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Abstract. In this study, we consider a model of T cell homeostasis based
on the Smith-Martin model. This nonlinear model is structured by age and

CD44 expression. First, we establish the mathematical well-posedness of the

model system. Next, we prove the theoretical identifiability regarding the up-
regulation of CD44, the proliferation time phase and the rate of entry into

division, by using the experimental data. Finally, we compare two versions

of the Smith-Martin model and we identify which model fits the experimental
data best.

1. Introduction. The size and composition of the T lymphocyte compartment is
subject to strict homeostatic regulation and is remarkably stable throughout life,
despite variable dynamics in cell production and death during T cell development
and immune responses [13, 7].

Homeostasis refers to the tendency of the body to preserve its internal steady
state, allowing it to return to a normal set point following perturbation. The term
was first used by the American physiologist Walter Canon in his seminal work,
Wisdom of the Body, in 1932 [5]. He emphasized the dynamic nature of homeosta-
sis, stating that while it ensures stability of the organism, homeostasis does not
imply something set and immobile, a stagnation. This dynamism is evident in the
homeostasis of the adaptive immune system where rapid fluctuations in the number,
diversity, and function of lymphocytes occur during immune responses. Yet, for the
efficient function of the immune system, the population and activation states of T
cells need to remain relatively stable in the long term [14]. The term lymphocyte
homeostasis has been used to refer to the maintenance of lymphocyte numbers as
well as the maintenance of lymphocyte diversity [20, 6].

T cells that have yet to encounter the antigen they recognise are termed naive
as they have not been activated to respond. In normal case, the majority of naive
T cells are non dividing and express low level of the surface phenotype (CD44
low). Under such conditions of T cell deficiency (eg. AIDS), naive T cells undergo
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cell division, termed homeostasic proliferation or lymphopenia induced prolifera-
tion (LIP). This regularization process can also be associated with acquisition of a
memory phenotype (CD44 high), and such cells share both functional and molecular
characteristics of conventional memory cells [11, 10].

In this context, a biologically reasonable specific model of cell division is given by
Smith-Martin model [19]. Based on their quantitative study of the FLM (fraction
of labelled mitoses) curves of dividing cell population in vitro, Smith and Martin
[19] formulated a simple quantitative description for the process of cell division.
In fact, this description is similar to the model proposed by Burns and Tannock
[4]. Several authors have developed mathematical models based on Smith-Martin
model in order to analyse their experimental data [17, 3, 22, 9, 15, 16, 2, 8]. This
model divides the four phases (G0 or G1, S, G2, M) of the cell cycle into A-state
(resting phase) and B-phase (proliferative phase). The A-state corresponds to the
G0 or G1 phase where the cells are randomly activated to enter in B-phase (S, G2,
M phase) with a rate λ. The B-phase has a fixed duration ∆. After completing
the deterministic B-phase, a cell delivers two daughter cells into the stochastic A-
state from which the cells may be recruited for another round of division. A-state
and B-phase have death rates δA and δB respectively. The Smith-Martin model is
summarized in Fig. 1.
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Figure 1. Model of T cell proliferation in vitro during the homoeostatic process.
Ai and Bi are the number of T cells, having undergone i divisions in A-state and
B-phase respectively. ∆ is the duration of B-phase. The rate of entry into division
(λ) is described by a function of the total cell number (N) and division number i,
which is linked to all phases and all divisions [12].

Ayoub et al. [1] have extended the versions of Smith-Martin proposed by many
authors [2, 9, 8, 22, 12]. They have taken into account the CD44 expression on the
cell surface in the modelling of T cell homeostasis. This new criteria is a natural
marker that represents the transition of T cells from naive (CD44 low) to memory
(CD44 hight) phenotype during the homoeostatic process. The new version of
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Smith-Martin proposed by [1] is written as follows

dA0(t, s)

dt
= −δAA0(t, s)− λ(N)A0(t, s),


for i = 1, ..., I

dAi(t, s)

dt
= 2

∫ ∆

0

µ(τ)Bi−1(t, τ, s) dτ − δAAi(t, s)− λ(N)Ai(t, s),


for i = 0, ..., I

∂
∂tBi(t, τ, s) + ∂

∂τBi(t, τ, s) + ∂
∂s [vi(s).Bi(t, τ, s)]

= − (δB + µ(τ))Bi(t, τ, s),

(1)

where the variable s ∈ [0,m] represents the intensity of CD44 presented on the
cell’s surface in A-state and B-phase, and τ ∈ [0,∆] depicts the age of cells in B-
phase. The maximum intensity of CD44 is denoted by m. The number I depicts
the maximum division number undergone by cells. In addition,

• Ai(t, s) is the number of cells at time t having undergone i divisions in the
resting phase (Ai phase), and having an intensity s of CD44 expression.

• Bi(t, τ, s) is the number of cells at time t having undergone i divisions, having
spent time τ in the proliferative phase (Bi phase), and having an intensity s
of CD44 expression.

• The total cell number is defined by

N := N(t) :=

I∑
i=0

(∫ m

0

Ai(t, s)ds+

∫ ∆

0

∫ m

0

Bi(t, τ, s)ds dτ

)
. (2)

• The recruitment rate from A-state into B-phase is denoted by λ(N) which
depends on the total number of cells N := N(t).

• Function, µ(τ), denotes the rate of cells which divided at age τ and have given
rise to two daughter cells in the resting phase.

• The up-regulation of the CD44 expression on the T cell’s surface is represented
in (1) by a velocity vi in each division. This function depends on variable s.

The boundary and initial distributions are
Bi(t, 0, s) = λ(N)Ai(t, s) and vi(0)Bi(t, τ, 0) = 0 for i = 0, ..., I

Bi(0, τ, s) = 0, for i = 0, ..., I and Ai(0, s) = 0, for i = 1, ..., I

A0(0, s) = A0,0(s).

(3)

In [1], the authors estimate numerically the velocity of up-regulation of CD44 (vi)
in order to understand the switch from naive (CD44 low) to memory (CD44 high)
phenotype during the homeostatic process. However, this study did not show the
analysis of System (1-3), such as the mathematical well-posedness of the model, the
identifiability of the parameters, which validates the uniqueness of estimates in [1],
and the model comparison to another model in the literature. In this study, we
examined all these points. This work is organized as follows. In Sect. 2, we show
some results that characterize the solution of System (1-3). Next, we prove the local
existence and uniqueness of the solution by using the fixed point method, and then
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we conclude the global existence by using the maximal interval of existence. Sect.
3 is devoted to proving the theoretical identifiability of some parameters (vi, λ(N),
∆) by using the data of Hogan et al. [12]. In Sect. 4, we rewrite (1-3) as an age-
structured model and we compare this system with another age-structured system
used in several previous studies. We present the methodology and the criteria to
compare the models. Finally, we show the parameters and the simulations that we
obtain from the models and compare them to experimental data.

2. Existence and uniqueness. In this section, we are looking for the well-posedn-
ess of the mathematical model (1-3). We first state some notion of solution.

Let L1((0,∆), (0,m);Rn) be the Banach space of equivalence classes of Lebesgue
integrable functions, from (0,∆)× (0,m) in Rn with norm

‖u‖L1((0,∆)×(0,m)) =

∫ ∆

0

∫ m

0

|u(τ, s)|dτds.

Let T > 0. One defines two spaces LT and HT respectively by setting

LT := L∞(0, T, L1((0,∆)× (0,m)))

= {u(t, ., .) ∈ L1((0,∆)× (0,m)) , sup
06t6T

‖u(t, ., .)‖L1((0,∆)×(0,m)) < +∞},

HT := L∞(0, T, L1((0,m)))

= {q(t, .) ∈ L1((0,m)) , sup
06t6T

‖q(t, .)‖L1((0,m)) < +∞}.

By using Lagrange method, one obtains an implicit solution of Ai

A0(t, s) = A0,0(s) e−
∫ t
0

(δA+λ(N(u)))du, and for i ∈ N∗I := {1, ..., I} (4)

Ai(t, s) = 2

∫ t

0

∫ ∆

0

e
−

∫ t

r

(δA + λ(N(q)))dq
µ(τ)Bi−1(r, τ, s)dτ dr.

Now, we consider the following differential equations:
ds1i (t)
dt = vi(s

1
i (t))

s1
i (t0) = s1

i,0 > 0

,


ds2i (τ)
dτ = vi(s

2
i (τ))

s2
i (τ0) = s2

i,0 > 0.

(5)

where s1
i (t; t0; s1

i,0) and s2
i (τ ; τ0; s2

i,0) are the curves which goes through (t0, s
1
i,0) and

(τ0, s
2
i,0) respectively. The curves, Z1

i (t) := s1
i (t; 0; 0) and Z2

i (τ) := s2
i (τ ; 0; 0) are

the characteristic through the origin. The solution of (5) is given by the following
equations

s1
i (t) = s1

i,0 +

∫ t

t0

vi(s
1
i (z))dz, s

2
i (τ) = s2

i,0 +

∫ τ

τ0

vi(s
2
i (r))dr.

Integrating along the characteristic curve the PDE of System (1-3), one gets for all
i ∈ NI := {0, ..., I}

Bi(t, τ, s) =


0 t ≤ τ, Z1

i (t) < s

λ(N(t−τ))Ai(t−τ,ζi) vi(ζi)
vi(s)

f(τ) 0 ≤ τ < t, Z2
i (τ) < s

0 s ≤ Z1
i (t), s ≤ Z2

i (τ)

(6)

where ζi = s− Z2
i (τ) and f(τ) := e−

∫ τ
0

(δB+µ(r))dr.
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Definition 2.1. For all T > 0 and i ∈ NI . (Ai, Bi) is called a global solution of Sys-
tem (1-3) (in the sense of the expressions (4)-(6)), if it belongs to L∞(0, T, L1(0,m))
and L∞(0, T, L1((0,∆)×(0,m))) respectively and it satisfies (4) and (6) respectively.

2.1. Local existence and uniqueness of solution. In this subsection we shall
discuss the local existence of the solution of System (4)-(6) under the following
assumption.

Assumption 2.1. - Natural mortalities rates δA and δB are non-negative con-
stants.
- Function µ(.) is bounded, non-negative and satisfies the following inequality

0 ≤ µ ≤ µ(τ) ≤ µ̄, ∀ τ ∈ [0,∆].

- Function λ(N) is non-negative, bounded and Lipschitz continuous with constant k

|λ(N)− λ(N∗)| 6 k|N −N∗|, N > 0, N∗ > 0.

- Function vi is bounded, non-negative for all i ∈ NI , satisfies the condition

vi(0) = 0, and 0 < vi ≤ vi(s) ≤ v̄i, ∀s ∈ (0,m],

and continuously differentiable with respect to the variable s. In addition, there
exists a positive constant dvi , ∀ i ∈ NI , such that

|∂vi
∂s
| 6 dvi , ∀ s ∈ (0,m].

- Initial condition A0,0(.) is non-negative and belongs to L1
+((0,m)).

Remark 1. The integral formulation (6) rewrites as

Bi(t, τ, s) =λ(N(t− τ))Ai(t− τ, ζi) f(τ) e
−

∫ s
ζi

∂vi(σ)

∂σ
1

vi(σ)
dσ
,

∀ 0 ≤ τ < t and Z2
i (τ) < s.

Using (6) and Assumption 2.1, one obtains

‖Bi(t, ., .)‖L1((0,∆)×(0,m)) ≤
∫ t

0

∫ m

Z2
i (τ)

λ(N(t−τ))|Ai(t−τ, s−Z2
i (τ))|e

dvi
Z2
i (τ)

vi ds dτ.

Using Z2
i (τ) :=

∫ τ
0
vi(s

2
i (r))dr, one deduces the following estimate

‖Bi(t, ., .)‖L1((0,∆)×(0,m)) ≤
∫ t

0

∫ m

Z2
i (τ)

λ(N(t− τ))|Ai(t− τ, s− Z2
i (τ))|eCvi τds dτ,

(7)

where Cvi :=
dvi v̄i
vi

.

In what follows in this subsection, we shall use the following convention

i∑
j

= 0,

i∏
j

= 1 and ‖.‖i−j∞ = 1 if j > i.

Before studying local existence of a solution, we give the following preliminary
result.
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Lemma 2.2. Let Assumption 2.1 be satisfied. For T > 0 and t ∈ [0, T ], any
solution ((A0, B0), ..., (AI , BI)) of (4)-(6) in the sense of Definition 2.1, satisfies
∀ i ∈ NI

‖Ai‖HT 6
2iµ̄i‖λ‖i∞RA0

δiA

(∏i−1
j=0 Cvj

) (1− e−δAT )i
i−1∏
j=0

(
eCvjT − 1

) := RAi , (8)

and,

‖Bi‖LT 6
2iµ̄i‖λ‖i+1

∞ RA0

δiA

(∏i
j=0 Cvj

) (1− e−δAT )i
 i∏
j=0

(
eCvjT − 1

) := RBi , (9)

where RA0
:= e−δAT ‖A0,0‖L1((0,m)).

Proof. We proceed by induction.

For i = 0

Let T > 0 and t ∈ [0, T ]. By using (4), let us integrate A0 from 0 to m

‖A0(t, .)‖L1((0,m)) =

∫ m

0

|A0,0(s)| e−
∫ t
0

(δA+λ(N(u)))duds 6 e−δAt‖A0,0‖L1((0,m)),

that implies ‖A0‖HT 6 RA0
. From (7), one has

‖B0(t, ., .)‖L1((0,∆)×(0,m))

≤
∫ t

0

∫ m

Z2
0 (τ)

λ(N(t− τ))|A0(t− τ, s− Z2
0 (τ))| eCv0τds dτ.

Performing the change of variables σ = s− Z2
0 (τ) and a = t− τ , one obtains

‖B0(t, ., .)‖L1((0,∆)×(0,m)) ≤
∫ t

0

∫ m

0

λ(N(a))|A0(a, σ)| eCv0 (t−a)dσ da,

and one gets

‖B0‖LT ≤
‖λ‖∞
Cv0

(
eCv0T − 1

)
‖A0‖HT ,

that implies ‖B0‖LT ≤
‖λ‖∞RA0

Cv0

(
eCv0T − 1

)
. Then, inequalities (8) and (9) hold

for i = 0.

For i ∈ N∗I

Assuming that inequalities (8) and (9) hold for i, let us show they still hold for
i+ 1. Integrating Ai+1 over (0, m), one has

‖Ai+1(t, .)‖L1((0,m)) 6 2µ̄

∫ m

0

∫ t

0

∫ ∆

0

e
−

∫ t

r

(δA + λi(N(q)))dq
|Bi(r, τ, s)|dτ dr ds.
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Inequality (9) holds for i. Therefore, by using Fubini’s theorem, one can write

‖Ai+1‖HT 6
2µ̄

δA

(
1− e−δAT

)
‖Bi‖LT (10)

6
2i+1µ̄i+1‖λ‖i+1

∞ RA0

δi+1
A

(∏i
j=0 Cvj

) (
1− e−δAT

)i+1

 i∏
j=0

(
eCvjT − 1

) .
Now, let us integrate the solution Bi+1 along the characteristic. Then one finds

‖Bi+1‖LT 6
‖λ‖∞
Cvi+1

(
eCvi+1

T − 1
)
‖Ai+1‖HT .

By using the inequality in (10), one eventually gets

‖Bi+1‖LT 6
2i+1µ̄i+1‖λ‖i+2

∞ RA0

δi+1
A

(∏i+1
j=0 Cvj

) (
1− e−δAT

)i+1

i+1∏
j=0

(
eCvjT − 1

) .
Then, inequalities (8) and (9) holds for i+ 1.

Notation (Ai, Bi;A0,0) stands for a solution (Ai, Bi) with initial condition A0,0.

Lemma 2.3. Let Assumption 2.1 be satisfied. Let T > 0 and t ∈ [0, T ]. For any
two solutions (Ai, Bi;A0,0) and (A∗i , B

∗
i ;A∗0,0) of (4)-(6) in the sense of Definition

2.1, the following set of inequalities hold ∀ i ∈ NI := {0, ..., I},

‖Ai −A∗i ‖HT ≤ αie−δAT ‖A0,0 −A∗0,0‖L1((0,m)) + kβiA sup
06t6T

|N(t)−N∗(t)|,

‖Bi −B∗i ‖LT ≤
αi‖λ‖∞

(
eCviT − 1

)
Cvi

e−δAT ‖A0,0 −A∗0,0‖L1((0,m))

+ kβiB sup
06t6T

|N(t)−N∗(t)|,

where

αi =

[
2µ̄
(
1− e−δAT

)
δA

]i
‖λ‖i∞

i−1∏
j=0

eCvjT − 1

Cvj
,

βiA =

[
2µ̄‖λ‖∞

(
1− e−δAT

)
δA

]i i−1∏
j=0

(
eCvjT − 1

)
Cvj

Te−δAT ‖A0,0‖L1((0,m))

+

i−1∑
j=0

[2µ̄
(
1− e−δAT

)
δA

]i−j
‖λ‖i−j−1
∞

 i−1∏
k=j+1

(
eCvkT − 1

)
Cvk


(
RA∗j

(
eCv0T − 1

)
,

Cv0
+ TRBj

))
,(11)
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βiB = ‖λ‖∞

[
2µ̄‖λ‖∞

(
1− e−δAT

)
δA

]i  i∏
j=0

(
eCvjT − 1

)
Cvj

Te−δAT ‖A0,0‖L1((0,m)),

+

i∑
j=0

[
2µ̄‖λ‖∞

(
1− e−δAT

)
δA

]i−j  i∏
k=j

(
eCvkT − 1

)
Cvk

RA∗j
+

i−1∑
j=0

[
2µ̄‖λ‖∞

(
1− e−δAT

)
δA

]i−j  i∏
k=j+1

(
eCvkT − 1

)
Cvk

TRBj (12)

and RAi , RBi are given in the previous Lemma 2.2.

Proof. As in the previous proof, we proceed by induction.

For i = 0
Let us integrate the difference between A0 and A∗0 over (0,m)

‖A0(t, .)−A∗0(t, .)‖L1((0,m))

6 e−δAt
∫ m

0

|A∗0,0(s)||e−
∫ t
0
λ(N(u))du − e−

∫ t
0
λ(N∗(u))du| ds

+e−δAt
∫ m

0

|A0,0(s)−A∗0,0(s)|e−
∫ t
0
λ(N(u))du ds.

Note that function x −→ e−x is Lipschitz continuous on [0,+∞) with constant 1.
Then by using Assumption (2.1), one obtains

‖A0 −A∗0‖HT 6 e−δAT ‖A0,0 −A∗0,0‖L1((0,m))

+ k Te−δAT ‖A∗0,0‖L1((0,m))︸ ︷︷ ︸
=β0

A

sup
06t6T

|N(t)−N∗(t)|.

On the other hand, integrating the difference between B0 and B∗0 on (0,∆) ×
(0,m) one finds

‖B0(t, ., .)−B∗0(t, ., .)‖L1((0,∆)×(0,m))

6
∫ t

0

∫ m

Z2
0 (τ)

eCv0τ
[
λ(N(t− τ)) |A0(t− τ, ζ0)−A∗0(t− τ, ζ0)|

+|λ(N(t− τ))− λ(N∗(t− τ))| |A∗0(t− τ, ζ0)|
]
ds dτ.

By using Lemma 2.2 and Assumption (2.1), one gets

‖B0 −B∗0‖LT 6 ‖λ‖∞
(
eCv0T − 1

)
Cv0

e−δAT ‖A0,0 −A∗0,0‖L1((0,m))

+k

(
eCv0T − 1

)
Cv0

(
‖λ‖∞Te−δAT ‖A∗0,0‖L1((0,m)) +RA∗0

)
︸ ︷︷ ︸

=β0
B

sup
06t6T

|N(t)−N∗(t)|.

Then, the inequalities in the statement of Lemma 2.3 are satisfied for i = 0.

For i ∈ N∗I
Assuming that the inequalities in the statement of Lemma 2.3 hold for i. Let us

show they still hold for i+1.
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‖Ai+1(t, .)−A∗i+1(t, .)‖L1((0,m)) 6

2µ̄

∫ m

0

∫ t

0

∫ ∆

0

e−δA(t−r)
[
|e−

∫ t
r
λ(N(q))dq − e−

∫ t
r
λ(N∗(q))dq| |Bi(r, τ, s)|

+e−
∫ t
r
λ(N∗(q))dq |Bi(r, τ, s)−B∗i (r, τ, s)|

]
dτ dr ds.

Therefore, using Lemma 2.2 and Assumption (2.1), one obtains

‖Ai+1 −A∗i+1‖HT 6 2µ̄

(
1− e−δAT

)
δA

‖Bi −B∗i ‖LT

+ 2µ̄kTRBi

(
1− e−δAT

)
δA

sup
06t6T

|N(t)−N∗(t)|.

By using the inductive hypothesis (i.e inequalities in the statement of Lemma
2.3 for i) , one gets

‖Ai+1 −A∗i+1‖HT 6

αi+1︷ ︸︸ ︷
2µ̄αi‖λ‖∞

(
1− e−δAT

)
δA

(
eCviT − 1

)
Cvi

e−δAT ‖A0,0 −A∗0,0‖L1((0,m))

+k

[
2µ̄

(
1− e−δAT

)
δA

βiB + 2µ̄TRBi

(
1− e−δAT

)
δA

]
︸ ︷︷ ︸

βi+1
A

sup
06t6T

|N(t)−N∗(t)|, (13)

where αi+1 and βi+1
A are given in the statement of Lemma 2.3.

Also, one has

‖Bi+1(t, ., .)−B∗i+1(t, ., .)‖L1((0,∆)×(0,m)) 6∫ t

0

∫ m

Z2
i+1(τ)

eCvi+1
τ
[
|λ(N(t− τ))| |Ai+1(t− τ, ζi+1)−A∗i+1(t− τ, ζi+1)|

+|λ(N(t− τ))− λ(N∗(t− τ))| |A∗i+1(t− τ, ζi+1)|
]
ds dτ.

Furthermore, using Lemma 2.2 and Assumption (2.1), one obtains

‖Bi+1 −B∗i+1‖LT 6 ‖λ‖∞

(
eCvi+1

T − 1
)

Cvi+1

‖Ai+1 −A∗i+1‖HT

+kRA∗i+1

(
eCvi+1

T − 1
)

Cvi+1

sup
06t6T

|N(t)−N∗(t)|.

Finally, using (13)

‖Bi+1 −B∗i+1‖LT 6

αi+1‖λ‖∞
(
eCvi+1

T − 1
)

Cvi+1

e−δAT ‖A0,0 −A∗0,0‖L1((0,m))

+k

(
eCvi+1

T − 1
)

Cvi+1

(
‖λ‖∞βi+1

A +RA∗i+1

)
︸ ︷︷ ︸

βi+1
B

sup
06t6T

|N(t)−N∗(t)|.
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This ends the proof of the Lemma 2.3.

Now, we will state the main result of this subsection.

Theorem 2.4. Under Assumption 2.1, System (4)-(6) admits a unique local solu-
tion in [0, T ∗].

Proof. We set up a fixed point method.
At first, define an operator∧

: ((A0, B0), ..., (AI , BI)) 7−→
(

(Â0, B̂0), ..., (ÂI , B̂I)
)

wherein

Â0(t, s) = A0,0(s) e−
∫ t
0

(δA+λ(N(u)))du,

Âi∈N∗I (t, s) = 2

∫ t

0

∫ ∆

0

e
−

∫ t

r

(δA + λi(N(q)))dq
µ(τ)B̂i−1(r, τ, s)dτ dr,

B̂i∈NI (t, τ, s) =


0 t ≤ τ, Z1

i (t) < s

λ(N(t−τ))Âi(t−τ,ζi) vi(ζi)
vi(s)

f(τ) 0 ≤ τ < t, Z2
i (τ) < s

0 s ≤ Z1
i (t), s ≤ Z2

i (τ)

where N(t) is given by (1-3), ζi = s− Z2
i (τ) and f(τ) := e−

∫ τ
0

(δB+µ(r))dr.
Let M := (HT × LT )I and define a norm on M as follows

‖u‖M =

I∑
i=0

sup
06t6T

(∫ m

0

|Ai(t, s)| ds+

∫ ∆

0

∫ m

0

|Bi(t, τ, s)| ds dτ

)
, (14)

for all u := ((A0, B0), ..., (AI , BI)) ∈M .
We shall show that the operator

∧
is a map from M into M and it is strict

contraction for T small enough.

(1)
∧

: M 7−→M

Let u and û :=
(

(Â0, B̂0), ..., (ÂI , B̂I)
)

lie in M and satisfy (4)-(6). By using

(14), one can write

‖û‖M =

I∑
i=0

(
‖Âi‖HT + ‖B̂i‖LT

)
.

Substituting (8) and (9) in the previous equality, one obtains

‖û‖M ≤
I∑
i=0

(
RÂi +RB̂i

)
.

Then for T < +∞, one gets
∧

maps M into M.
(2) It remains to show that

∧
is a contraction for T small enough

Let u, û, ū :=
(
(Ā0, B̄0), ..., (ĀI , B̄I)

)
and ¯̂u :=

(
(

¯̂
A0,

¯̂
B0), ..., (

¯̂
AI ,

¯̂
BI)

)
in M

and satisfies (1-3).
Then, the norm in M of the difference between û and ¯̂u is

‖û− ¯̂u‖M =

I∑
i=0

‖B̂i − ¯̂
Bi‖LT +

I∑
i=0

‖Âi − ¯̂
Ai‖HT .
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Solutions, û and ¯̂u having the same initial condition (Â0,0 ≡ ¯̂
A0,0). Lemma

2.3 allows us to estimate the previous equality by

‖û− ¯̂u‖M 6 Θ sup
06t6T

|N(t)− N̄(t)|

6 Θ‖u− ū‖M ,

where

Θ = Θ(T ) = k

I∑
i=0

(
βiA + βiB

)
.

Note that limT→0 Θ(T ) = 0 (see (11-12) for βiA and βiB). Then, there exists
at least T ∗ > 0 where Θ(T ∗) < 1, which implies that

∧
is a strict contraction.

This completes the local existence and uniqueness proof.

2.2. Global existence.

Remark 2. If u is a solution of (1-3) in [0, T ] and û is a continuous extension of u

in [T, T + T̂ ] such that ∀ i ∈ NI

Ai(t, s) = Âi(t− T, s), and Bi(t, τ, s) = B̂i(t− T, τ, s),

then u is a solution in [0, T + T̂ ].

In the next, we introduce the maximum interval of existence of a solution.

Definition 2.5. The maximal interval of existence of a solution, denoted by [0,
Tmax] is the interval with the property that there exists u ∈ (HT × LT )I , solution
of (1-3) for each T ∈ (0, Tmax).

Lemma 2.6. Let Assumption 2.1 be satisfied and let u be a solution of System
(1-3) in [0, Tmax). If Tmax <∞, then ∀ i ∈ NI

lim
t→Tmax

‖Ai(t, .)‖L1((0,m)) =∞, lim
t→Tmax

‖Bi(t, ., .)‖L1((0,∆)×(0,m)) =∞. (15)

Proof. Assume there exists r1 > 0 and r2 > 0 such that ‖Bi(t, ., .)‖L1((0,∆)×[0,m]) 6
r1 and ‖Ai(t, .)‖L1((0,m)) 6 r2 for all t ∈ [0, Tmax), it suggests that there exists a
sequence (tn)n∈N satisfying limn→∞ tn = Tmax. Then, one has

sup
n∈N
‖Bi(tn, ., .)‖L1((0,∆)×(0,m)) 6 r1,

sup
n∈N
‖Ai(tn, .)‖L1((0,m)) 6 r2,

such that u is a solution of (1-3) in [0, tn]. From Remark 2, let utn be a solution
in [tn, tn + ε], ∀ ε > 0. According to local uniqueness, one gets a solution u on the
larger interval [0, Tmax + ε). It leads to a contradiction with the maximal interval
[0, Tmax). Therefore, (15) is hold.

Obviously, we can state the global existence of the solution as follows

Theorem 2.7. Let Assumption 2.1 be satisfied, there exists a unique solution of
system (4-6) for all T ∈ (0,∞).
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Proof. Suppose that there exists a maximal interval [0, Tmax) of the solution u.
By the above lemma, limt−→Tmax ‖Ai(t, .)‖L1((0,m)) = ∞ and limt→Tmax ‖Bi(t, ., .)
‖L1((0,∆)×(0,m)) =∞. In contrast, one has from Lemma 2.2 for i = 0

‖A0(t, .)‖L1((0,m)) 6 e−δAt‖A0,0‖L1((0,m)),

‖B0(t, ., .)‖L1((0,∆)×(0,m)) 6
‖λ‖∞

(
eCv0 − 1

)
Cv0t

[
e−δAt‖A0,0‖L1((0,m))

]
.

That’s mean for t −→ Tmax:

lim
t
‖A0(t, .)‖L1((0,m)) <∞ and lim

t
‖B0(t, ., .)‖L1((0,∆)×(0,m)) <∞.

It is a contradiction. Then the conclusion Tmax =∞ holds.

3. Parameter identification. An important step in using the mathematical ap-
proach is the estimation of model parameters using experimental data. In the lit-
erature, several types of data have been explored and used in the context of T cell
proliferation through LIP (Lymphopenia Induced Proliferation). Using cell dyes,
such as Carboxy Fluorescein diacetate Succinimidyl Ester (CFSE), is currently one
of the most informative methods for characterizing the dynamics of cell division in
the immune system. Following each division, CFSE divides equally between daugh-
ter cells, resulting in a two-fold decrease in the intensity of cellular fluorescence
in each successive generation. This property of CFSE allows accurate tracking of
the number of divisions that a given cell has undergone either in vitro or following
transfer in vivo [18].

The Smith-Martin model has been applied widely to CFSE data [17, 3, 22, 9, 15,
16, 2, 8]. The duration of deterministic phase (B phase), the division rate and the
probability of cell death have been estimated from experimental data mainly based
on CFSE cell division profiles [9, 3, 8]. Hogan et al. [12] improved the technique and
accuracy of the parameters estimations from the Smith-Martin model. The DNA
binding dye, 7-Aminoactinomycin D (7AAD), was used with CFSE to distinguish
the proliferating and non-proliferating cells, therefore enabling estimations of the
rate of recruitment of cells from A phase into B phase.

Let us describe briefly the data used in this study.

Experimental data. Data were collected during a previously published study [12].
Indeed, the behavior of two different T cell clonotypes (OT-1 and F5) was studied
in lymphopenic Rag1-/- mice by using CFSE, 7AAD dyes and CD44 expression
measured by flow cytometry. Following adoptive transfer of T cells, cohorts of
between three and five host mice were analysed at days 3, 5, 7, 10 and 12. At each
time point, the number of T cells, the proportion of cells actively replicting their
DNA as determined by 7AAD staining, and the intensity of expression of CD44
on the cell surface was measured for in each host and separated according to the
number of divisions performed as assessed by CFSE labeling.

Ayoub et al. [1] have used this recent data of Hogan et al. [12] to estimate
numerically the velocity of CD44 up-regulation. In this section, we are interested
in the identifiability of some parameters by using the data stated in the previous
paragraph.
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3.1. Identifiability. Let us denote the experimental data of [12] by

Nexp
i (t, s) :=

∫ ∆

0

Bi(t, τ, s)dτ +Ai(t, s),

where i ∈ NI , t ∈ [0, T ], s ∈ [0,m] and (Ai, Bi) is the solution of System (1-3).

Assumption 3.1. - Functions (v0, ..., vI) are defined in the space K = (C ū+)I where

C ū+ = {u ∈ C0([0,m]), u(0) = 0, 0 < u(s) 6 ū , ∀ s ∈ (0,m]}.
- Initial condition A0,0(s) > 0 for all s ∈ (0,m].

Lemma 3.1. Let Assumptions 2.1 and 3.1 be satisfied. The velocity vi is identifiable
for all i ∈ NI := {0, ..., I}.

Proof. Let’s fix (v0, ..., vI) ∈ K and consider a second parameter (v̄0, ..., v̄I) ∈ K
wherein

Nexp
i (t, s; vi) = Nexp

i (t, s; v̄i), ∀ i ∈ NI , (16)

and (Āi(t, s), B̄i(t, τ, s)) is the solution relative to v̄i.
By integrating and summing (16) over s and i respectively, one gets

N(t) = N̄(t). (17)

By using the implicit solution (4), one obtains

A0(t, s) = Ā0(t, s) ∀ s ∈ [0,m]. (18)

From (16), one gets
∫∆

0
B0(t, τ, s)dτ =

∫∆

0
B̄0(t, τ, s)dτ .

Furthermore by induction, if we prove vi−1(s) = v̄i−1(s), ∀ i ∈ N∗I and s ∈ [0,m],

one obtains Ai(t, s) = Āi(t, s) and then from (16), one gets
∫∆

0
Bi(t, τ, s)dτ =∫∆

0
B̄i(t, τ, s)dτ . Therefore, the problem returns to the proof of the identifiability

of vi through the following system
∂
∂t
Bi(t, τ, s) +

∂
∂τ
Bi(t, τ, s) +

∂
∂s

[vi(s)Bi(t, τ, s)] = − (δB + µ(τ))Bi(t, τ, s),

Bi(0, τ, s) = 0; Bi(t, 0, s) = λ(N(t))Ai(t, s); vi(0)Bi(t, τ, 0) = 0.
(19)

Let B̃i := Bi − B̄i and ṽi := vi − v̄i. Bi and B̄i are the solution given by (19)
relative to vi and v̄i respectively. Then, one has

∂
∂t B̃i(t, τ, s) + ∂

∂τ B̃i(t, τ, s) + ∂
∂s

[
ṽi(s)Bi(t, τ, s) + v̄i(s)B̃i(t, τ, s)

]
= −f(τ)B̃i(t, τ, s),

B̃i(0, τ, s) = 0; B̃i(t, 0, s) = 0; ṽi(0)Bi(t, τ, 0) = 0,

Observation :
∫∆

0
B̃i(t, τ, s)dτ = 0,

(20)

where f(τ) := δB + µ(τ).
Now, we define the following Lagrangian formulation related to System (20).

L (B̃i, ṽi, q̃i) =∫
Ω

[
∂

∂t
B̃i(t, τ, s) +

∂

∂τ
B̃i(t, τ, s) +

∂

∂s

[
ṽi(s)Bi(t, τ, s) + v̄i(s)B̃i(t, τ, s)

]
+f(τ)B̃i(t, τ, s)]q̃i(t, τ, s)dΩ +

∫
Ω

B̃i(t, τ, s)dΩ,
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where Ω = [0, T ] × [0,∆] × [0,m], dΩ = dt dτ ds and q̃i corresponds to the dual

variable. The first derivative of the Lagrangian L with respect to B̃i, gives us the
adjoint equation.

∂
∂t q̃i(t, τ, s) + ∂

∂τ q̃i(t, τ, s) + ∂
∂s [v̄iq̃i(tτ, s)] = F (τ)q̃i(tτ, s) + 1,

q̃i(T, τ, s) = q̃i(t,∆, s) = q̃i(t, τ,m) = 0.
(21)

Multiplying (21) by B̃i(t, τ, s) and integrating over Ω, one obtains∫
Ω

(
B̃i(t, τ, s)−

[
∂ṽi(s)Bi(t, τ, s)

∂s

]
q̃i(t, τ, s)

)
dΩ = 0.

Using the observation in (20), one gets

∂

∂s
[ṽi(s)Bi(t, τ, s)] = 0.

Replacing the above equality in (20), one has
∂
∂t B̃i(t, τ, s) + ∂

∂τ B̃i(t, τ, s) + ∂
∂s

[
v̄i(s)B̃i(t, τ, s)

]
= −f(τ)B̃i(t, τ, s),

B̃i(0, τ, s) = 0; B̃i(t, 0, s) = 0; v̄i(0)B̃i(t, τ, 0) = 0.

(22)

Integrating along the characteristic curve the PDE of the above system, one obtains
∀ (t, τ, s) ∈ Ω and i ∈ NI

B̃i(t, τ, s) = 0, and then Bi(t, τ, s) = B̄i(t, τ, s). (23)

If Z̄2
i (τ) = Z2

i (τ) + ci(τ) where ci(τ) > 0 for all τ ∈ (0,∆] and i ∈ NI . Then
for a fixed i0 ∈ NI and s = Z̄2

i0
(τ) > Z2

i0
(τ), one obtains B̄i0(t, τ, s) = 0 and

Bi0(t, τ, s) =
λ(N(t−τ))Ai0 (t−τ,ζi0 ) vi0 (ζi0 )

vi0 (s) f(τ) from (6). Using (23), one gets

Ai0(t− τ, ci0(τ))vi0(ci0(τ)) = 0 ∀ 0 < τ < t and ci0(τ) > 0.

Using the implicit solution of Ai0 (4), one remarks that the previous equality leads to
a contradiction with Assumptions 2.1 and 3.1 (specificallyA0,0(s) > 0 and vi0(s) > 0
for all s ∈ (0,m]). Therefore, one deduces

Z2
i (τ) = Z̄2

i (τ) ∀ 0 ≤ τ < t and i ∈ NI .

Using (23) and (6), one gets for all s > Z2
i (τ) and 0 < τ < t

vi(s− Z2
i (τ))

vi(s)
=
v̄i(s− Z2

i (τ))

v̄i(s)
. (24)

Using (24) and the definition of Z2
i (τ) and Z̄2

i (τ) , one obtains∫ τ

0

vi(s(r))

[
v̄i(s(r)− Z2

i (r))

vi(s(r)− Z2
i (r))

− 1

]
dr = 0.

By deriving the above equation with respect to τ , one gets

vi(s)

[
v̄i(s− Z2

i (τ))

vi(s− Z2
i (τ))

− 1

]
= 0,

where s := s(τ). Therefore, one concludes vi(s) = v̄i(s), ∀ s ∈ [0,m] and i ∈ NI .

Theorem 3.2. Let Assumptions 2.1 and 3.1 be satisfied. The parameters vi(s),
λ(N(t)) and ∆ are identifiable for all i ∈ NI , s ∈ [0,m] and t ∈ (0, T ].
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Proof. Let’s fix θ = [(v0, ..., vI) ∈ K,λ,∆] and consider a second parameters θ̄ =[
(v̄0, ..., v̄I) ∈ K, λ̄, ∆̄

]
wherein ∀ t ∈ [0, T ] and s ∈ [0,m],

Ai(t, s; θ) +

∫ ∆

0

Bi(t, τ, s; θ)dτ = Āi(t, s; θ̄) +

∫ ∆̄

0

B̄i(t, τ, s; θ̄)dτ, ∀ i ∈ NI , (25)

where (Ai(., .; θ), Bi(., ., .; θ)) and
(
Āi(., .; θ̄), B̄i(., ., .; θ̄)

)
are the solutions of System

(1-3), and are related to the parameters θ and θ̄ respectively.
If ∆̄ ≤ ∆, we consider

B̄∗i (t, τ, s) :=

 B̄i(t, τ, s) if τ ∈ [0, ∆̄],

0 if τ ∈ (∆̄,∆].

Using the integral formulation of (6), one gets for all τ ∈ (0,∆]

B0(t, τ, s) = B̄∗0(t, τ, s) = 0 ∀ s ≤ min(Z2
0 (τ), Z̄2

0 (τ)).

Replacing the previous equality in (25), one obtains for all τ ∈ (0,∆]

A0(t, s) = Ā0(t, s) ∀ s ≤ min(Z2
0 (τ), Z̄2

0 (τ)).

Using the implicit solution (4), one obtains∫ t

0

(
λ(N(u))− λ̄(N̄(u))

)
du = 0. (26)

Deriving the previous equality with respect to t,

λ(N(t)) = λ̄(N̄(t)).

By integrating and summing (25) over s and i respectively, one gets

N(t) = N̄(t). (27)

Then, one deduces λ(N(t)) = λ̄(N(t)) for all t ∈ (0, T ].
Using Lemma 3.1, one deduces vi(s) = v̄i(s) for all s ∈ [0,m] and i ∈ NI .

Therefore, one has ∫ ∆

0

B0(t, τ, s)dτ =

∫ ∆̄

0

B0(t, τ, s)dτ.

Since ∆̄ ≤ ∆, then the previous equality can be written as∫ ∆

∆̄

B0(t, τ, s)dτ = 0.

Under Assumptions 2.1 and 3.1, one has B0(t, τ, s) > 0 for all s > Z2
0 (τ), τ ∈ [∆̄,∆]

and t large enough (t > ∆). Therefore, one deduces ∆̄ = ∆ from the previous
equality.

4. Comparison of two versions of Smith-Martin model. Bernard et al. [2]
and Ganusov et al. [9] have formulated the Smith-Martin model in terms of PDEs.
Next, several studies have been made in order to improve the prediction of this
model to the experimental data. For example, Yates et al. [22] and Hogan et al.
[12] have modified the Smith-Martin model by considering that the rate of entry
in B-phase (λ) depends on the time evolution (t) [22] and the total cell number
(N(t)) [12]. Their results show that the modified Smith-Martin model provides a
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good description of the observed response by T cells to lymphopenia. This version
of Smith-Martin is written as follows

(SM1)



dA0

dt = −(λ(N) + δA)A0(t), {A0(0) > 0}

dAi
dt = 2Bi−1(t,∆)− (λ(N) + δA)Ai(t), {Ai(0) = 0}, i = 1, ..., I

∂
∂tBi(t, τ) + ∂

∂τBi(t, τ) = −δBBi(t, τ), i = 0, ..., I

Bi(t, 0) = λ(N)Ai(t), Bi(0, τ) = 0

where (t, τ) ∈ [0, T ]× [0,∆]. Ai(t) is the number of cells at time t having undergone
i divisions in A-state. Bi(t, τ) is the number of cells at time t having undergone i
divisions and having spent time τ in B-phase. The total cell number in SM1 model
is defined by

N = N(t) :=

I∑
i=0

(
Ai(t) +

∫ ∆

0

Bi(t, τ)dτ

)
.

In the general case, cells are triggered from A-state to enter the proliferative B-
phase. They spend a time τ ∈ [0,∆] to divide in B-phase. Proliferative cell divides
into two daughter cells only when it completes the process of mitosis (∆ is approx-
imately the time to finish the process). More specifically, when a cell divides, it
disappears from the B-phase.

In SM1 model, the Smith-Martin model describes the dynamics of cells that we
have discussed in the previous paragraph, but the mother cells are not removed
from the B-phase after dividing (see the right side of the PDE in SM1 model) that
is because their age become larger than ∆. Since the age (τ) is defined between 0
and ∆, the mother cells with an age more than ∆, are not counted in the dynamic,
but in fact, they stay in B-phase. This means that ∆ is not really the maximum
age of cells in B-phase, as it is defined in SM1 model.

In contrast, Ayoub et al. [1] have considered another strategy of modelling for the
dividing cells. They have introduced a function µ(τ) to remove cells after dividing
(see System (1-3)).

Integrating System (1-3) with respect to the variable s (CD44 expression), we
derive an age-structured system as SM1 model but with additional parameter µ(.).
It reads

(SM2)



dA0

dt = −(λ(N) + δA)A0(t), {A0(0) > 0}

dAi
dt = 2

∫∆

0
µ(τ)Bi−1(t, τ)dτ − (λ+ δA)Ai(t), {Ai(0) = 0}, i = 1, ..., I

∂
∂tBi(t, τ) + ∂

∂τBi(t, τ) = −(δB + µ(τ))Bi(t, τ), i = 0, ..., I

Bi(t, 0) = λ(N)Ai(t), Bi(0, τ) = 0

where Ai(t) :=
∫m

0
Ãi(t, s)ds, Bi(t, τ) :=

∫m
0
B̃i(t, τ, s)ds and (Ãi, B̃i), ∀ i ∈ NI are

the state variable of System (1-3).
Note that if a cell divides only when its age is close to ∆, the function µ can be

approximated by a non-negative rectangular function with a mean value 1. Ayoub
et al. [1] have assumed that a cell divides only when its age is close to ∆, precisely
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[∆− h,∆] where 0 < h << ∆.

µ(τ) =


1
h if ∆− h 6 τ 6 ∆,

0 else,

Recruitment of cells from A-state into the B-phase occurs at a rate λ. As the
cellular population increases, the amount of resources per cell is decreasing and
the recruitment rate is reduced. A smaller division rate corresponds to the smaller
transfer rate λ of the model [12]. Then, the recruitment rate can be defined by

λ = λ(N(t)) = λ0 e
−η N(t), (28)

where λ0 > 0 represents the ability of each clonotype to respond to an unlimited
resource, and η > 0 determines the size of the reduction caused by increasing number
of competing cells (N) [12].

The purpose of this section is to estimate numerically the parameters (∆, λ0, η)
of each model (SM1 and SM2). Therefore, we can evaluate the difference between
SM1 and SM2 caused by the function µ(.) and identify which model fits better the
data of Hogan et al. [12].

4.1. Materials and methods. Let Nexp
i,m (tk) be the data set given in [12] that

represents the total cell number having undergone i divisions at time tk in each

mouse m. The parameters to estimate in SM1 and SM2 models are: ~θ = (λ0,∆, η).
We used weighted sums of squared residuals (SSRs) for optimization with variance
over observed cells with given i at given day as the measurement error function.

Criterion to compare the models. Comparison of the different models (SM1

and SM2) was done using a cross validation approach. The whole data set was
separated into two parts each day of the experiment: a validation set with data for
one given mouse, m, and a training set with the remaining data (M − 1) (M is the
total number of mice).

Parameter values were obtained by minimizing the SSR with the training set.

SSR−m =

I∑
i=0

K∑
k=1

M∑
j=1

j 6=m

(
Ni(~θ, tk)−Nexp

i,j (tk)
)2

σ2
i (tk)

, (29)

where

Ni(~θ, tk) = ∆t

(
Ai(tk) + ∆τ

Nτ∑
s=1

Bi(tk, τ
s)

)
are calculated from SM1 and SM2 models. σ2

i (t), ∆t and ∆τ are the variance and
the mesh size of time and age respectively. The variable i stands for the number of
divisions (total number I = 8), k is the number of sampling day (with total number
K = 5), j is the number of mouse, M is the total number of mice in the experiment
(M = 20).

Indeed, we use an optimization algorithm BCONF (see [21] for more details)
based on the quasi-Newton method to solve (29).

At the next step, for each mouse m, the comparison reference value (CrV ) crite-

rion is calculated by using the estimated parameter values ~θ∗ using the validation
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set

CrVm =

I∑
i=0

K∑
k=1

(
Ni(~θ, tk)−Nexp

i,m (tk)
)2

σ2
i (tk)

.

The CrVm was calculated for each experimental mouse m in the validation set. The
final estimate of the cross validation was

CrV =
1

M

M∑
m=1

CrVm.

The lower value of CrV indicates the better model.

4.2. Results. In the experiment, CFSE-labeled OT-1 T cells were transferred to
Rag1−/− recipients. Each mouse received 1.5 × 106 cells at the initial date (i.e
A0(0) = 1.5 × 106), and the rate of cell death (δA or δB) observed was very close
to zeros [12]. We therefore omitted δA and δB from SM1 and SM2 models. In
addition, the time division (h) is supposed small (h = 30 mn) with respect to the
age of cells in B phase (∆ is estimated in hours [12]).

Best-fit parameters (Table 1) for SM1 and SM2 models were determined by
minimizing weighted SSR given in (29).

Model η ∆(hour) λ0 (/cell/hour) CrV
SM1 1.00000E-06 8.51000 3.764693E-02 109.902
SM2 1.97568E-06 7.17858 3.768979E-02 48.0315

Table 1. Best-fit parameter estimations for SM1 and SM2 models.

Despite the constraining data sets, the parametrization in Table 1 (∆, η and λ0)
of SM1 model is close to those of the previous studies [12, 22]. From Fig 2, the SM1

and SM2 models were successful in describing lymphopenia induced proliferation
(LIP) by T cell clonotype (OT-1) as apparent in the predicted division profiles.
Also despite the differences between the parameterization of SM1 and SM2 models,
specific estimates of η and λ0 (1.0E− 06 and 3.764693E− 02, respectively) of SM1

were in close agreement with those of SM2 ( 1.97568E − 06 and 3.768979E − 02,
respectively).

In contrast, the small difference in the parametrizations of SM1 and SM2 was
captured with distinct values for the parameter ∆ (the duration of B phase). The
estimated value of ∆ was higher for SM1 (8.51 h) than SM2 (7.17858 h). Then,
the key parameter ∆ is affected by taking into account the dynamic of the dividing
cells. Therefore, it was important to compare SM2 with SM1 model. However, it
was clear that LIP by OT-1 was better modeled with the SM2 than SM1 model,
as reflected in the lower CrV for SM2 model fit (Table 1), which is a measure of
goodness of fit (low is better).

5. Conclusion and remarks. The present study examined a model of T cell
homeostasis in vitro proposed by [1]. This model is a version of Smith-Martin
model with additional structure like the CD44 expression on the surface of cells.
At first, we analyse the mathematical well-posedness of the model System (1-3).
Next, we interest in the theoretical identifiability of some parameters by using the
data of CFSE and CD44 generated by Hogan et al. [12]. Typically, we found that
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Figure 2. SM2 model fits more the proliferation of OT-1 T cells than SM1

model. Best-fit parameter estimates from SM1 and SM2 models (see Table 1) were
used to predict the cell number in each division. At the indicated time points after
transfer, data predicted by SM1 (green) and SM2 (blue) models were compared
with experimental data for OT-1 cells (red).

the velocity of CD44 (vi(.)), the duration of B-phase (∆) and the rate of entry into
division (λ(N(.))) are identifiable if Assumptions 2.1 and 3.1 are satisfied.

In the literature, the most mathematical models based on Smith-Martin model
assume that the cells divide in B-phase exactly at age ∆. In contrast, System (1-3)
takes into account the small variability in the time of division of the cells in B-phase,
and eliminates the assumption of an immediate switch at time ∆. In this work, we
interest to compare these two types of modelling by fitting SM1 and SM2 models
to the data of OT-1 T cells. By taking into account the small variability in the time
of division, we noticed that the duration of B-phase related to SM2 model model
becomes shorter than in the SM1 model. Also, the rate of entry into division is
approximately the same in these two models. Finally, we find that SM2 model fits
better the experimental data (CrV for SM2 is much less than SM1).
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