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Abstract. We consider an in-host model for HIV-1 infection dynamics devel-

oped and validated with patient data in earlier work [7]. We revisit the earlier

model in light of progress over the last several years in understanding HIV-1
progression in humans. We then consider statistical models to describe the

data and use these with residual plots in generalized least squares problems
to develop accurate descriptions of the proper weights for the data. We use

recent parameter subset selection techniques [5, 6] to investigate the impact

of estimated parameters on the corresponding selection scores. Bootstrapping
and asymptotic theory are compared in the context of confidence intervals for

the resulting parameter estimates.

1. Introduction. In 2008, Banks, et al., published a mathematical model [7] that
was used to quantify the interaction between the Human Immunodeficiency Virus
(HIV-1) and the immune system on an individual patient level. The authors of [7]
performed this quantification by estimating parameters for the mathematical model
using longitudinal data from a clinical study involving structured treatment inter-
ruptions (STIs) in which patients cycled on and off antiretroviral therapy (ART)
for some durations of time. The model captured the transient viremia experienced
by some patients on therapy with viral load levels suppressed below the detection
limit, i.e., the reemergence of virus from latently infected cells even after treatment
had successfully reduced the level of free virus. In the present effort we return to
the model of [7] for further analysis. A major motivation for revisiting this model is
its potential to be readily modified to aid in understanding and predicting outcomes
when long term ART patients are removed from treatment.

Individuals infected with (HIV-1) and subsequently treated with ART can have
disparate outcomes. A recent study showed that 11 HIV-1 patients maintained
low HIV-1 levels without ART after being treated with ART for an average of 36.5
months [26]. However, in the majority of cases, HIV-1 patients must be treated with
ART indefinitely, living with toxic side effects [1, 27] and with the potential risk of
developing Acquired Immunodeficiency Syndrome (AIDS) [23]. Several factors have
been elucidated that can help explain how HIV-1 escapes the action of ART and
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leads to disparities in ART outcomes. One such factor that has been of particular
interest recently is the ability of HIV-1 to lay dormant in so called “reservoir cells”.
In this scenario, a subset of infected cells harbor the virus in a latent state in which
the virus is not produced at all or at undetected levels [3, 12]. Since ART targets
the various stages of viral replication, HIV-1 that is integrated into the DNA of
these reservoir cells can evade ART and reseed the HIV-1 infection when patients
are taken off ART [7, 29, 37].

There is evidence that the presence and size of cellular HIV-1 reservoirs are as-
sociated with the ability of the patient to control the HIV-1 infection, as well as
external factors such as the timing and duration of ART. For example, some patients
called “elite controllers” possess the innate ability to suppress the HIV-1 infection
without ART. In these patients, the HIV-1 reservoir is significantly lower than in pa-
tients that require ART [17, 20, 25]. Among HIV-1 patients that require ART, those
treated during the earliest stages of infection have a smaller reservoir than those
treated at later stages [4]. Furthermore, some patients that are able to suppress
HIV-1 after the termination of long term ART therapy have low HIV-1 reservoirs
in central-memory CD4+ T cells [26]. These clinical findings emphasize the need to
quantify the interaction between HIV-1 replication, the host immune system, latent
reservoirs, and disease stage in a patient-specific manner. Such quantification could
enable more accurate predictions of how patients will respond to removal from ART
and lead to improved personalized treatment regimens.

While Banks et al., found that some of their model parameters could be taken
as constant across patients, other parameters, including some describing the la-
tent HIV-1 reservoir, varied between patients. Since these parameters were used to
predict different HIV-1 patient responses to STIs, it is important to quantify the
confidence in their estimation. The assessment of parameter uncertainty is a highly
non-linear problem that depends on the mathematical model, the statistical error
model for parameter estimation, and the data set. Although parameter uncertainty
quantification is widely held as an important step in the modeling process, this is
usually done only after an iterative modeling process (as described in [11]) in which
conceptual as well as mathematical models have been developed and validated with
data. The first stages are often focused on the predictive capability and biological
accuracy of the model. Since parameter uncertainty was not assessed for the Banks
et al HIV-1 model, we perform this assessment here and discuss the resulting bi-
ological implications of our findings. This will be of particular importance to our
future efforts using modifications of the model of [7] as a foundation for inclusion
of reservoir cell dynamics in long term predictive models.

We examine the uncertainty in parameter estimates for data from several pa-
tients that underwent one or more ART interruptions. But first, because the field
of HIV-1 biology has developed rapidly since the model of [7] was published, we
provide an in depth model description to verify that the Banks et al., HIV-1 model
agrees with current biological understanding of HIV progression. We proceed by
describing the data and inverse problem methodology. We then analyze the statisti-
cal error model and use these results to perform parameter estimation and quantify
within-host parameter uncertainty with asymptotic distributional analysis. The
results with asymptotic analysis reveal potentially unsettling aspects in regard to
certain parameter estimates in that relative large standard errors with correspond-
ing large confidence intervals are obtained. We then turn to a recently developed
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methodology, parameter subset selection [5, 6], in attempts to interpret and under-
stand these findings. Finally we use bootstrapping techniques to refine and improve
our uncertainty quantification for the model of [7].

2. Model description. A system of ordinary differential equations (ODE) has
been developed and validated with clinical data in [7] to describe the pathogenesis
of HIV infection, including the role of CD4+ memory cells that serve as a major
reservoir of latently infected cells. This model does not reflect the nature of all
immune responses and all host and viral dynamics but instead captures the most
prominent biological features thought to be represented in the data. It has also
been shown to accurately recapitulate the within host dynamics of CD4+ T cells
and virus levels from clinical patient data [7] and to be an effective predictive model.

The biological model is depicted in Figure 1, where T1 represents uninfected
activated (antigen-specific) CD4+ T cells and T ∗1 is infected activated CD4+ T
cells. Uninfected resting, or not activated, CD4+ T cells are represented by T2 and
infected resting CD4+ T cells are given by T ∗2 . Infectious free virus (virus that is
capable of infecting other cells in the plasma) is represented by VI and non-infectious
free virus (virus that is yielded inactive by protease inhibitors) is represented by
VNI . HIV-specific effector CD8+ T cells are given by E1 and HIV-specific memory
CD8+ T cells are represented by E2.

Figure 1. Compartmental diagram for the mathematical model
given in [7]. Solid black arrows indicate death/clearance, solid grey
arrows indicate birth/input. PI and RTI denote interactions af-
fected by protease and reverse transcriptase inhibitors, respectively.

The corresponding compartmental ODE model for in-host HIV infection dynam-
ics developed in [7], based on balance laws, is given by the following system of
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state variable definition
T1 uninfected activated (antigen-specific) CD4+ T cells
T ∗1 infected activated CD4+ T cells
T2 uninfected resting, or un-activated, CD4+ T cells
T ∗2 infected resting CD4+ T cells
VI infectious free virus
VNI non-infectious free virus
E1 HIV-specific effector CD8+ T cells
E2 HIV-specific memory CD8+ T cells

Table 1. Explanation of the states used in the model (1).

equations:

Ṫ1 = −d1T1 − (1− ξ1(t))k1VIT1 − γTT1 + pT (
aTVI

VI +KV
+ aA)T2

Ṫ ∗1 = (1− ξ1(t))k1VIT1 − δT ∗1 −mE1T
∗
1 − γTT ∗1

+pT (
aTVI

VI +KV
+ aA)T ∗2

Ṫ2 = λT
Ks

VI +Ks
+ γTT1 − d2T2 − (1− fξ1(t))k2VIT2

−(
aTVI

VI +KV
+ aA)T2

Ṫ ∗2 = γTT
∗
1 + (1− fξ1(t))k2VIT2 − d2T ∗2 − (

aTVI
VI +KV

+ aA)T ∗2

V̇I = (1− ξ2(t))103NT δT
∗
1 − cVI − 103(1− ξ1(t))ρ1k1T1

−103(1− fξ1(t))ρ2k2T2VI

V̇NI = ξ2(t)103NT δT
∗
1 − cVNI

Ė1 = λE +
bE1T

∗
1

T ∗1 +Kb1
E1 −

dET
∗
1

T ∗1 +Kd
E1 − δE1E1 − γE

T1 + T ∗1
T1 + T ∗1 +Kγ

E1

+
pEaEVI
VI +KV

E2

Ė2 = γE
T1 + T ∗1

T1 + T ∗1 +Kγ
E1 +

bE2Kb2

E2 +Kb2
E2 − δE2E2 −

aEVI
VI +KV

E2,

(1)

with initial condition vector [T1(0), T ∗1 (0), T2(0), T ∗2 (0), VI(0), VNI(0), E1(0), E2(0)].
A number of terms in this model are based on the law of mass action, where the

rate of change in the size of a population is directly proportional to the size of the
population at any given time, so the population changes with an exponential rate.
Examples of these terms are −d1T1 and γTT1 in the Ṫ1 equation. Other terms are
based on Michaelis-Menten kinetics, where the rate saturates (approaches a maxi-

mum). An example of this type of term is aTVI
VI+KV

in the Ṫ1 equation. The functions

ξ1(t) = ε1u(t) and ξ2(t) = ε2u(t) represent the impact of the treatment, where ε1 is
the effectiveness of the reverse transcriptase inhibitor, ε2 is the effectiveness of the
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parameter explanation
δ viral produced lysis rate of T ∗1
d2 T2 and T ∗2 natural death rate
δE2 death rate of E2

m rate of removal by cell lysis of T ∗1 from the system by E1

γT rate at which T1 and T ∗1 differentiate into T2 and T ∗2 , respectively
c natural clearance rate of VI and VNI
δE1 constant death rate of E1

λE source term for E1

k2
production rate of T ∗2 due to encounters between T2 and VI
that is less than k1

ρ1 rate of removal of VI through successful infection of T1
ρ2 rate of removal of VI through successful infection of T2
d1 natural death rate of T1
ε2 relative effectiveness of protease inhibitor (PI)
aA activation rate of T2 and T ∗2 by non-HIV antigen
ε1 relative effectiveness of reverse transcriptase inhibitor (RTI)

pT
net proliferation of T1 and T ∗1 due to clonal expansion
and programmed contraction

pE
net proliferation of E1 due to clonal expansion
and programmed contraction

k1 production rate of T ∗1 from encounters between T1 and V1
NT number of RNA copies produced during the process of T ∗1 lysis

Table 2. Explanation of the parameters used in the model (1).

protease inhibitor, and u(t) is the HAART drug level, which is 0 when the patient
is off treatment and 1 when the patient is on treatment. The efficacy of treatment
is represented by f , where 0 ≤ f ≤ 1 in the Ṫ ∗2 compartment. The factors 103

are included since CD4+ and CD8+ T cells are measured as cells/µL of blood and
virus is measured as RNA copies/mL of plasma. Individual parameters are defined
in Table 2. For a more in-depth explanation of the model, refer to [7].

Initially, we looked into the accuracy of this model, since [7] was published in
2008 and it is possible that a number of advancements in the understanding of HIV
could have occurred in the intervening five years. We attempted to use current
knowledge to confirm the accuracy of this model. We investigated six assumptions:
(1) whether the proliferation of CD4+ and the activation of CD8+ memory T cells
was correctly represented, (2) whether the role CD4+ cell-produced interferons play
in CD8+ cell differentiation was properly included, (3) whether it was accurate to
exclude a death rate for infected activated CD4+ cells, (4) whether it is correct to
assume that one free virus particle is responsible for each new infection, (5) whether
the dynamic nature between CD4+ cells and immune effector cells is accurate, and
(6) whether the assumptions made about the activation of resting CD4+ T cells are
consistent with recent research understanding.

First we confirmed the accuracy of the proliferation of CD4+ and activation of
CD8+ memory T cells into effector T cells in our model. A paper from 2011 [15]
outlines the proliferation of CD4+ T cells and activation of CD8+ T cells during
an HIV infection. Naive CD4+ T cells are recruited in response to CD4+ T cell
depletion whereas CD8+ memory T cell activation is driven by HIV RNA levels [15].
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We confirmed that these were accurately incorporated into the model. The density
dependent regulation of CD4+ cells is incorporated into the model by the terms
λT

Ks
VI+Ks

−d2T2 that describe how the rate of CD4+ production increases as CD4+
levels decrease. Viral load level is also incorporated into these terms and reflect the
diminished thymic production of CD4+ cells when viral load is too high [7]. The
HIV RNA dependent activation of CD8+ memory cells into CD8+ effector cells is
incorporated into the model by the term pEaEVI

VI+KV
E2, where virus level promotes the

activation of CD8+ memory cells (E2), adding to the pool of CD8+ effector cells
(E1). The parameter pE represents the net proliferation of CD8+ effector cells once
activated. Therefore the model is a reasonable approximation to these dynamics.

Second, we investigated the role of interferons produced by CD4+ T cells to
confirm their role in the model. Recent research has emerged about the importance
of interferons in the relationship between CD4+ and CD8+ cells [15, 28, 38]. In our
model, a dotted line titled CD4+ help connects non-infected activated CD4+ cells
(T1) and infected activated CD4+ cells to the differentiation of immune effector
cells (E1) into immune memory cells (E2): Figure 1. This is consistent with the
role of Type 1 interferons in the response of CD8+ cells to viral infection [15, 38].
Type 1 interferons are cytokines that are induced directly by virus infection. IFN
directly promotes the proliferation of antigen-specific CD8+ T cells [15, 38]. This
mechanism is also reasonably incorporated into the model.

Third, the model includes a natural death rate for uninfected activated (T1),
uninfected resting (T2), and infected resting cells (T ∗2 ), but not for infected activated
cells (T ∗1 ). We investigated the current understandings of these assumptions. There
is research that suggests active infected cells do not experience apoptosis. One
study [24] analyzed lymph node sections of four perinatally HIV-infected children
and identified productively infected cells as well as apoptotic nuclei. They found
that though the two identified cell types were often close to one another, they
were never overlapping. They took similar samples from an additional child and
four adults and observed overlap but only rarely. Also, newly HIV-infected cells
produce viral accessory proteins, which likely assist them in avoiding apoptosis
[16]. These proteins include Negative Regulatory Factor (Nef), Viral Infector Factor
(Vif), and Viral Protein R (Vpr). For example, Nef hinders p53-dependent UV-
induced apoptosis, which otherwise occurs in response to viral attachment and
entry involving HIV Gp120. Therefore, it is reasonable to exclude a natural death
term for infected activated cells (T ∗1 ).

Fourth, in [7], the simplifying assumption is made that one free virus particle
is responsible for each new infection. The free virus compartment VI includes the
term 103[(1−ξ1(t))ρ1k1T1+(fξ1(t))ρ2k2T2]VI representing the removal of free virus
through the infection of T1 and T2. The parameters ρ1 and ρ2, which represent the
number of virus particles lost due to a single successful infection are both set equal
to 1 (copies mL-blood/cells mL-plasma). In [7] it is stated that ρi can be changed
to be greater than 1 to account for multiple virus particles being responsible for
each new infection. We investigated whether our model should include ρi = 1 or
ρi > 1. With reference to a paper from 2010 [28] and a paper from 2013 [16], we
decided to leave ρi = 1.

Fifth, we investigated the terms describing the production and removal of CD8+
immune effector T cell (E1). In the E1 compartment the term λE represents the
constant differentiation of naive CD8+ T cells (assumed readily available) into effec-
tor cells (E1) and the term δE1E1 represents exponential natural death of E1. The
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combination of the birth term
bE1T

∗
1

T∗
1 +Kb1

E1 and death term
dET

∗
1

T∗
1 +Kd

E1 when Kb1 < Kd

and bE1 < dE represent the dynamic effect activated infected CD4+ cells (T ∗1 ) have

on the effector CD8+ cell compartment (Ė1). This interaction is dynamic because
the presence of T ∗1 both stimulates the proliferation of E1 and causes the aging?of
E1.

The presence of T ∗1 stimulates the proliferation of E1 through antibody presen-
tation [39]. At the same time, infected activated CD4+ cells (T ∗1 ) contribute to the
death of the effector CD8+ cells (E1) due to the mechanism of activation-induced
cell death (AICD). CD8+ cells have Fas ligand proteins on their surface, which bind
to the Fas proteins of target cells and induce apoptosis in the target cell. However,
CD8+ cells also have Fas proteins on their surfaces and while virgin CD8+ T cells
are insensitive to the ligation of their own Fas proteins, as CD8+ T cells are repeat-
edly stimulated by infected active CD4+ cells, they become increasingly sensitive
and susceptible to Fas-mediated killing [35]. Therefore the net effect of these terms

on Ė1 is a function of T ∗1 . This relationship can be seen in Figure 2. As T ∗1 increases

from 0 to Kb1dE−bE1Kd
bE1−dE , the terms

bE1T
∗
1

T∗
1 +Kb1

and
−dET∗

1

T∗
1 +Kd

contribute positively to (Ė1),

representing early infection when antigen presentation by emerging T ∗1 stimulates

the production of effector cells [39]. When T ∗1 is greater than Kb1dE−bE1Kd
bE1−dE , the

terms
bE1T

∗
1

T∗
1 +Kb1

and
−dET∗

1

T∗
1 +Kd

contribute negatively to Ė1, representing the scenario

when death due to repetitive T ∗1 -induced stimulation overwhelms T ∗1 stimulated
birth. Therefore CD8+ immune effector T cell (E1) generation is depicted in this
model in a biologically feasible way.

Finally, it was noted that a large section of [7] pertaining to the latent reservoir
CD4+ T cell (T ∗2 ) activation into infected activated CD4+ T cells (T ∗1 ) is based
on a paper written in 2002 and makes the assumption that activation of infected
HIV-specific resting CD4+ T cells (T ∗2 ) depends on the virus concentration with a
half saturation constant KV and maximum activation rate aT . These assumptions
are also made for activation of uninfected HIV-specific resting CD4+ T cells (T2)
into uninfected activated CD4+ T cells (T1). We investigated the accuracy of
these assumptions based on recent literature. Recent research [32, 34] supports
the assumption dendritic cell (DC) mediated activation of HIV latent reservoir
cells. Dendritic cells are antigen-presenting cells that activate the adaptive immune
system and can stimulate latent cells to become active. Therefore, the amount of
virus can directly affect the amount of antigen-presenting cells that activate HIV-
specific resting CD4+ T cells (T ∗2 ).

3. Data and methods.

3.1. Data sets. Data used by the authors of [7] include patients from a clinical trial
at Massachusetts General Hospital that underwent anti-retroviral therapy (ART)
and had at least one ART interruption. The collected data for each patient are
total CD4+ T cell count/µL-blood and total RNA copies/mL-plasma. If there
are less than 400 copies/mL-plasma for a standard assay or 50 copies/mL-plasma
for an ultra-sensitive assay, then the viral load value is censored to be the limit of
quantification. For these data points, the expectation maximization (EM) algorithm
was applied in [7]. For this work, we chose to model the data for Patients 1, 27,
and 33 from [7] as representatives of patients who underwent three, two, or one
structured treatment interruptions (STI), respectively. The EM data points for
each patient were combined with the uncensored data to form a data set that could
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against T ∗1

be used for parameter estimation and uncertainty analysis. In total, there were 102
data points for viral load and 84 data points for the CD4+ T cell count over 1527
days for Patient 1, 36 viral load data points and 35 CD4+ T cell counts over 1379
days for Patient 27, and 75 viral load data points and 52 CD4+ T cell counts over
1302 days for Patient 33.

3.2. Inverse problem methodology. In order to estimate a vector of param-
eters q, we use the data for CD4+ T cell count, {yi1}

N1
i=1, and data for the vi-

ral load, {yj2}
N2
j=1. The mathematical model divides total CD4+ T cells into un-

infected activated (T1), infected activated (T ∗1 ), uninfected resting (T2), and in-
fected resting (T ∗2 ), so the total CD4+ T cell count is represented in the model by
z1 = T1 + T ∗1 + T2 + T ∗2 . Similarly, since viral load RNA copies are separated into
infectious free virus (VI) and non-infectious free virus (VNI), total RNA copies is
represented in the model by z2 = VI +VNI . We used a vector observation version of
iterative weighted or generalized least squares framework with the following statis-
tical error models for the CD4+ and viral RNA observables, with the corresponding
mathematical models z1 and z2, respectively:

Y i1 = z1(ti1; q0) + zγ11 (ti1; q0)ei1, i = 1, 2, . . . , N1, (2)

Y j2 = z2(tj2; q0) + zγ22 (tj2; q0)ej2, j = 1, 2, . . . , N2, (3)

where yi1, y
j
2 are realizations of the random variables Y i1 , Y

j
2 and ei1, e

j
2 are inde-

pendent identically distributed (i.i.d.), and E[ei1] = E[ej2] = 0, Var(ei1) = σ2
1 ,

Var(ej2) = σ2
2 , for i = 1, ..., N1, j = 1, ..., N2, and q0 are the usual hypothesized

“true” parameter values [9, 11]. Here γ̄ = (γ1, γ2) are weighting factors that were
determined using analysis of residuals [9, 11]. In principle it is possible to use a
multistage estimation procedure [19] to determine the values of the statistical model
parameters γ1, γ2, but we did not do that here. Instead we followed standard statis-
tical methodology [9, 13, 14, 19, 31] of evaluating residuals for randomness patterns
for numerous values of γ1 and γ2. As reported in Section 4.1 below we found γ1 = 0
and γ2 = 1.2 were appropriate.
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The version of generalized least squares that we use here is actually iterative
reweighted least squares as detailed in [9, p.62-64], [11, p.38-41], [13, p.13-14], [18],
[19, Chapter 2], [31, p.88-89], which for the scalar observation case involves solving
the normal equations [9, Eqns (3.37),(3.38)] given in general form by

N∑
j=1

f−2γ(tj ; q)[Yj − f(tj ; q)]∇f(tj ; q) = 0.

We note that this is NOT equivalent to minimizing the weighted least squares with
the weights chosen as wj = f−2γ(tj ; q). That is, this is not equivalent to setting
∂
∂q (WLS) = 0 with WLS =

∑
f−2γ(tj ; q)[Yj − f(tj ; q)]

2. In the vector observation

version we use here, the data sum is N = N1 + N2 corresponding to samples at
ti1, i = 1, . . . , N1, and tj2, j = 1, . . . , N2, with the two weighting factors γ̄ = (γ1, γ2)
corresponding (as we shall explain below) to γ1 = 0, γ2 = γ = 1.2.

The iterative weighted or generalized least squares estimator [9, 11, 13, 18, 19, 31]
for n = (N1, N2) observations is given by (hereafter we take γ1 = 0, γ2 = γ = 1.2
throughout)

q̂ = arg min
q∈Q

(
1

N1

N1∑
i=1

(yi1 − z1(ti1; q))2

σ2
1

+
1

N2

N2∑
j=1

(yj2 − z2(tj2; q))2

σ2
2z

2γ
2 (tj2; q)

) (4)

with the variance components given by (this follows from (2) and (3))

σ̂2
1 =

1

N1 − dim(q0)

N1∑
i=1

(yi1 − z1(ti1; q̂))2 (5)

σ̂2
2 =

1

N2 − dim(q0)

N2∑
j=1

(yj2 − z2(tj2; q̂))2

z2γ2 (tj2; q̂)
. (6)

We note that equations (4)–(6) involve the unknown (and to be estimated) param-
eters q0 and hence one needs to employ a generalized least squares algorithm as
explained below to carry out the desired minimization. We also discuss below the
need to weight the error for the viral load in proportion to the model solution as
well as to determine the best choice of the value for the exponent γ = γ2.

All inverse problems involving the 15 parameters q and σ̂2
1 , σ̂

2
2 were performed

in Matlab using the fminsearch function and a vector observation version of the
iterative generalized least squares estimation procedure as described in Section 3.2.9
of [11], Sections 3.2.5–3.2.6 of [9] and Algorithm 3.1 below. In this algorithm ε is a
user defined threshold tolerance used to set a termination criterion and “./′′ denotes
element-wise division.

3.3. Uncertainty quantification: Asymptotic theory. In order to quantify
uncertainty in estimating a parameter vector q = (q1, q2, ..., qp) for the set of differ-
ential equations in our model (1), standard errors and confidence intervals [9, 11, 19]
can be computed using standard asymptotic theory (as n = (N1, N2)→∞) for GLS
estimators qnGLS . The p x p Fisher Information Matrix (FIM) in our case of vector
observations corresponding to the CD4+ and viral RNA variables, z1 and z2, in
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Algorithm 3.1 Parameter Estimation Procedure

1. Obtain initial estimate q̂(0) using (4) with σ2
k = 1 for k = 1, 2 and the weights

z2γ2 (tj2; q0) = 1 for j = 1, ..., N2.

2. Compute the variances σ2
k using (5) and (6), and the weights z2γ2 (tj2; q0) with

q0 replaced by q̂(0).
3. Initialize the iteration counter ` with the value 1.
4. Do each of the following:

• Compute q̂(`) using (4) with current variances σ2
k and weights

z2γ2 (tj2; q̂(`−1)).

• Update the variances σ2
k using (5) and (6), and the weights z2γ2 (tj2; q̂(`−1))

with q0, q̂
(`−1) replaced by q̂(`).

• Store the value of ‖[q̂(`) − q̂(`−1)]./[q̂(`−1)]‖ in ∆.
• Increment ` by 1.

5. If ∆ > ε, return to Step 4. Otherwise, terminate the algorithm.

equations (2) and (3), is approximated by (see [11])

ΣN1+N2
0 ≈


(∑N1

i=1
1

σ2
1(q̂

n)

∂z1(t
i
1;q̂

n)
∂qk

∂z1(t
i
1;q̂

n)
∂ql

+
∑N2

j=1
1

σ2
2(q̂

n)z2γ2 (tj2;q̂
n)

∂z2(t
j
2;q̂

n)
∂qk

∂z2(t
j
2;q̂

n)
∂ql

)
k,l

 (7)

where σ2
1 and σ2

2 are defined in equations (5) and (6) where q0 have been approxi-
mated by q̂n. This approximation is derived as follows.

Let g1 = T1 + T ∗1 + T2 + T ∗2 and g2 = VI + VNI . The sensitivities are computed
by solving the system of equations

d

dt

(∂zm
∂q

)
=
∂gm
∂x

(∂x
∂q

)
+
dgm
dq

, m = 1, 2, (8)

where x and q are the state variables and the parameters being estimated, respec-
tively. We define the 2× p matrices

Di
1(q0) =

[∂z1
∂q1

(ti1; q0) . . . ∂z1
∂qp

(ti1; q0)

0 . . . 0

]
(9)

for i = 1, ..., N1, and for j = 1, ...., N2

Dj
2(q0) =

[
0 . . . 0

∂z2
∂q1

(tj2; q0) . . . ∂z2
∂qp

(tj2; q0)

]
. (10)

We also define the 2× 2 matrices

V0(t; q0) =

[
σ2
1 0

0 σ2
2z

2γ
2 (t; q0)

]
. (11)

Then the p× p matrices DiT
1 V −10 (ti1)Di

1 and DjT
2 V −10 (tj2)Dj

2 have entries

F 1,i
k,l (q0) = σ−21

∂z1
∂qk

(ti1; q0)
∂z1
∂ql

(ti1; q0), k, l = 1, ..., p, i = 1, ..., N1,

and

F 2,j
k,l (q0) = σ−22 z−2γ2 (tj2; q0)

∂z2
∂qk

(tj2; q0)
∂z2
∂ql

(tj2; q0), k, l = 1, ..., p, j = 1, ..., N2,
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respectively. We then define the p×p Fisher matrix F (q0) = (Fk,l(q0)) with elements

Fk,l(q0) =

N1∑
i=1

F 1,i
k,l (q0) +

N2∑
j=1

F 2,j
k,l (q0). (12)

The approximate Fisher matrix (7), obtained by evaluating (12) at q̂n ≈ q0, is
then used to compute the standard errors for each element (k = 1, 2, . . . , p) of q̂n,
given by

SEk = SE(q̂nk ) =
√

(F−1(q̂n))k,k. (13)

The 100(1-ρ)% confidence intervals can be computed based on the confidence
level parameters associated with the generalized least squares estimators qn = qnGLS :

Prob{qnk − t1−ρ/2SEk(q̂n) < q0k < qnk + t1−ρ/2SEk(q̂n)} = 1− ρ, (14)

where ρ is chosen to be small (e.g., ρ=0.05 for 95% confidence intervals) and t1−ρ/2
is determined by Prob(T ≥ t1−ρ/2) = ρ/2, where T ∼ tv for v = n − p degrees of
freedom (t1−ρ/2 ≈ 1.96 in the examples here). The corresponding 95% confidence
intervals are then given by

[q̂nk − t1−ρ/2SEk(q̂n), q̂nk + t1−ρ/2SEk(q̂n)], (15)

with ρ = 0.05.

3.4. Numerical solution of the model and sensitivity equations. The ordi-
nary differential equation model (1) and the sensitivity equations (8) were solved
on a log10 scale with the Matlab solver ode15s. As noted in [7], the system (1) is
more efficiently solved as a log-transformed system. Consequently, the sensitivity
equations (8) are also more efficiently solved when log transformed because their
solution depends on the solution of the original system (1). Solutions to (1) were
mapped back to the non-log transformed states prior to computing the least squares
minimizer in (4). Hence, solving the log-transformed version of (1) does not affect
the iterative generalized least squares Algorithm 3.1 or the statistical error model
(2)-(3). Similarly, solutions to (8) in non-transformed form were used in computing
the Fisher Information Matrix (12).

4. Results.

4.1. Parameter estimation and evaluation of the statistical error model.
Prior to uncertainty quantification, we investigated whether the number of struc-
tured treatment interruptions can affect parameter estimation. To accomplish this,
we calculated standard errors and the corresponding 95% confidence intervals for
patients with one, two, and three structured treatment interruptions (STIs). We
analyzed data from Patient 1 (3 STIs), Patient 27 (2 STIs), and Patient 33 (1 STI)
from [7]. We estimated patient specific parameters using a generalized least squares
framework (see Eq. (2) - (6)). We estimated a subset of parameters in the math-
ematical model, since Banks, et al., found that only 16 out of 39 total parameters
in the model had significant variation between patients. We also fixed VI(0) to the
initial viral load data point under the assumption that the amount of non-infectious
virus is negligible at the time of treatment initiation. We argue that this assump-
tion is reasonable because the primary cause of non-infectious production is ART
(see the term ξ2(t) in (1)). Thus, we estimated the subset of 15 parameters {λT ,
d1, ε1, k1, aT , ε2, NT , bE2, aE , pE , aA, pT , T1(0), T ∗1 (0), T2(0)}.
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We varied γ̄ = (γ1, γ2) in order to test the assumption that the normalized

residuals ei1, e
j
2 in equations (2) and (3) are i.i.d.. The validity of any uncertainty

analysis depends on the correctness of these underlying statistical modeling assump-
tions. We found that the model accurately fit the virus data for Patients 1 (Figure
3), 27 (Figure 5), and 33 (Figure 7) when using γ1 = 0 and for several different
values of γ = γ2 between 0 and 2, and that the corresponding residuals [11] were
found to be approximately randomly distributed when γ2 = 1.2 (Figures 4, 6, and
8). Thus, we set γ = γ2 = 1.2 in the uncertainty analyses we present below. We
note that in the figures below we plotted and analyzed the normalized residuals for
viral load

εi2 =
yi2 − z2(ti2, q̂)

z2γ2 (ti2, q̂)

corresponding to the non-constant variances of model (3).
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Figure 3. The mathematical model (1) accurately tracks the dy-
namics of CD4+ T cell and viral load for Patient 1 over several
years. Circles indicate data points and solid lines are the model
simulations using parameter estimates found with setting γ = 1.2.

4.2. Uncertainty analysis using asymptotic theory. We next used the as-
ymptotic theory techniques described in Section 3.3 to compute uncertainty for
parameters in our model of HIV infection and immune system dynamics (1). The
resulting parameter estimates and standard errors for Patients 1, 27, and 33 are
given in Table 3. We found that the standard errors for several parameters in each
patient were larger than the parameter estimates themselves. Together with our
suspicion that there are likely several unidentifiable (or correlated in the statistical
sense) parameters in our model (1), these results suggest that the application of
asymptotic theory for parameter uncertainty quantification will yield unreasonably
large standard errors for the set of 15 parameters {λT , d1, ε1, k1, aT , ε2, NT , bE2,
aE , pE , aA, pT , T1(0), T ∗1 (0), T2(0)} regardless of the number of structured treat-
ment interruptions. We next investigated whether there was a subset of parameters
in our model which we could estimate and expect reasonable standard errors, i.e.,
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Figure 4. Residual plots (CD4+) and normalized residual plots
(virus) for Patient 1 using γ = 1.2.
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Figure 5. The mathematical model (1) accurately tracks the dy-
namics of CD4+ T cell and viral load for Patient 27 over several
years. Circles indicate data points and solid lines are the model
simulations using parameter estimates found with setting γ = 1.2.

such that the 95% confidence interval is narrow relative to the size of the parameter
estimate itself.

4.3. Parameter subset selection. To better understand how individual param-
eters contributed to the overall high asymptotic standard errors we found for our
model, we investigated whether there were subsets of the 15 parameter set PS =
{λT , d1, ε1, k1, aT , ε2, NT , bE2, aE , pE , aA, pT , T1(0), T ∗1 (0), T2(0)} for which the
application of asymptotic theory would result in reasonable standard errors. We
used an algorithm recently developed in [5, 6] that selects a parameter subset based



950 BANKS, BARALDI, CROSS, FLORES, MCCHESNEY, POAG AND THORPE

0 200 400 600 800 1000 1200 1400
−250

−200

−150

−100

−50

0

50

100

150

200

Time

R
es

id
ua

l

CD4

0 200 400 600 800 1000 1200

−0.1

−0.05

0

0.05

0.1

Time

R
es

id
ua

l

Virus

400 500 600 700 800 900 1000 1100
−250

−200

−150

−100

−50

0

50

100

150

200

Model

R
es

id
ua

l

CD4

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

−0.1

−0.05

0

0.05

0.1

Model

R
es

id
ua

l

Virus

Figure 6. Residual plots (CD4+) and normalized residual plots
(virus) for Patient 27 using γ = 1.2.
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Figure 7. The mathematical model (1) accurately tracks the dy-
namics of CD4+ T cell and viral load for Patient 33 over several
years. Circles indicate data points and solid lines are the model
simulations using parameter estimates found with setting γ = 1.2.

on minimizing the sum of normalized standard errors (selection score) for a given
number of parameters np as described below.

Given a set of size p of parameters q, and a number np ≤ p, the subset selection
algorithm finds a subset of parameters of size np that minimizes a selection score
as described in [6]. To implement this procedure one first needs a set of parameter
estimates {q̂1, ..., q̂p}, with corresponding standard errors {SE1, ..., SEp}. One then
introduces the coefficients of variation for q̂i

ν(q̂i) =
SEi
q̂i

, i = 1, . . . , np, (16)
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Figure 8. Residual plots (CD4+) and normalized residual plots
(virus) for Patient 33 using γ = 1.2.

Para. Pat. 1 Est. Pat. 1 SE Pat. 27 Est. Pat. 27 SE Pat. 33 Est. Pat. 33 SE
λT 3.2543 0.0392 3.125 0.095963 2.6253 0.89677
d1 0.13171 0.49811 0.038781 0.64346 0.021302 8.6422
ε1 0.52408 0.94784 0.28828 0.82213 0.50644 26.721
k1 4.82E-05 0.32705 3.35E-05 0.56897 1.01E-05 9.4726
aT 0.00023198 0.79499 0.00038044 0.63083 0.00033792 6.051
ε2 0.71494 0.58436 0.98237 0.01741 0.50689 19.901
NT 79.26 0.49152 127.18 1.221 99.964 13.613
bE2 0.34554 4.9239 0.089888 0.51469 0.10906 16.409
aE 0.0015332 0.55436 0.087835 0.35142 0.22299 16.238
pE 1.0294 4.6453 4.6072 0.31985 1.0141 22.145
aA 8.07E-05 0.88355 0.00017501 1.0531 0.00031818 9.9174
pT 5.531 0.91386 6.282 1.6314 1.0088 9.9323
T1(0) 12.135 27.397 3.4611 2.6034 2.4191 5828.4
T ∗1 (0) 0.00058604 2.33E+06 0.3637 181.76 39.891 11523
T2(0) 823.59 62.748 973.2 110.94 669.78 306.25

Table 3. Parameter estimates and standard errors for Patients 1,
27, and 33 computed using asymptotic theory.

and take the selection score given by the Euclidean norm in Rnp of ν(q̂) = (ν(q̂1),
. . . , ν(q̂np))T , i.e.,

α(q̂) = |ν(q̂)|,

as an uncertainty quantification for the estimates q̂. The components of the vector
ν(q̂) are the ratios of each standard error for a parameter to the corresponding
nominal parameter value. These ratios are dimensionless numbers warranting com-
parison even when parameters have considerably different scales and units (e.g., in
case of the HIV-model NT is on the order of 100, while k1 is on the order of 10−5).
A selection score α(q̂) near zero indicates lower uncertainty possibilities in the esti-
mation, while large values of α(q̂) suggest that one could expect to find substantial
uncertainty in at least some of the components of the estimates in any parameter
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estimation attempt. For a given number of parameters, np, the algorithm results
in a parameter subset of size np with a minimal selection score αmin(np).

Overall, we found that the selection score patterns for Patients 1, 27, and 33
were similar. Not surprisingly, the selection score for each patient shows the same
monotone increasing trend, even in presence of the different numbers of structured
treatment interruptions (STIs) between patients (Figure 9).
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Figure 9. The minimum selection scores for Patients 1, 27, and
33 plotted on a log10 scale.

To further dissect how the individual parameters contributed to the increasing
trend in the selection score, we analyzed the order in which the parameters were
selected as the number (np) of parameters in the subset increased. Interestingly,
we found that for each patient, the parameter subset for np was contained in the
parameter subset for np+1 for almost all subsets, with only a few exceptions (Table
4). We observed that, in addition to the selected parameter subsets being ordered
for each patient, the subsets themselves were strikingly similar between patients for
any given np (Table 5).

We next assessed whether there was a parameter subset for each patient for
which we could expect reasonable standard errors using asymptotic theory. We
set a threshold on the normalized standard error for each parameter in a given
parameter subset in order to ensure that every 95% confidence interval was narrower
than the parameter estimate itself. To accomplish this, we used a threshold of
1

1.96 = 0.5102 (see (15)). Using this criteria, the same seven parameters were found
for Patient 1 and Patient 27 {NT , ε2, λT , pT , T2(0), pE , T1(0)} (Figures 10, 11), and
three parameters were found for Patient 33 {λT , NT , T2(0)} (Figure 12). Similar
to the parameter nesting trend we found for the overall parameter subset selection
described above, the set of three parameters found for Patient 33 is contained in
the set of seven parameters found for Patients 1 and 27. These results suggest that
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np λT d1 ε1 k1 aT ε2 NT

1 1,27,33
2 1,33 27 1,27,33
3 1,33 1,27 27,33
4 1,27,33 1,27 1,27
5 1,27,33 1,27 1,27,33
6 1,27,33 1,27,33 1,27,33
7 1,27,33 1,27,33 1,27,33
8 1,27,33 1 1,27,33 1,27,33
9 1,27,33 1 1,27,33 1,27,33 1,27,33
10 1,27,33 1 1,27,33 1,27,33 1,27,33
11 1,27,33 1,27,33 1,27,33 1,27,33 1,27,33
12 1,27,33 1,27,33 1,27,33 1 1,27,33 1,27,33
13 1,27,33 1,27,33 1,27,33 1 1,27,33 1,27,33 1,27,33
14 1,27,33 1,27,33 1,27,33 1 1,27,33 1,27,33 1,27,33
15 1,27,33 1,27,33 1,27,33 1,27,33 1,27,33 1,27,33 1,27,33

np bE2 aE pE aA pT T1(0) T ∗1 (0) T2(0)
1
2
3 1,27 33
4 33 1,27,33 33
5 1,27,33 1,27,33 33
6 1,27,33 1,27,33 1,27,33
7 1,27,33 1,27,33 1,27 33 1,27,33
8 27,33 1,27,33 1,27,33 1,27 33 1,27,33
9 27,33 1,27,33 1,27,33 1,27 33 1,27,33
10 1,27,33 27,33 1,27,33 1,27,33 1,27 33 1,27,33
11 1,27,33 1,27,33 1,27,33 1,27,33 1,27 33 1,27,33
12 1,27,33 1,27,33 1,27,33 1,27,33 1,27,33 27,33 1,27,33
13 1,27,33 1,27,33 1,27,33 1,27,33 1,27,33 27,33 1,27,33
14 1,27,33 1,27,33 1,27,33 1,27,33 1,27,33 1,27,33 27,33 1,27,33
15 1,27,33 1,27,33 1,27,33 1,27,33 1,27,33 1,27,33 1,27,33 1,27,33

Table 4. The chosen parameters for each subset size np = 1, ..., 15
for Patients 1, 27, and 33. Entries in the table represent whether
the parameter in the column header was chosen for a patient at
subset size np.

the number of STIs affects the ability of asymptotic theory to calculate uncertainty
for parameter estimates for our model of HIV dynamics, with more STIs leading to
a larger parameter subset with reasonable standard errors.

We note that the parameter subset selection algorithm does not re-estimate pa-
rameters when minimizing the selection score, which is composed of parameter
standard errors. Since the standard errors themselves rely on the parameter esti-
mates, we tested whether re-estimating only the chosen parameter subsets based on
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np Pat. 1 ∩ Pat. 27 Pat. 1 ∩ Pat. 33 Pat. 27 ∩ Pat. 33 Pat. 1 ∩ Pat. 27 ∩ Pat. 33
1 1 1 1 1
2 1 2 1 1
3 2 1 1 0
4 4 2 2 2
5 5 4 4 4
6 6 6 6 6
7 7 6 6 6
8 7 6 7 6
9 8 7 8 7
10 9 8 9 8
11 11 10 10 10
12 11 11 12 11
13 12 12 13 12
14 13 13 14 13
15 15 15 15 15

Table 5. The number of elements in the intersection of parameter
subsets selected for each patient (Patients 1, 27, or 33) for a given
number of parameters np. These data reflect the strong agreement
between the chosen parameter subsets for each patient, as all entries
in each row are greater than np − 2.

our threshold criteria could change the asymptotic standard errors. We found that
both the parameter estimates and the standard errors were very similar before and
after the re-estimation process (Tables 6, 7, 8).

Para. Est. (B.S.) SE (B.S.) 95% CI (B.S.) Est. (A.S.) SE (A.S.) 95% CI (A.S.)
λT 3.2543 0.0109 (3.2328,3.2757) 3.2051 0.011 (3.1835,3.2266)
ε2 0.7149 0.0188 (0.6781,0.7518) 0.716 0.0175 (0.6816,0.7503)
NT 79.2604 0.1721 (78.923,79.598) 80.733 0.1414 (80.456,81.01)
pE 1.0294 0.0468 (0.9376,1.1212) 0.86 0.0404 (0.7809,0.9391)
pT 5.531 0.1804 (5.1774,5.8845) 5.2899 0.1482 (4.9994,5.5804)
T1(0) 12.1351 3.3987 (5.4737,18.797) 13.21 3.1076 (7.1183,19.3)
T2(0) 823.59 59.211 (707.54,939.64) 857.638 58.9 (742.19,973.08)

Table 6. Parameter estimates, standard errors (SE), and 95%
confidence intervals for the seven parameters selected by the subset
selection algorithm for Patient 1. The results are shown for param-
eters estimated before the subset selection algorithm was run (B.S.)
and after the re-estimating those same parameters after they were
selected by the subset selection algorithm (A.S).

4.4. Uncertainty analysis using bootstrapping. We also estimated parame-
ter uncertainty for the model (1) using bootstrapping. We used a non-parametric
form of bootstrapping as given in [18, Chapter 11], [13, p.27-28], [14, 21, 22]. We
note that asymptotic theory is computationally preferred over bootstrapping since
asymptotic theory took approximately 15 minutes per patient whereas bootstrap-
ping took approximately 350 computing hours per patient. We again investigated
whether the number of structured treatment interruptions can affect uncertainty
quantification by performing bootstrapping for Patients 1, 27, and 33.
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Figure 10. The normalized standard errors resulting from the
parameter subset selection for Patient 1 plotted on a log10 scale
for np = 1, ..., 15. The solid horizontal line is the threshold for the
selection of parameters with reasonable normalized standard errors.

Para. Est. (B.S.) SE (B.S.) 95% CI (B.S.) Est. (A.S.) SE (A.S.) 95% CI (A.S.)
λT 3.125 0.02002 (3.0857,3.1642) 2.9696 0.02246 (2.9255,3.01363)
ε2 0.98237 0.0036081 (0.97529,0.98944) 0.98596 0.0028335 (0.98041,0.99151)
NT 127.18 0.08119 (127.02,127.33) 139.78 0.07544 (139.63,139.92)
pE 4.6072 0.052066 (4.5051,4.7092) 5.5996 0.03988 (5.5214,5.6777)
pT 6.282 0.04882 (6.1863,6.3776) 6.8938 0.04619 (6.8033,6.9843)
T1(0) 3.4611 1.6549 (0.21749,6.7047) 3.3456 1.6277 (0.15531,6.5359)
T2(0) 973.2 55.446 (864.52,1081.8) 1037.2 59.672 (920.24,1154.1)

Table 7. Parameter estimates, standard errors (SE), and 95%
confidence intervals for the seven parameters selected by the subset
selection algorithm for Patient 27. The results are shown for pa-
rameters estimated before the subset selection algorithm was run
(B.S.) and after the re-estimating those same parameters after they
were selected by the subset selection algorithm (A.S).

To implement bootstrapping to quantify the uncertainty in parameter estimates
for equations (1), we first obtained a vector of estimated parameters, q̂, using the
above inverse problem methodology. We then calculated the standardized residuals,
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Figure 11. The normalized standard errors resulting from the
parameter subset selection for Patient 27 plotted on a log10 scale
for np = 1, ..., 15. The solid horizontal line is the threshold for the
selection of parameters with reasonable normalized standard errors.

Para. Est. (B.S.) SE (B.S.) 95% CI (B.S.) Est. (A.S.) SE (A.S.) 95% CI (A.S.)
λT 2.6253 0.0228 (2.5807,2.6699) 2.443 0.0175 (2.4086,2.4773)
NT 99.965 0.0623 (99.842,100.09) 64.5176 0.0509 (64.417,64.617)
T2(0) 669.78 54.064 (563.81,775.74) 703.09 52.161 (600.86,805.33)

Table 8. Parameter estimates, standard errors (SE), and 95%
confidence intervals for the three parameters selected by the subset
selection algorithm for Patient 33. The results are shown for pa-
rameters estimated before the subset selection algorithm was run
(B.S.) and after the re-estimating those same parameters after they
were selected by the subset selection algorithm (A.S).

rij for these estimates for each observable (j = 1, 2):

ri1 =

√
N1

N1 − dim(q̂)
(yi1 − z1(ti1, q̂)), i = 1, 2, . . . , N1,

rj2 =

√
N2

N2 − dim(q̂)

(
yj2 − z2(tj2, q̂)

zγ2 (tj2, q̂)

)
, j = 1, 2, . . . , N2.
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Figure 12. The normalized standard errors resulting from the
parameter subset selection for Patient 33 plotted on a log10 scale
for np = 1, ..., 15. The solid horizontal line is the threshold for the
selection of parameters with reasonable normalized standard errors.

Bootstrap sample points were then created by sampling residuals with replacement

from the set {rij}
Nj
i=1 for the observable zj , j = 1, 2 and adding them to the model

solutions z1, z2 evaluated at q̂ to obtain bootstrapping sample points yi1 = z1(ti1; q̂)+

ri1, i = 1, 2, . . . , N1, y
j
2 = z2(tj2; q̂) + zγ2 (tj2; q̂)rj2, j = 1, 2, . . . , N2, (see [9, p. 94-96]).

We repeated this process M = 1000 times to create 1000 data sets, each with the
same number of data points for the CD4+ T cell count and viral load as in the
original data set, respectively. We then conducted an inverse problem on each of
these 1000 data sets and stored the parameter estimates q̂m (m=1,..., 1000) in a
matrix, QBOOT . With these values, the mean, variance, and standard errors for the
parameters can be calculated using the following formulas given in [8, 9, 13, 14, 18]:

q̂BOOT =
1

M

M∑
m=1

q̂m,

V ar(q̂BOOT ) =
1

M − 1

M∑
m=1

(q̂m − q̂BOOT )(q̂m − q̂BOOT )T ,

SEk(q̂BOOT ) =
√
V ar(q̂BOOT )kk.

For each parameter q̂k (k = 1, ...,dim(q)) in our original parameter estimate
vector q̂, the 95% confidence interval was calculated directly as the range between
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the 25-th and 975-th entries in the ordered set of 1000 parameter estimates from
bootstrapping. (We note that there are numerous ways [21] in which one might
compute confidence intervals using the empirical bootstrapping distribution. We
use the simple percentile method here.)

The bootstrapping for Patient 1 resulted in normal distributions for most pa-
rameter estimates (Figure 13) with narrow 95% confidence intervals (Table 9). The
distributions for the parameters aE and aT were positively skewed for Patient 1.
The bootstrapping for Patient 27 resulted in normal distributions for all parame-
ters except for aA, pT , T ∗1 (0), and ε1 which showed positive skewness, and ε2 which
showed negative skewness (Figure 14). Skewness was most evident for the parame-
ter ε2, which was estimated to be 0.98237. We note that this parameter is bounded
between 0 and 1 by biological definition, so it is possible that the skewness was
a result of performing the inverse problem in a bounded parameter domain. The
95% confidence intervals for Patient 27 are given in Table 10. One possible source
of skewness for the other parameter bootstrapping distributions for Patient 27 is
the existence of correlated parameters (recall that the bootstrapping approach tac-
itly treats the parameters as random variables for which the concept of correlation
is meaningful). The bootstrapping for Patient 33 resulted in narrow but skewed
distributions in most parameters (Figure 15). This indicates that although the
bootstrapping procedure resulted in narrow 95% confidence intervals for Patient
33 (Table 11), there may exist even more parameter correlations than for Patient
27. Taken together, these findings suggest that standard errors, as calculated from
bootstrapping, do not appear to correlate solely with the number of STIs observed
in a given patient.

Parameter Estimate SEBoot CI95Boot
λT 3.2543 0.056949 (3.1727,3.396)
d1 0.13171 0.0041621 (0.12009,0.13641)
ε1 0.52408 0.018185 (0.48721,0.5585)
k1 4.82E-05 1.71E-06 (4.38E-05,5.05E-05)
aT 0.00023198 7.81E-06 (0.00021257,0.00024319)
ε2 0.71494 0.016157 (0.68207,0.74541)
NT 79.26 1.8116 (74.258,81.359)
bE2 0.34554 0.01378 (0.33355,0.38757)
aE 0.0015332 4.27E-05 (0.0014683,0.0016356)
pE 1.0294 0.035421 (0.97768,1.1165)
aA 8.07E-05 2.62E-06 (7.49E-05,8.52E-05)
pT 5.531 0.10799 (5.5369,5.9602)
T1(0) 12.135 0.26048 (11.509,12.53)
T ∗1 (0) 0.00058604 1.34E-05 (0.00054935,0.00060198)
T2(0) 823.59 20.797 (793.15,874.68)

Table 9. Standard errors and 95% confidence intervals from boot-
strapping for the Patient 1 parameter estimates. These values cor-
respond to the distributions in Figure 13.
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Figure 13. Parameter distributions from bootstrapping for the
Patient 1 parameter estimates.

Parameter Estimate SEBoot CI95Boot
λT 3.125 0.13908 (2.9147,3.4599)
d1 0.038781 0.0046768 (0.025072,0.043405)
ε1 0.28828 0.040775 (0.23173,0.39157)
k1 3.35E-05 2.79E-06 (2.70E-05,3.79E-05)
aT 0.00038044 6.15E-05 (0.00029282,0.00053393)
ε2 0.98237 0.0084828 (0.96012,0.99661)
NT 127.18 12.557 (109.56,158.79)
bE2 0.089888 0.0067262 (0.078146,0.10451)
aE 0.087835 0.0075708 (0.077698,0.10738)
pE 4.6072 0.29633 (4.142,5.3036)
aA 0.00017501 2.42E-05 (0.00011054,0.00020525)
pT 6.282 0.58665 (5.026,7.3257)
T1(0) 3.4611 0.24862 (3.1815,4.1561)
T ∗1 (0) 0.3637 0.021755 (0.32271,0.40798)
T2(0) 973.2 52.277 (845.24,1050.2)

Table 10. Standard errors and 95% confidence intervals from
bootstrapping for the Patient 27 parameter estimates. These values
correspond to the distributions in Figure 14.
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Figure 14. Parameter distributions from bootstrapping for the
Patient 27 parameter estimates.

5. Discussion. In anticipation of continuing efforts with additional data sets in-
volving reservoir cells, we have returned to further uncertainty quantification in-
vestigations of a model [7] previously developed by members of our group. In a
generalized least squares approach (in contrast to our ordinary and weighted least
squares efforts in [2, 7]), we first developed an acceptable statistical model (2)-(3)
in which to pursue uncertainty quantification via both asymptotic and bootstrap-
ping considerations. The resulting value of γ2 = 1.2 for the observed viral load in
place of the more usual absolute (γ = 0) or relative (γ = 1) error models is not
surprising in light of other in-depth studies [10] with complex patient-dependent
data sets. Our subsequent findings that the number of model parameters that have
reasonable asymptotic standard errors increases as the patient data set becomes
more dynamic, (i.e., as the number of treatment interruptions increases) supports
our mathematical intuition. Ironically, this implies that we may be able to better
predict outcomes in ART cessation in patients who go off ART either unpredictably,
(i.e., individuals who don’t adhere to their scheduled treatments), or through some
type of planned STIs. Of course, this implication relies on the assumption of being
able to continue to reliably collect viral load and CD4+ data from these patients
despite their interruption to ART scheduling. Moreover, we expect this number
of reliably-estimated parameters to be bounded (in our example possibly < 15)
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Figure 15. Parameter distributions from bootstrapping for the
Patient 33 parameter estimates.

Parameter Estimate SEBoot CI95Boot
λT 3.1663 0.10024 (2.8951,3.288)
d1 0.022016 0.00034717 (0.02146,0.022821)
ε1 0.50595 0.0069862 (0.494,0.52138)
k1 1.00E-05 2.39E-07 (9.55E-06,1.05E-05)
aT 0.00032206 4.78E-06 (0.00031135,0.00033008)
ε2 0.50583 0.006676 (0.495,0.52117)
NT 100.96 5.7354 (87.589,110.07)
bE2 0.096483 0.0029036 (0.094345,0.10573)
aE 0.21677 0.0036655 (0.2096,0.22396)
pE 1.0131 0.01872 (0.96908,1.0425)
aA 0.00031753 7.34E-06 (0.00030387,0.00033264)
pT 0.94108 0.039611 (0.89074,1.046)
T1(0) 2.3639 0.032642 (2.2903,2.4182)
T ∗1 (0) 45.021 1.3491 (42.542,47.83)
T2(0) 662.56 12.066 (630.14,677.44)

Table 11. Standard errors and 95% confidence intervals from
bootstrapping for the Patient 33 parameter estimates. These values
correspond to the distributions in Figure 15.
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depending on the basic identifiability of individual parameters even if one could
produce data with an unlimited number of treatment interruptions.

Interestingly, we also found that the minimum score parameter subset selected for
the patient with one STI was contained in the subset for the patients with two and
three STIs. This finding strongly suggests that there is an order in which parameters
can be reliably estimated between patients, with more dynamic data leading to a
larger number of parameters. Of note, these subsets appear to contain parameters
describing viral reproduction and ART efficacy against viral reproduction (NT and
ε2), and parameters describing the dynamics of the resting CD4+ compartment
(T2(0), pT , λT ). However, we note that the collective results in Figures 10, 11
and 12 and in Figures 13, 14 and 15 suggest that the order in which one should
estimate parameters within a given patient as the number of treatment interruptions
increases may not be readily discerned from the tools we have developed here.

We plan to further investigate the relationship between possible parameter cor-
relations by bootstrapping and the ability to calculate standard errors with asymp-
totic theory in the context of information theory. In general, increased parameter
correlations should reduce the ability to calculate reasonable standard errors.
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