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Abstract. This work is the outcome of the partnership between the mathema-

tical group of Department DISBEF and the biochemical group of Department

DISB of the University of Urbino “Carlo Bo”in order to better understand
some crucial aspects of brain cancer oncogenesis. Throughout our collabora-

tion we discovered that biochemists are mainly attracted to the instantaneous

behaviour of the whole cell, while mathematicians are mostly interested in the
evolution along time of small and different parts of it. This collaboration has

thus been very challenging. Starting from [23, 24, 25], we introduce a compe-

titive stochastic model for post-transcriptional regulation of PTEN, including
interactions with the miRNA and concurrent genes. Our model also covers

protein formation and the backward mechanism going from the protein back

to the miRNA. The numerical simulations show that the model reproduces the
expected dynamics of normal glial cells. Moreover, the introduction of transla-

tional and transcriptional delays offers some interesting insights for the PTEN

low expression as observed in brain tumor cells.

1. Introduction and motivation. Glioblastoma multiforme (GBM) is the most
common and most aggressive malignant primary brain tumor in humans. Experi-
mental evidences show that patients affected by GBM have a lower level of protein
PTEN than usual and the issue of PTEN downregulation in cancer has been ad-
dressed by researchers in different fields such as biological, biochemical and, recently,
mathematical.

PTEN (phosphatase and tensin homolog) is a tumor suppressor that acts as
a phosphatase for the lipid signaling intermediate phosphatidylinositol-3,4,5 tris-
phosphate (PIP3), producing phosphatidylinositol-4,5 bisphosphate. PIP3 anchors
AKT to the membrane, where AKT is activated through its phosphorylation by
phosphoinositide-dependent kinase-1 (PDK1) and mammalian target of rapamycin
complex 2 (mTORC2). Upon activation, AKT phosphorylates numerous targets
to transduce signals for growth, proliferation, and survival. PTEN, through PIP3
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dephosporylation, inhibits the AKT/mTOR pathway. In addition to its effect on
PIP3/AKT pathway, PTEN also regulates p53 function [28]. In the central ner-
vous system, inhibition of PTEN leads to increased stem cell proliferation, somatic,
dendritic and axonal growth, accelerated spine maturation, diminished synaptic
plasticity, and altered intrinsic excitability [13]. PTEN gene, located on chromo-
some 10q23, is one of the most commonly mutated and deleted tumor suppressors in
human cancer [10]. Loss of 10q, including PTEN gene, is the most common altera-
tion associated with glioblastoma (70% incidence) [28]. PTEN levels are frequently
found down-regulated in cancer also in the absence of genetic loss or mutation.
PTEN is heavily regulated by transcription factors, microRNAs, ceRNAs (compe-
titive endogenous RNAs) and methylation, while the tumor suppressive activity of
the PTEN protein can be altered at multiple levels through aberrant phosphory-
lation, ubiquitination and acetylation [10]. These regulatory cues are presumed to
play a key role in tumorigenesis through the alteration of the appropriate levels,
localization and activity of PTEN.

PTEN protein levels are mainly regulated by microRNAs (miRNAs) that are
21-23 nucleotides (nt) long, endogenous, noncoding RNA molecules, able to per-
form post-transcriptional regulation by specifically binding target messenger RNAs
(mRNAs), typically leading to a reduction in the levels of the corresponding pro-
teins. miRNAs are transcribed from independent miRNA genes or from introns
of protein-coding transcripts (in this last case called mirtrons) [6]. After being
processed into maturity, a miRNA is loaded onto a specialized class of proteins to
form the RNA-induced silencing complex (RISC), which specifically binds miRNA
response elements (MREs) located in target mRNAs through a base-pairing recog-
nition mechanism which requires at least 6-nt complementarity. The whole process,
known as RNA interference, results in gene silencing through translation inhibi-
tion and/or mRNA destabilization [7]. Each mRNA can typically interact with
several miRNAs, and each miRNA can target many different mRNAs. Moreover,
miRNA-based regulation is strongly affected by global properties such as the total
concentration of available targets (a feature known as dilution effect). The combi-
nation of the repressive effects of miRNAs on their targets and of the weakening
of such repression due to dilution effects leads to effective, positive interactions
between joint targets of a given miRNA (crosstalk interactions). ceRNAs contain
the same MREs and are able to compete for the same miRNAs, thus acting as
miRNA sponges and alleviating the repressive effects of the miRNA on its target
mRNAs [11]. Transcripts acting as ceRNAs include both protein coding mRNAs
and long noncoding RNAs (lncRNAs), and among the last ones pseudogene derived
RNAs. The majority of validated ceRNAs are mRNAs, and their ability to sequester
miRNAs from alternative targets can confer a protein coding-independent role on
mRNAs. However, different classes of non-coding RNAs, such as long non-coding
RNAs, have been shown to display ceRNA activity, the only prerequisite being the
presence of MREs capable of binding miRNAs to inhibit their repression of protein
coding targets [11]. A remarkable example is represented by pseudogenes where the
preservation of regulatory sequences makes them good candidates as endogenous
miRNA sponges, if co-expressed with the gene of origin. In order to be biologically
effective, ceRNA crosstalk must occur under the right conditions: one of the most
important is the relative abundance of miRNAs and the pool of ceRNAs that they
target [25]. A titration mechanism has been described, whereby ceRNA crosstalk is
optimal when the abundance of miRNA and ceRNA transcripts within a network
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are near equimolarity. ceRNA crosstalk is minimal when ceRNA transcript level
vastly exceeds that of miRNAs and vice versa: in the first case competition is min-
imized as all the miRNAs are bound and thus many targets remain unrepressed,
while in the second one most targets will be fully repressed and ceRNA binding
to miRNA will be ineffective to repress other targets [25]. This emerging scenario
suggests that a broad class of ceRNAs may participate in a microRNA-dependent
crosstalk, producing robust networks that, if perturbed, may lead to cancer.

The gene for the tumor suppressor PTEN is one with the most extensively cha-
racterised ceRNA network. Aside from the non-coding pseudogene PTENP1 [21],
the network includes multiple protein-coding transcripts. Three papers in Cell
2011 remarked the importance of PTEN ceRNA-mediated regulation in cancer cells
[24, 23, 18]. These studies allowed the identification and validation, by different
computational and experimental approaches, of a list of protein-coding competing
endogenous RNAs that regulate PTEN mRNA and protein in a miRNA-dependent
fashion. Given the aberrant expression of PTEN in many cancers, with an intact
PTEN locus, and the finding that PTEN regulation mostly takes place at post-
transcriptional level as part of a miRNA-mediated crosstalk, a better dissection
of the ceRNA crosstalk and the identification of other potential ceRNA interac-
tors may have important implications for human diseases with PTEN involvement.
Despite the body of experimental evidences, a clear quantitative understanding of
miRNA-mediated regulation is still lacking and this represents an unmet goal [12].

Recently Ala et al. in [3] introduced a mathematical mass-action deterministic
model to determine the optimal conditions for ceRNA activity in silico. From a com-
putational point of view the ceRNA networks revealed that transcription factor and
ceRNA networks are closely connected as already anticipated in [20]. They found
that ceRNA networks are responsible for PTEN up-regulation and its aberrant ex-
pression in cancer. This suggests that optimal molecular conditions and alterations
of one ceRNA can have dramatic effects on integrated ceRNA and transcriptional
networks. Independently of Ala’s work we developed a stochastic mathematical
model for post-transcriptional PTEN regulation relying on the paper by Sumazin
[23]. Our model extends Ala’s results about the interaction between PTEN, ceRNAs
and miRNAs including protein formation and backward mechanisms from proteins
to the related miRNA both for PTEN and ceRNA.

2. A competitive stochastic model for the regulation of PTEN. It is known
that the biochemical kinetics involving small numbers of molecules can be very
different to kinetics described by the law of mass action and differential equations
[27]. This effect is a consequence of the intrinsic noise of the system and is associated
with the uncertainty of knowing when a reaction occurs and what that reaction is.
When considering a collection of molecules, the intrinsic noise is accentuated when
some chemical species have small numbers, as is often the case in genetic regulatory
models where there are small numbers of key transcription factors that can bind to
a limited number of operator regions on DNA.

We introduce a chemical reactions model that describes the regulation of PTEN
acting as a tumor suppressor. In modelling we consider the ‘sponge effect ’due to
ceRNAs, that is one of the main regulatory factors [23]. The main topic is that the
translation of PTEN is blocked by miRNAs, so the concentration of this latter one
is a first regulator. Moreover the miRNAs that regulates PTEN can be regulated
in turn by other concurrent genes. Thus the concentration of the miRNAs of these
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concurrent genes is a regulator of PTEN concentration: if the miRNAs join to
concurrent genes, then they let PTEN free to produce the PTEN protein.

Looking at the dynamics of the model shown in Figure 1 we derive the follo-
wing kinetic reactions which regulate PTEN expression, translating the biological
meaning into the mathematical one:

DNAp
c1−→ RNAp +DNAp

RNAp
c2−→ 0

RNAp
c3−→ PTEN +RNAp

PTEN
c4−→ 0

RNAp +miRNA
c5−→ RNAp∗u

RNAp∗u
c6−→ RNAp +miRNA

RNAp∗u
c7−→ 0

DNAc
c8−→ RNAc +DNAc

RNAc
c9−→ 0

RNAc
c10−→ Cprot +RNAc

Cprot
c11−→ 0

RNAc +miRNA
c12−→ RNAc∗u

RNAc∗u
c13−→ RNAc +miRNA

RNAc∗u
c14−→ 0

miDNA+ Cprot
c15−→ miRNA+miDNA+ Cprot

miRNA
c16−→ 0.

(1)

In (1) PTEN is the protein, DNAp is the PTEN gene, RNAp is the mRNA of
PTEN, RNAp∗u is the blocked miRNA/mRNA complex, DNAc are the concurrent
genes, RNAc are the mRNAs of concurrent genes, Cprot are the proteins, RNAc∗u is
the mRNA of blocked concurrent genes, miDNA is the microRNA genes and finally
miRNA is the microRNA. Moreover each of the 16 reactions is characterised by a
specific coefficient ci (i = 1, . . . , 16), providing the probability that such a reaction
will occur. Below we will explain in detail their biological meaning, how we define
and derive them. This set of chemical reactions is uniquely characterised by two
sets of quantities:

• the stoichiometric vectors ν1, . . . , ν16, which can be collected in a stoichiome-
tric matrix ν. This is a 10 × 16 matrix, where 10 is the number of variables
and 16 is the number of reactions;

• the propensity functions a1, . . . , a16, that describe the relative probabilities
with which each reaction occurs.

In this way we can translate all the chemical reactions into a discrete ODE system
using the Chemical Master Equation and the Law of Mass Action. Including all the
state variables listed above in a vector called X, the ODE system becomes

X ′(t) =

16∑
j=1

νjaj(X(t)), X(0) = X0.
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For our specific set of chemical reactions we obtain the following stoichiometric
matrix ν. In each of its places we report the coefficient with which reactants (with
minus sign) and products (with positive sign) appear.

ν =



0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 −1 0 0 −1 1 0 0 0 0 0 0 0 0 0 0
0 0 1 −1 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 1 −1 −1 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 1 −1 0 0 −1 1 0 0 0
0 0 0 0 0 0 0 0 0 1 −1 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 1 −1 −1 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 −1 1 0 0 0 0 0 −1 1 0 1 −1


.

We still have to define the propensity functions and the coefficients of the chemi-
cal reactions. For these definitions we refer to the paper [16] by Goutsias. Given a
system in a biological state, let us call it X(t) = x at time t, the probability that the
i-th reaction will occur during the time interval [t, t+dt) is given by the propensity
function ai(X(t)) of the i-th reaction channel. This function is expressed as

ai(x) = ci hi(x), i ∈ S
where S = 1, 2, . . . , 16, ci > 0 is the specific probability rate constant of the i-th
reaction and hi(x) is the number of all possible distinct combinations of the reactant
molecules associated with the i-th reaction channel when the system is at state x,
given by

hi =


xi for monomolecular reactions

xi(xi − 1)/2 for bimolecular reactions with identical reactants

xi xj for bimolecular reactions with distinct reactants

for some 1 ≤ i, j ≤ N , i 6= j. The specific probability rate constant ci is the
probability per unit time that a randomly chosen combination of reactant molecules
of the i-th reaction will react. If the reaction rate constant Ki of the i-th reaction
is known, then

ci =


Ki for monomolecular reactions

2Ki/AV for bimolecular reactions with identical reactants

Ki/AV for bimolecular reactions with distinct reactants

where A is the Avogadro’s number and V is the volume that, for simplicity, we
assume constant and equal to 10−5.

In our model we obtain the following formulation for the propensity functions ai,
with the corresponding coefficients ci(molecules/seconds):

a1 = c1 x1 c1 = 0.3769
a2 = c2 x2 c2 = 0.0004
a3 = c3 x2 c3 = 0.0007
a4 = c4 x3 c4 = 0.0002
a5 = c5 x2 x10 c5 = 0.0006
a6 = c6 x4 c6 = 0.0003
a7 = c7 x4 c7 = 0.0003
a8 = c8 x5 c8 = 0.07
a9 = c9 x6 c9 = 0.0004

(2)
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a10 = c10 x6 c10 = 0.00002
a11 = c11 x7 c11 = 0.0002
a12 = c12 x6 x10 c12 = 0.0006
a13 = c13 x8 c13 = 0.0003
a14 = c14 x8 c14 = 0.0003
a15 = c15 x9 x7 c15 = 0.0001
a16 = c16 x10 c16 = 0.0002

where some values of the coefficients ci (i = 1 . . . 16) are found in the literature [3]
and some others are obtained with considerations on the stability of the system at
equilibrium.

3. Modelling regimes for Genetic Regulatory Networks. A Genetic Regula-
tory Network (also called Gene Regulatory Network or GRN) is a collection of DNA
segments in a cell that interact with each other (indirectly through their RNA and
protein expression products) and with other substances in the cell, thereby gover-
ning the rates at which genes in the network are transcribed into mRNA. Regulation
of gene expression, or gene regulation, refers to the cellular control of the amount
and timing of changes to the appearance of the functional product of a gene. Al-
though a functional gene product may be an RNA or a protein, the majority of
the known mechanisms regulate the expression of protein coding genes. Any step
of the gene expression may be modulated, from DNA-RNA transcription to the
post-translational modification of a protein. Gene regulation gives the cell control
over its structure and function, and it is the basis for cellular differentiation, mor-
phogenesis and the versatility and adaptability of any organism. The controls that
act on gene expression, i.e. the ability of a gene to produce a biologically active
protein, are based on biochemical processes that are inherently stochastic.

In modelling GRN three different modelling regimes can be used. These include
the discrete and stochastic, the continuous and stochastic and the continuous and
deterministic.

The first regime is characterised by Stochastic Simulation Algorithms (SSA)
in which there are low molecular numbers. The first SSA is due to Gillespie and it
is an essentially exact procedure for numerically simulating the evolution of a set
of chemical reactions in a well-stirred, homogeneous chemical reacting system Ω,
by taking into account the randomness inherent in such a system. If S1, . . . , SN
represent N interacting molecular species through M reaction channels, then the
evolution of such a system is characterised by a discrete nonlinear Markov process
in which a vector X(t) of dimension N , representing numbers (integer values) of
the N molecular species at time t, is evolved through time. The state vector X(t)
is a discrete jump Markov process, whose time evolution equation describing the
probability that, given X(t0) = x0, then X(t) = x, i.e. P (x, t|x0, t0), is called the
Chemical Master Equation (CME) and can be written as

∂

∂t
P (x, t|x0, t0) =

M∑
j=1

(aj(x− νj)P (x− νj , t|x0, t0)− aj(x)P (x, t|x0, t0)).

In general this discrete parabolic partial differential equation is too difficult to solve
(either analytically or numerically) and other techniques are needed to simulate
X(t).

Now, any set of chemical reactions is uniquely characterised by two sets of quan-
tities: the stoichiometric vectors ν1, . . . , νM that represent, in turn, the update
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of the numbers of molecules in the system if reactions R1, . . . , RM occur, respec-
tively, and a set of M propensity functions a1(X(t)), . . . , aM (X(t)), that describe
the relative probabilities of reactions R1, . . . , RM occurring respectively. The SSA
is rigorously based on the same microphysical premise that underlies the Chemical
Master Equation and gives a more realistic representation of a system evolution than
the deterministic Reaction Rate Equation (RRE). In particular, the RRE is com-
pletely inappropriate if the molecular population of some critical reactant species is
so small that microscopic fluctuations can produce macroscopic effects. As for the
CME, the SSA converges, in the limit of large numbers of reactants, to the same
solution as the Law of Mass Action.

The algorithm for the SSA, developed in [14], is:

Algorithm 1 SSA

Data: stoichiometric vectors, reaction rates, initial state, simulation time
while t < T do

generate two random variables r1, r2 from U(0, 1)

compute a0(X) =
∑M
j=1 aj(X)

compute dt = 1
a0(X) ln

(
1
r1

)
select j such that

∑j−1
k=1 ak(X) < r2a0(X) ≤

∑j
k=1 ak(X)

upgrade state vector as X(t+ dt) = X(t) + νj
upgrade time as t = t+ dt

end while
Result: state dynamics

It takes time steps of different length, based on the rate constants and popula-
tion size of each chemical species. The probability of one reaction occurring relative
to another is obtained by multiplying the rate constant of each reaction with the
numbers of its substrate molecules. According to the correct probability distribu-
tion derived from the statistical thermodynamic theory, two random variables are
simulated to choose which reaction will occur and how long the step will last. The
chemical populations are altered according to the stoichiometry of the reaction and
the process is repeated. The cost of this detailed algorithm is the large amount
of computational time due to the fact that the time step for the next reaction to
take place can be very small if we want to guarantee that only one reaction will
fire in that time interval. Thus, SSA, also called slow regime, is a computationally
demanding approach limiting its applicability especially for large reaction networks
required for modelling realistic gene networks [8].

The key quantity is the step size, or waiting time, τ , whose value inversely
depends on the size of the propensities of the different channel reactions and which
needs to be re-evaluated after every firing event. Such a discrete event simulation
may be extremely expensive, in particular for stiff systems where τ can be very
short due to the fast kinetics of some of the channel reactions. Several alternative
methods have been introduced to increase the integration step size. The so-called
τ -leap approach takes a larger step size by allowing all the reactions to fire, from a
Poisson or Binomial distribution, within that step.

Although τ -leap methods can, in some cases, substantially improve computa-
tional efficiency compared with the SSA, when there is moderate stiffness in the
system the efficiencies can be quite poor.
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The fast regime is the deterministic regime that describes the behaviour when
there are large numbers of molecules, so that we can talk about concentrations.
This averaged behaviour is described by an ODE of initial value type of the form

X ′(t) =

M∑
j=1

νjaj(X(t)), X(0) = X0.

This regime is the standard regime of chemical kinetics where the Law of Mass
Action applies.

The intermediate regime is the regime where noise effects are still important but
continuity arguments hold. By the application of the Central Limit Theorem and
by matching the first two moments of the CME, we can write down an SODE that
describes the evolution of X. This equation is sometimes called the Chemical
Langevin Equation (CLE) and takes the following form

dX =

M∑
j=1

νjaj(X)dt+B(X)dW, X(0) = X0.

Here W (t) = (W1(t), . . . ,WN (t))′ is an N dimensional vector whose individual
elements are independent Wiener processes and B(X) is a N ×N matrix satisfying

B2(X) = C(X) = νDiag(a1(X), . . . , aM (X))νT

where ν = [ν1, . . . , νM ] is theN×M stoichiometric matrix. The CLE is an Itô SODE
(Stochastic Ordinary Differential Equation) and represents the continuous stocha-
stic evolution of the equation describing internal noise [26].

4. Modelling delays in GRNs. Time delay is an important aspect in modelling
genetic regulation due to slow biochemical reactions such as gene transcription and
translation and protein diffusion between the cytosol and the nucleus [9]. The delay
chemical master equation and the delay reaction rate equation can be developed
for describing biological reactions with time delay, thus leading to stochastic delay
differential equations derived from the Langevin approach and modelling intrinsic
noise. In GRNs delays are associated with transcription and translation that do not
occur instantaneously but take time due to other processes being involved, such as
nuclear import and export, RNA polymerase activation, splicing, protein synthesis
and folding.

In this section we describe how we can introduce delays into the SSA to inves-
tigate the dynamics of discrete models with delay. Unlike the SSA, there is not
necessarily a unique implementation of delay SSA (DSSA). DSSA implementations
can differ in the way they handle the waiting time for delayed reactions, the time
steps in the presence of delayed reaction updates and the delayed consuming re-
actions. The DSSA version we use to produce the results presented in this paper
works as follows: initially we specify which non-consuming reactions are delayed
and the delay size (constant or variable) associated with each reaction. Inserting
translational delay in our model it turns out that in the corresponding reaction
reactants are still present as products so there are no delayed consuming reactions.
Simulation proceeds by drawing reactions and their waiting times (for delayed and
non-delayed reactions). If a non-delayed reaction is selected then the state is up-
dated in the standard way (SSA), but if it is a delayed reaction that is selected,
then it is not updated until the appropriate time point would be passed by another
simulation step. In this case, the last drawn reaction is ignored and instead the
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state is updated according to the delayed reaction. Simulation continues at the
corresponding time point.

Algorithm 2 provides a pseudo-code description of our DSSA implementation,
[5]. It is crucial to observe that the time step used by the DSSA is self-selecting,

Algorithm 2 DSSA

Data: stoichiometric vectors, reaction rates, initial state, simulation time, delay
τ
while t < T do

generate two random variables r1, r2 from U(0, 1)

compute a0(X) =
∑M
j=1 aj(X)

compute dt = 1
a0(X) ln

(
1
r1

)
select j such that

∑j−1
k=1 ak(X) < r2a0(X) ≤

∑j
k=1 ak(X)

if delayed reactions are scheduled within (t, t+ dt] then
let k be the delayed reaction scheduled next at time t+ τ

upgrade state vector as X(t+ τ) = X(t) + νk
upgrade t as t = t+ τ

else
if j is not a delayed reaction then

upgrade state vector as X(t+ dt) = X(t) + νj
else

record time t+ dt+ τ for delayed reaction j
endif

endif
end while
Result: state dynamics

based on the assumption of exponential waiting times, as for SSA. The more stiff
the kinetics system becomes, due to large rate constants and/or large numbers of
molecules, the smaller the time step. Thus, the algorithm intrinsically controls the
stability of the evolution. In the case of the continuous DDE representation an
important issue is stepsize selection for any numerical method in order to avoid
instabilities in the computed solutions.

5. Numerical methods for SODEs and SDDEs. Given the stochastic ordinary
differential equation

dy(t) = f(t, y(t))dt+
∑d
j=1 gj(t, y(t))dWj(t), t ∈ [0, T ]

y(0) = y0
(3)

and a discretization of the time interval [0, T ]

t0 = 0 < t1 < t2 < · · · < tn < · · · < tN = T,

the simplest stochastic numerical scheme for the Itô SODE is the multidimensional
Euler-Maruyama (EM) method

yn+1 = yn + f(yn)∆tn +

d∑
j=1

gj(yn)∆Wnj
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where yn is the numerical solution of (3) at time tn, ∆tn = tn+1 − tn and ∆Wn =
Wn+1 −Wn = Wtn+1 −Wtn = W (tn+1)−W (tn), n = 0, 1, 2, . . . , N .

The noise increments ∆Wnj are N(0,∆tn)-distributed independent random va-
riables that can be generated numerically by pseudo-random number generators.
The EM method has strong order of accuracy γ = 0.5 and converges to the
Itô solution of the Itô system (3). If we apply the EM method to find an approxima-

tion to the weak solution of the Itô SODE we are free to select any
√

∆tN(0, 1) sam-
ple for the Wiener increment ∆W (t) on any step (since weak convergence concerns
only the mean of the solution). Thus, the order of convergence is maintained if the

increment is replaced by an independent two-point random variable ∆uj =
√

∆tVj ,
where Vj takes the values +1 and −1 with equal probability. In this way, ∆uj
has the same mean, variance and third moment as

√
∆tN(0, 1). The weak EM

method obtained by replacing the n−th Wiener increment ∆Wnj by
√

∆tnVnj has
weak order 1. Note that a method may have a certain order of accuracy in general,
but this order may be increased for SODEs of a particular type. For example, the
EM method behaves as strong order 1 in the case of systems with additive noise.
The concepts of strong and weak convergence concern the accuracy of a numerical
method over a finite interval [0, T ] for small stepsizes ∆t. Numerical stability of a
one-step method concerns the property of errors to remain bounded with respect to
an initial error for any SODE of the kind (3) having drift coefficients f satisfying
global Lipschitz conditions. Namely, a one-step numerical method is said to be
numerically stable if, for each time interval [t0, T ] and stochastic ordinary differen-
tial equation (3) with f(t, y) satisfying a Lipschitz condition, there exist positive
constants ∆0 and M such that

|yn − ỹn| ≤M |y0 − ỹ0|,

where n = 0, . . . , N and yn, ỹn are any two solutions obtained by the numerical
method using time discretizations ∆n such that maxn ∆n < ∆0.

As for general SDDEs of the form

dy(t) = f(y(t), y(t− τ))dt+
∑d
j=1 gj(y(t), y(t− τ))dW (t), t ∈ [0, T ], T > 0

y(θ) = ψ(θ), θ ∈ J := [−τ, 0], τ > 0,
(4)

we define a mesh with uniform stepsize on the interval [0, T ], i.e. h = T/N and
tn = nh with n = 0, . . . , N . We also assume that there exists an integer Nτ such
that the delay can be expressed as a multiple of the stepsize, τ = Nτh. We consider
strong approximations ỹn of the solution y of (4) by means of the explicit stochastic
one-step method

ỹn+1 = ỹn + Φ(h, ỹn, ỹn−Nτ , IΦ), n = 0, . . . , N − 1, (5)

where the initial values are given by ỹn−Nτ := ψ(tn − τ) for n − Nτ ≤ 0. The in-
crement function Φ(h, ·, ·, IΦ) incorporates a finite number of multiple Itô integrals,
IΦ, that is

Ij1,...,jl(h) =

∫ tk+1

tk

. . .

∫ s2

tk

dW j1(s1) . . . dW jl(sl),

where ji ∈ {0, 1} and dW 0(t) = dt. The EM method takes the form

ỹn+1 = ỹn + hf(ỹn, ỹn−Nτ ) +

d∑
j=1

gj(ỹn, ỹn−Nτ )∆Wnj ,
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where ∆Wn = W(n+1)h−Wnh, n = 0, . . . , N−1 are independent N(0, h)-distributed
Gaussian random variables.

Baker and Buckwar in [4] proved that under suitable conditions on the increment
function Φ, if f and g are such that (4) has a unique strong solution the one-step
method (5) is convergent, as h → 0 with τ

h ∈ N, in the mean-square sense with

order p = 1
2 and

max
1≤n≤N

(
E |y(tn)− ỹ(tn)|2

)1/2

≤ Chp as h→ 0,

where εn = y(tn)− ỹ(tn) is the global error. If the SDDE has additive noise, then
the EM method is convergent with order p = 1 in the mean-square sense. Under the
same assumptions on the increment function to achieve convergence, in the same
paper, Baker and Buckwar also proved stability in the quadratic mean-square sense
of the numerical method [4].

6. Numerical simulations. In this section we present the outcomes of the nu-
merical simulations related to the chemical reaction system (1) in the discrete sto-
chastic regime. Figure 2 depicts the concentrations of all reactants and products
involved in the stochastic model (1), with propensity functions aj and coefficients
cj as in formulation (2). We used the SSA described in Algorithm 1 in Section
3. This represents the slow regime. All the concentrations go to the steady state,
characterising the normal behaviour of the interaction between PTEN and ceRNA
within the cell. In Genetic Regulatory Networks, both the transcriptional and tran-
slational processes take some time due to other processes being involved in the cell.
From the mathematical point of view these time lags are appropriately modelled
by the inclusion of delays, called transcriptional and translational delay. If we first
consider only transcriptional delay, the numerical simulations show very little effects
on the behaviour of the system. Translational delay, i.e. the time lag between the
mRNA production and the protein formation, has instead a much bigger impact
on the dynamics of the system, due to the inclusion of the feedback processes that
reflect interactions between the proteins and miRNAs, as we can see in Figure 1.

Figure 3 shows the dynamical behaviour of model (1), considering translational
delay both for PTEN and concurrent genes. In order to observe the typical damped
oscillations of the concentrations going to the steady state, the translational delay
must be very large, of the order 104s (approximately 3 hours). This value is larger
than expected for normal biological time ranges.

Figure 4 shows sustained oscillations of system (1), all of them having the same
period for all the concentrations. In this case the translational delay is of the order
105s (approximately one day). For both Figures 3 and 4 the numerical simulations
are obtained by the DSSA as in Algorithm 2.

Figure 5 is the enlargement of a small portion of Figure 3, where only miRNA
and mRNAs are plotted. The picture shows the expression of mRNA with respect
to miRNA concentrations. For high miRNA values, mRNA (both for PTEN and
concurrents) is very low concentrated. On the contrary, if miRNAs are low concen-
trated, they have very little effect on mRNAs, thus allowing mRNA to remain at
higher concentration. The graph shows, although for just a short period of time,
the dramatic decrease of PTEN that is characteristic of tumor cells.

Figures 6 depicts the simulations in the fast regime, mathematically described
by a systems of ODEs. An implicit ODE solver for moderately stiff systems is used.
In these simulations the concentrations of each reactant are plotted separately, thus
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enhancing the behaviour of PTEN and concurent genes. Graphs are obtained using
the same parameters and delays as in the discrete stochastic regime and they are
in agreement with the more realistic stochastic dynamics.

7. Discussion. With this work we meant to propose a mathematical stochastic
model for PTEN post-transcriptional regulation, that is a crucial aspect in Gliobla-
stoma oncogenesis. We considered the inward and backward interaction between
the transcription factor and the miRNA, including the sponge effect due to con-
current genes [23]. We performed simulations for the discrete stochastic regime
modelling intrinsic noise through the SSA. Varying the model coefficients in deter-
ministic setting it is possible to observe the pathological downregulation of PTEN
in cancer [3]. Instead, we tried to offer some insights for the low expression of
PTEN in brain cancer without considering extrinsic variations of the coefficients.
In stochastic setting and introducing (translational) delays, the system is able to
capture the correct oscillatory dynamics around the steady state, although for large
values of the delays and this is somehow difficult to justify biologically. In turn, the
decrease of PTEN levels is visible only for such large delay values. This can be due
to the (stiff) nature of the discrete system. New insights could be offered by simu-
lating the kinetics in the intermediate modelling regime, that is using SODEs and,
if delays are considered, SDDEs. However, in the case of moderately stiff systems
explicit Runge-Kutta methods for SODEs with extended stability regions along the
negative real axis have proven to be especially effective [1, 2]. Runge-Kutta methods
are a class of one step methods which gain their efficacy by computing intermediate
approximations to the solution within a step. Explicit Runge-Kutta methods with
extended stability regions are based on explicit Runge- Kutta methods whose stabi-
lity function is a shifted and scaled Chebyshev polynomial or some variant thereof.
In the stochastic setting, there are difficul ties designing fully implicit methods due
to possible unboundedness of the solution as the Wiener increment can take positive
or negative values with equal likelihood [17]. Thus most methods are semi-implicit,
that is implicit in the deterministic component. Abdulle and Cirilli [2] have ex-
tended the ideas of explicit Chebyshev methods with extended stability regions to
the SODE setting, through the class of S-ROCK methods.

Our future research will be addressed to simulate the discrete model using Poisson
or Binomial τ− leap methods, that are known to be more efficient for stiff systems
[15, 19], and explore the simulation in the intermediate (stochastic and continuous)
regime using appropriate methods. We plan to obtain more appropriate coefficients
ci by means of specific biological experiments and finally, we hope to find more
efficient strategies to introduce delay, in order to observe downregulation of PTEN
due to intrinsic properties of the model itself.
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