = 6000, c2 = 1000, c3 = 30.

Figure 6 illustrates the effectiveness of optimal control in comparison to two
constant controls, µ1 = µ2 = µ3 = 0.01 and µ1 = µ2 = µ3 = 0.05. We can
conclude that the optimal control strategy is a more beneficial choice in fighting
the outbreak of schistosomiasis. The schistosomiasis infected human prevalence
decreases rapidly under the optimal control strategy and then the prevalence will
keep at the very low level. The values of objective functions for the optimal control
strategy, µ1 = µ2 = µ3 = 0.01 and µ1 = µ2 = µ3 = 0.05 are 1.0514 × 106,
1.4541 × 106 and 1.2070 × 106 respectively. We can easily see that the cost for
implementing optimal control is much less than that for constant controls. The time
dependent optimal control law is shown in Figure 7. From Figure 7 we can conclude
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that in the early stage of spread of schistosomiasis, improving the treatment rate
of infected human µ1, the killing rate of the infected bovines µ2 and the fishing
rate of snails µ3, are very helpful to reduce the prevalence of infected human cases.
At about 65 days, the control of intensive therapy for infected humans µ1 begins
to decrease with the reduce of Lagrangian function. Then the killing rate of the
infected bovines µ2 glides down around 120 days, and the Lagrangian function
declines correspondingly. By comparing Figure 7 with Figure 8, we can see that,
the controls implementing on humans and bovines are more effective than that on
snails with respect to the decrease of cost function, and the arrows in these two
figures appear in pair at every turning point. With the transversality condition
λ(T ) = 0, all the control laws jump back to 0 in the end.

7. Discussion. In this paper, a multi-host dynamic model is formulated to describe
the transmission dynamics of schistosomiasis, and the model includes two definitive
hosts, humans and bovines, and intermediate host, snails. By using the method
of next generation matrix [18], the expression for the basic reproduction number
R0 is derived, and the interpretation of R0 is also explained biologically. Then in
terms of the basic reproduction R0 the dynamical behavior of the 9-dimensional
nonlinear system is rigorously analyzed by using the theory of dynamical systems.
The theoretical results show that if R0 ≤ 1 the disease free equilibrium is globally
asymptotically stable and if R0 > 1 the system has only one positive equilibrium.
In the case that R0 > 1 the local stability of the unique positive equilibrium is
investigated which shows that the dimension of its unstable and center manifold are
both even. A great many of simulations show that the unique positive equilibrium
is global asymptotically stable as long as it exists, but in this paper we only provide
sufficient conditions for the global stability of the positive equilibrium.

Furthermore, the optimal control theory are applied to the multiple host schis-
tosomiasis model to study the corresponding optimal control problem. By using
the Pontryagin’s Maximum Principle necessary conditions are provided for the ex-
istence of the optimal solution to the optimal control problem. Finally, numerical
simulations are presented to verify the theoretical results, to assess the impact of
bovines on human schistosomiasis transmission and to examine the effect of vari-
ous control measures against schistosomiasis. From the numerical results, we can
conclude that:

1) The infected bovines play an important role in the spread of schistosomia-
sis among humans, and killing the infected bovines will be helpful to contain the
transmission of schistosomiasis among humans.

2) Optimal control strategy performs better than the constant controls in reduc-
ing the prevalence of the infected human and the cost for implementing optimal
control is much less than that for constant controls.

3) Improving the treatment rate of infected human, the killing rate of the infected
bovines and the fishing rate of snail in the early stage of schistosomiasis spread are
very helpful to contain the prevalence of infected human cases and also minimize
the total cost.

In this paper, the model presented here only involves a single strain of schis-
tosomiasis in the host populations that includes two definitive hosts, human and
bovines, and intermediate host, snails. It is interesting to model multi-strains of
schistosomiasis in host population and to study the evolutionary questions on schis-
tosomiasis. Our model is described by ordinary differential equations that do not
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include age structure of the human host population. However, lots of epidemiologi-
cal evidences show that the human age structure certainly affects the transmission
dynamics of schistosomiasis. Consequently, we should incorporate age structure
into our modeling of the transmission dynamics of schistosomiasis. Finally, since
parasites exhibit a wide degree of variability between their hosts, we also should
incorporate the parasite distribution pattern into our model and analyze the con-
sequences of such pattern on transmission dynamics of schistosomiasis. We keep
these consideration for our future work.
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Appendix A. The calculation process of det J(E∗) < 0. Let Dij be the com-
plement minor of order 7 obtained by removing the i-th row and the j-th column
from the matrix A. Using the notations denoted in matrix A, straightforward com-
putation yields that

D88 = a77a66

∣∣∣∣ −db −αb
βcbγcbC

∗ −a55

∣∣∣∣
∣∣∣∣∣∣

−dh −αh 0
βchγchC

∗ −a22 −βchγchC∗

0 θir −(θrs + dh)

∣∣∣∣∣∣
< 0;

D87 = σ
b
αhhgh
b

dh(θrs + dh)a26 (dba55 + αbβcbγcbC
∗)

+σ
b
αhbgb
b

dba56 (dh(a22(θrs + dh) + βchγchC
∗θir) + βchγchC

∗αh(θrs + dh))

> 0.

From the first seven equations in (2), it is easy to verify that

det(
∂(f1, f2, f3, f4, f5, f6, f7)

∂(Nh, Hi, Hr, Nb, Bi, C,M)
|(N∗h ,H∗i ,H∗r ,N∗b ,B∗i ,C∗,M∗)) = detD88 < 0.

Applying the implicit function theorem we conclude that there exist continuously
differentiable functions Nh(Si), Hi(Si), Hr(Si), Nb(Si), Bi(Si), C(Si),M(Si) defined
on a neighborhood ∆ of S∗i such that

(1)Nh(S∗i ) = N∗h , Hi(S
∗
i ) = H∗i , Hr(S

∗
i ) = H∗r , Nb(S

∗
i ) = N∗b , Bi(S

∗
i ) = B∗i ,

C(S∗i ) = C∗,M(S∗i ) = M∗;
(2)For Si ∈ ∆, Nh(Si), Hi(Si), Hr(Si), Nb(Si), Bi(Si), C(Si),M(Si) satisfy the

equations f7(Hi(Si), Bi(Si),M(Si)) = 0;
(3)For Si ∈ ∆, we have

dM(Si)

dSi
= −

det
( ∂(f1, f2, f3, f4, f5, f6, f7)

∂(Nh, Hi, Hr, Nb, Bi, C, Si)

)
det
( ∂(f1, f2, f3, f4, f5, f6, f7)

∂(Nh, Hi, Hr, Nb, Bi, C,M)

) ,
especially,

dM(Si)

dSi
|Si=S∗i

= −D87

D88
.

On the one hand, substituting the function M(Si) into the expression f8(M,Si,
Ns) yields that

Υ(Si, Ns) = f8(M(Si), Si, Ns) = βmsγms(Ns − Si)M(Si)− (αs + ds)Si.
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By differentiating the function Υ(Si, Ns) with respect to Si, we have

∂Υ(Si, Ns)

∂Si
|(S∗i ,N∗s ) = −a88 + a87

dM(Si)

dSi
|Si=S∗i

= −a88 + a87
−D87

D88

=
detA

D88
.

(19)

On the other hand, we have obtained continuously differential functions M =
M (Si)Si in (3). By substituting the function M = M (Si)Si into the equation
f8(M,Si, Ns), for Si ∈ ∆ we have

Υ(Si, Ns) = (βmsγms(Ns − Si)M (Si)− (αs + ds))Si.

Then it follows that

∂Υ(Si, Ns)

∂Si
|(S∗i ,N∗s ) = S∗i (−βmsγmsM (S∗i ) + a87

dM (Si)

dSi
)

< 0

(20)

since the function M (Si) is a decreasing function of Si. The fact that βmsγms(N
∗
s −

S∗i )M (S∗i ) = µ3 + αs + ds was used in the last step. From (19) and (20) we can
easily see that detA > 0 since D88 < 0.

Since Υ(Si,Ns)
∂Si

|(S∗i ,N∗s ) < 0, it then follows from the implicit function theorem we

conclude that there exist continuously differential function Si = Si(Ns) defined on
a neighborhood Θ of N∗s such that (1)S∗i (N∗s ) = S∗i ; (2)for N∗s ∈ Θ, the function
satisfy the equation Υ(Si(Ns), Ns) ≡ 0, and (3) for N∗s ∈ Θ, we have

dSi(Ns)

dNs
=

βmsγmsM(Si(Ns))

(βmsγmsM(Si) + αs + ds)− βmsγms(Ns − Si(Ns))dM(Si)
dSi

,

especially, dSi(Ns)
dNs

|Ns=N∗s
= −βmsγmsM

∗

det A
D88

.

As in the previous discussion, on the one hand, substituting the function Si =
Si(Ns), Ns ∈ Θ, into the expression f9(Si, Ns) yields that Ξ(Ns) := f9(Si(Ns), Ns).
Differentiating the function Ξ(Ns) with respect to Ns, we have

dΞ(Ns)

dNs
|Ns=N∗s

= bs(1− 2
N∗s
Ks

+
(1− q)S∗i

Ks
)− ds − (αs + bs(1− q)(1−

N∗s
Ks

))
dSi(Ns)

dNs
|Ns=N∗s

= bs(1− 2
N∗s
Ks

+
(1− q)S∗i

Ks
)− ds + (αs + bs(1− q)(1−

N∗s
Ks

))βmsγmsM
∗

det A
D88

=
det J(E∗)

detA
.

(21)
On the other hand, substituting the inverse function Si = Si(Ns), Ns ∈ Θ which is
defined in Theorem 3.1 into the expression f9 and rearranging terms give that

Ξ(Ns) = f9(Si(Ns), Ns) = (αs + (1− q)bs −
bs(1− q)
Ks

Ns)(Si(Ns)−Si(Ns)),
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where the functions Si(Ns) and Si(Ni) are defined in Theorem 3.1. Differentiating
the function Ξ(Ns) with respect to Ns yields that

dΞ(Ns)

dNs
|Ns=N∗s

= (αs + (1− q)bs −
bs(1− q)
Ks

N∗s )(S ′i(N∗s )−S ′i (N
∗
s )) < 0

(22)
since Si(N∗s ) = Si(N

∗
i ). From (21) and (22) it follows that

det J(E∗) = (αs + (1− q)bs −
bs(1− q)
Ks

N∗s )(S ′i(N∗s )−S ′i (N
∗
s )) detA < 0

since detA > 0. This completes the calculation process of det J(E∗) < 0.
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