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Abstract. The inflammatory response aims to restore homeostasis by means

of removing a biological stress, such as an invading bacterial pathogen. In
cases of acute systemic inflammation, the possibility of collateral tissue dam-
age arises, which leads to a necessary down-regulation of the response. A

reduced ordinary differential equations (ODE) model of acute inflammation

was presented and investigated in [10]. That system contains multiple positive
and negative feedback loops and is a highly coupled and nonlinear ODE. The

implementation of nonlinear model predictive control (NMPC) as a method-
ology for determining proper therapeutic intervention for in silico patients
displaying complex inflammatory states was initially explored in [5]. Since

direct measurements of the bacterial population and the magnitude of tissue
damage/dysfunction are not readily available or biologically feasible, the need

for robust state estimation was evident. In this present work, we present results
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on the nonlinear reachability of the underlying model, and then focus our
attention on improving the predictability of the underlying model by coupling

the NMPC with a particle filter. The results, though comparable to the initial

exploratory study, show that robust state estimation of this highly nonlinear
model can provide an alternative to prior updating strategies used when only

partial access to the unmeasurable states of the system are available.

1. Introduction. The acute inflammatory response is a biological process of host
immunity which can be initiated by the presence of a bacterial pathogen. The re-
sponse can lead to harmful and potentially life threatening effects to the host as
much as to the pathogen for which it is intended. The phenomenon of unresolved
inflammation due to infection is observed in intensive care units (ICU) and typically
referred to as sepsis or the systemic inflammatory response syndrome (SIRS). Com-
monly, it leads to multi organ-failure resulting in death, making it one of the leading
causes of mortality in the ICU and a cost intensive disease to treat [1]. Natural reg-
ulatory mechanisms exist in the host response process for inhibiting inflammatory
mediators in order to prevent such excessive inflammation and resulting damage
from occurring. In particular, these anti-inflammatory regulators act by damp-
ing the functions of inflammatory mediators and their responses to other cells and
inflammatory by-products produced during the response [6]. When the response
becomes dysfunctional and the regulatory mechanisms are insufficient to effectively
resolve the response, intervention is required. However, the complex nature of the
response makes it difficult to determine effective intervention strategies.

An ordinary differential equations (ODE) model for the acute inflammatory re-
sponse to a generic (gram-negative) pathogen was developed in [10]. This four
dimensional model considers a pathogen population P , activated phagocytes (im-
mune cells) N∗, a marker for tissue damage/dysfunction D, and anti-inflammatory
mediators CA. (See Appendix A.) For a set of biologically admissible parameter
values, the model exhibits tri-stabilty (in the positive octant). Each of the three
stable equilibria are biologically consistent with clinically observed states: a healthy
equilibrium where P = N∗ = D = 0 and CA is at a background level, a septic death
equilibrium where all mediators, N∗, CA, and D, as well as pathogen, P , are sig-
nificantly elevated, and an aseptic death equilibrium where P = 0 but N∗, CA, and
D are elevated far above background.

In [5], this reduced ODE model was used in the exploration of nonlinear model
predictive control (NMPC) as a methodology to systematically control the inflam-
matory response and direct response trajectories toward the healthy equilibrium.
Both pro- and anti-inflammatory therapies were considered. In other words, two
inputs (controls) were used to contribute positive impulse doses to the state equa-
tions for N∗ and CA. Although a thorough dynamical systems analysis of the model
exists in [10], in Section 2 we present new results toward an understanding of con-
trollability in this model. Specifically, we look at the Kalman-type rank condition
for nonlinear systems, and show that this system demonstrates local accessibility
at all points within the positive octant. In Section 3, we describe the particle filter
used to provide robust state estimation on the model for use within the NMPC
algorithm. The results are then compared to results in which no estimates of the
unmeasureable states are made as well as to the initial study results in [5], where an
ad hoc routine was necessarily employed to address this lack of information about
the system states.
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2. Controllability. Previously in [2], properties of nonlinear system observability
were explored for the model system in [10], which determine if system states are
distinguishable with respect to the inputs. The results showed that the system was
observable and this characteristic provides support for the use of nonlinear state es-
timation algorithms for the system, several of which were subsequently investigated
in that work. However, the controllability properties for this system have not yet
been discussed and in order to combine the nonlinear state estimation algorithms
with a control scheme (in particular, model predictive control) as we wish to do
here, it is important to understand these properties for the system in question.

Consider a general nonlinear affine system of the form

ẋ = F (x) +

m∑
k=1

gk(x)uk, x(0) = x0 ∈ Rn (1)

y = h(x) (2)

where F : Rn → Rn, h : Rn → Rl, and gk : Rn → Rn, for each k = 1, . . . ,m.
The inputs uk : [0,∞) → R for each k = 1, . . . ,m are taken to be bounded,
Borel-measurable, time dependent strategies. If the vector fields F, g1, . . . , gm are
additionally taken to be continuous and there exists a constant c > 0 such that

|X(x1)| ≤ c (|x1|+ 1) and

|X(x1)−X(x2)| ≤ c|x1 − x2|, x1, x2 ∈ Rn

for X ∈ {F, g1, . . . , gm}, then it is shown in [13] that for each appropriate control
u there exists a unique solution xx0,u(t) of equation (1). The functions we consider
herein have the above properties.

Given x0, x1 ∈ Rn, some x1 is said to be accessible1 from x0 with respect to
the system if there exists some appropriate control u and finite time T ≥ 0 such
that xx0,u(T ) = x1. For linear control systems of the form ẋ = Ax + Bu, where
x ∈ Rn, u ∈ Rm, accessibility between all pairs of points in the state space can be
verified algebraically by what is known as the Kalman rank condition, specifically
that

rank
(
B|AB|A2B| . . . |An−1B

)
= n,

(where n is the dimension of x) and the system is then said to be controllable
[9]. Unfortunately, for nonlinear systems, there is no analogous test to determine
controllability of the system. However, the generalizations of these concepts do lead
to a Kalman-like rank condition for nonlinear systems that provide some assurance
that control may be possible. Although it appears the verification of whether or not
a given nonlinear system can or cannot be controlled is usually left to practice, for
completeness we explore this condition for the nonlinear system considered here.

Thus, we continue with the following framework. If O is an open set containing
x0, a point x1 is said to be accessible from x0 through O if, in addition, xx0,u(t) ∈ O
for all t ∈ [0, T ]. In keeping with one of a few standard conventions, we let RO(x0, T )
denote the set of all points accessible from x0 in some time T > 0 through O. The
expression ROT (x0) indicates the set of all points accessible from x0 through O in
some time τ ∈ [0, T ], so that ROT (x0) =

⋃
0≤τ≤T RO(x0, τ). If for every T > 0

and nonempty O containing x0 the sets ROT (x0) have nonempty interior, then the
system is said to be locally accessible at x0. If the sets RO(x0, T ) have nonempty

1Alternatively, the terminology reachable is also used.
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interior for sufficiently small values of T , then the system is said to be strongly
locally accessible at x0.

The properties of local accessibility and strong local accessibility at a point are
linked directly to a Kalman-type rank condition on the distributions2 associated
with the vector fields governing the system (see [9], [13], [3], [4]). In the case of an
affine system, these distributions are particularly straightforward to describe using
the Lie algebra generated by {F, g1, . . . , gm}.

Let C denote the Lie algebra generated by {F, g1, . . . , gm}. Let C0 be the smallest
Lie algebra containing {g1, . . . , gm} such that [F,X] ∈ C0 for any X ∈ C0, where we
define the vector field [F,X] : Rn → Rn as the Lie bracket of (smooth) vector fields
F and X, with [F,X] = JXF −JFX, where JX denotes the Jacobian matrix of the
vector field X. We write C(x0) and C0(x0) for the linear span of X(x0), with X in
C and C0, respectively.

Theorem 2.1. [9].Consider the system in (1) where F : Rn → Rn.
• If dimC(x0) = n, then the system is locally accessible at x0.
• If dimC0(x0) = n, then the system is strongly locally accessible at x0.

Now we consider a specific system referred to earlier that represents a model
of the acute inflammatory response given below as a function F : R4 → R4 and
modified with control input terms, with x = (P,N∗, D,CA) (in keeping with the
original notation of the model described in [10]) and with g1(y) = [0 1 0 0]T and
g2(y) = [0 0 0 1]T . As such, this system does indeed exhibit affine control.

F (P,N∗, D,CA) + g1(y)u1 + g2(y)u2 =



F1(P,N∗, D,CA)

F2(P,N∗, D,CA) + u1(t)

F3(P,N∗, D,CA)

F4(P,N∗, D,CA) + u2(t)



=



dP
dt

dN∗

dt + u1(t)

dD
dt

dCA

dt + u2(t)


,

where dP
dt ,

dN∗

dt ,
dD
dt , and dCA

dt are the differential equations from [10] reproduced for
convenience in Appendix A. Since the controls g1, g2 are independent of the states,
x, we can ignore elements of C0 which involve Lie brackets of the form [gi, gj ], since
these terms would all produce zero values. We may therefore construct a strong
accessibility matrix by considering a smaller collection of entries, such as

S =
[
g1 g2 [F, g1] [F, g2] [F, [F, g1]] . . .

]
2Using the definition from [9], a distribution D on a manifold M is a map which assigns to

each p ∈ M a linear subspace D(p) of the tangent space TpM .



CONTROLLING INFLAMMATION VIA NMPC WITH STATE ESTIMATION 1131

We can truncate the above matrix after the first four columns, since we are only
concerned with the matrix having a rank equal to the dimension of R4. Further-
more, under standard assumptions on the parameters as suggested in [10], algebraic
criteria can be used to show that the resulting truncated matrix given as S(4) below
is nonsingular for (P,N∗, D,CA) > (0, 0, 0, 0). (See Appendix B.). The result is as
follows:

S(4) =



0 0 − ∂F1

∂N∗ − ∂F1

∂CA

1 0 − ∂F2

∂N∗ − ∂F2

∂CA

0 0 − ∂F3

∂N∗ − ∂F3

∂CA

0 1 − ∂F4

∂N∗ − ∂F4

∂CA


.

Thus, this implies that the system maintains strong local accessibility throughout
the first octant from the above theorem. If it were possible to further guarantee
that the interiors of sets ROT (x0) contained x0, then the system would be said to
be locally controllable at x0. Local controllability at all points in a compact region
of Rn implies that control is possible between any two points in the region, and
additionally that there exists some finite upper limit on the time that any such
transport will take. Unlike the property of strong local accessibility for nonlinear
systems, the topological demands of local controllability cannot be demonstrated
using algebraic criteria on the Lie algebras C(x0) and C0(x0) in the absence of
additional symmetries to exploit (i.e. symmetric controllers as in [13]). As a result,
the local controllability of nonlinear systems is usually left to practice to verify. The
possibility of successful control is encouraged by the necessary condition of strong
local accessibility (see [4]) and was, in fact, verified in practice in [5] when enough
information about the states was acquired. The positive observability conditions
demonstrated in [2] further suggest that the use of a robust state estimator will
allow good control with access to less state information than that used in [5].

3. Particle filter. Particle filters have become a popular tool for performing ro-
bust state estimation on nonlinear systems, where Kalman-type filters often prove
inadequate. The utility of a particle filter in a model predictive control study of
a deterministic ODE model of the inflammatory response to endotoxin was nicely
displayed in [8]; however, the model used in that study has significantly less complex
dynamics than the inflammatory model used herein due to the use of an exponen-
tially decaying stimulus (endotoxin) compared to a dynamically changing pathogen
population that is coupled to other system states. This difference poses a particular
challenge in that the goal to minimize damage must now also be combined with the
goal to minimize pathogen load; yet, these goals are at odds with one another since
the remedy to accomplish one will not remedy the other and might further exacer-
bate the situation. For example, increasing inflammation to minimize pathogen will
also cause more damage; whereas, increasing anti-inflammatory levels to minimize
damage might make conditions more favorable for pathogen growth.

It became clear through the work in [5] that having a good estimation of the
system states, especially the pathogen state, was critical to meet this challenge ef-
fectively. In that initial work, robust state estimation was not employed and instead
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a procedure was added to the algorithm that indirectly updated the pathogen state
in the model to better match that of the virtual patient’s pathogen state. Although
the procedure was biologically justified and resulted in more effective control out-
comes over a diverse virtual patient population, the question remained as to whether
such an ad hoc procedure could be replaced by a more systematic technique that
did not rely on faux measurements or physical observation. Thus, while extending
this work, we explored various filtering techniques for estimating the states of this
nonlinear system (in the absence of the control problem) and determined that the
particle filter proved the most promising choice [2].

3.1. Setup. The particle filter is a sequential Monte-Carlo scheme, sometimes re-
ferred to as a condensation algorithm. In the current implementation, a batch of
particles are generated and have artificial control applied to them at each discrete
time step (one hour). The endpoint of their simulated trajectories are compared to
the observed patient states, with particles whose values match the data more closely
propagating to further time steps more successfully. The design and implementation
of our particle filter is based on [11] and [12].

Our model is characterized as a nonlinear ODE system with affine control. We
take x = (P,N∗, D,CA) and define the function F : R4 → R4 to be the system
described in the previous section. (See also Appendix A.) Measurements of the
observable variables N∗ and CA introduce noise, and so, we have rewritten the
original ODE as a stochastic differential equation (SDE) for the purpose of filtering.

dXt =

(
F (Xt) +

2∑
k=1

gk(Xt)uk

)
dt

Yt =

∫ t

0

h(Xs)ds+Wt

where Wt represents a 2-dimensional Brownian motion, used to indicate measure-
ment noise, and the expression

h(Xs) =

[
F2(Xs) + g1(Xs)u1
F4(Xs) + g2(Xs)u2

]
isolates the observable second and fourth components of the state. The σ-algebras
Gt = σ(Y0, Y1, . . . , Yt) are understood to represent the data collected from mea-
surements Yt for discrete time steps t ∈ N. We let πt be the regular conditional
probability distribution of Xt given Gt, which is such that for any Borel B ∈ R4,
πt(A) = P(Xt ∈ B|Gt). Consequently, integration of the identity function over R4

with respect to the measure πt will provide the best estimate for Xt. As in [12],
the particle filter aims to approximate πt by Dirac-masses at the locations of each
particle,

πt ≈
1

N

N∑
i=1

δXi
t

which indicates that our estimate X̂t for Xt is recovered as the mean in each com-
ponent of the collection of particles Xi

t .

3.2. Design. The particle filter is initiated with N = 500 particles for all of our
simulations. We create the particles with values of N∗ and CA matching the initial
measurement Y0 (with noise), while values of P and D are initialized to 0.01. The
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choice of particle initialization values for P and D is discussed in section 3.3. Imple-
mentation. In keeping with the original application of NMPC in [5], we run simula-
tions in time steps of one hour increments for one week so that t = 1, 2, . . . , 168. At
each hour t, the following algorithm refines the particles Xi

t−1 into the new particles

Xi
t .

• For each i ∈ {1, . . . , N}, we generate temporary particles X−,it according to
a simulation of the former particles Xi

t−1. This is done using the trajectory

xi(t) with initial point xi(t− 1) = Xi
t−1 and desired plant control u:

X−,it = Xi
t−1 +

∫ t

t−1

(
F (xi(s)) +

2∑
k=1

gk(xi(s))uk

)
ds

• Calculate weights qi for particles X−,it , under the assumption that measure-
ments Yt are taken with Gaussian noise having covariance R = 10−2:

qi =
1

2π
√
R

exp

(
−
(
Y −,it − Yt

)T (
Y −,it − Yt

)
/2R

)
where Y −,it is simply an array of the second and fourth coordinates of X−,it ,
corresponding to those coordinates in Yt, the measurable states.

• Normalize weights:

q̃i =
qi∑N
j=1 qj

• Resample the temporary particles X−,it according to weights q̃i. In other

words, the value X−,jt is assigned to new particle Xi
t with probability q̃j .

• Generate the Xt estimate as the mean X̂t = 1
N

∑N
i=1X

i
t . The value of X̂t is

used in the predictive model of the NMPC to generate the control u for the
future time period [t, t+ 1).

3.3. Implementation. In [5], a mechanism to update the predictive model with
respect to the pathogen level was implemented to deal with instances of gross mis-
match between pathogen levels in the predictive model and those in the patient
model. They implemented this with the following routine: every four hours the
pathogen level in the virtual patient is directly compared to that in the predictive
model. If the pathogen level is significantly lower in the predictive model than in
the patient model, then the predictive model’s pathogen level is set to P = 0.5 on
the next time step. Alternatively, if the predictive model’s pathogen level is sig-
nificantly higher than in the patient model, then the predictive model’s pathogen
level is set to P = 0. Such a process was justified by the clinical manifestations of
infectious markers such as high fever or blood cultures and does not use the actual
measurement value directly. However, we wished to improve on this implementation
so as not to rely on this form of updating for one of the non-measurable states.

The removal of the pathogen update routine described above is a critical change
to the current implementation, since without it the controller performance is ex-
tremely poor when considering a particularly aggressive pathogen. (See section 4.
Results & Conclusions.) Thus, in this current work, the pathogen update routine
is eliminated and instead, the state estimates found by the particle filter are used.
The particle filter estimates for N∗ and CA are updated to reflect the measure-
ments of the patient system (with measurement noise); however, we stress that the
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estimates for both P and D (the unmeasurable states) are now solely reliant on the
performance of the particle filter.

With the exception of this major change in how state estimation is handled and
the introduction of noise to the measurements taken, the original Matlab implemen-
tation from [5] is maintained, where the algorithm used is a modified version of that
developed by Florian et al., [7]. All simulations were conducted using MatLab R©.
The ODE system is numerically integrated using MatLab’s Simulink default solver
routine, ode45. The optimization routine uses the fmincon built-in MatLab R© func-
tion. Equation (3) gives the objective function, J , we seek to minimize which uses
the standard weighted sum of squares form. It contains terms to minimize pathogen
levels (P ), damage levels (D), and the total amount of control inputs, u1(t) and
u2(t) given over the prediction horizon. All have reference trajectories of zero and
the weights are ΓD = ΓP = Γu1 = Γu2 = 1.

J = min
u1(t)

u2(t)

||ΓDD||22 + ||ΓPP ||22 + ||Γu1u1(t)||22 + ||Γu2u2(t)||22 (3)

The same cohort of 1,000 virtual patients that were generated in the previous study
are used here as well. Each virtual patient is represented by a copy of the four
equation ODE model that is used as the predictive model but with the values of six
parameters and two nonzero initial conditions (P and CA) randomly selected from
feasibly bounded intervals. (See Appendix C.) Thus, a selection of parameters have
mismatched values among the patient models and the predictive model, with the
remaining parameters set to their baseline values determined in [10]. The remaining
initial conditions for each virtual patient for the pro-inflammatory mediator (N∗)
and tissue damage/dyfunction (D) variable are set to zero. From these patient-
specific initial conditions, virtual patients are simulated without any form of control
or state estimation. If a virtual patient’s level of N∗ rises above 0.05 (a somewhat
elevated inflammatory level for this model), then they are selected for treatment.
The time at which this occurs represents the zero hour of the NMPC process, which
then continues for one week (168 hours). Of the initial 1,000 virtual patients, 620
were selected to receive treatment, while the remaining did not display inflammatory
responses large enough to warrant treatment.

At this “time zero,” the particle filter is initialized for each virtual patient sim-
ulation in the following way: the initial measurements of the pro-inflammatory
mediator (N∗) and the anti-inflammatory mediator (CA) of that virtual patient
(including measurement noise) are used to initialize the respective particles for N∗

and CA and the particles for the remaining variables (P and D) are randomized in
feasible intervals. As was also done in [5], the predictive model is first initialized
with initial condition (P0, N

∗
0 , D0, C

0
A) = (0.5, 0, 0, 0.125) and is then integrated for-

ward in time until N∗0 > 0.05, the same threshold used for the selection of virtual
patients to receive treatment. The values of the system variables at the time at
which the N∗0 threshold is crossed is then used as the initial condition of the pre-
dictive model at the zero hour of the NMPC process as described above. Thus, the
first control move is based on the predictions of the model starting at this initial
condition to be consistent with [5].

The initial predictions of the particle filter for the pathogen variable are quite
important since P is not in a positive feedback loop with the measured variables N∗

and CA in the same manner that D is. This means that the information, especially
received from the measurement of N∗, is not as informative for determining P as it is
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for determiningD. The initial guess for the P state, based on the fact thatN∗ values
have passed the threshold value of 0.05, is that P is a relatively high value. This
assumption will most likely cause the first determined control dose implemented in
the first hour that treatment is initiated to be pro-inflammatory therapy with no
anti-inflammatory therapy. However, after this dose is implemented, it is not safe
to overestimate where P is. Thus, P is specifically initialized around a small value
of 0.01 in the particle filter, which will be used to determine all subsequent state
estimates for P and D. Later, in section 4. Results & Conclusions, we discuss this
issue further.

In [5], it was noticed that the pathogen growth rate parameter (kpg) affects the
performance of the NMPC, and therefore, simulation sets were run for several kpg
values: 0.52, 0.6, and 0.8. Here we do the same for comparison. At each time
step, the predictive model is used by the NMPC algorithm to determine a proper
control (therapy) input for the next time step. This is implemented in the virtual
patient model and in the predictive model. New (noisy) measurements are then
taken to update the predictive model as well as the particle filter. The particle
filter subsequently provides the predictive model with new state estimates for P
and D and the next iteration begins.

4. Results & Conclusions. Results for three NMPC simulation groups are pre-
sented in Table 1. Each simulation group considers measurement noise for the
measurable states, N∗ and CA, and also gives results for three kpg values: 0.52, 0.6,
and 0.8, as discussed above. Simulation Group (i) considers simulations like that of
[5] but without using any pathogen updating routine nor robust state estimation to
update the unmeasurable states, in particular, pathogen (P ). Simulation Group (ii)
gives results of simulations as performed in [5]. We note that there are slight differ-
ences between the percentages seen in Table 1 and those seen in [5] which are due to
the now present addition of noise in the measurements, which was not considered
in the prior work. Lastly, Group (iii) presents the simulation results in which a
particle filter was solely used for state estimation; in particular, for pathogen (P)
and damage (D) without any further updating. Included among these initial results
is a placebo (no therapy) case, in which the NMPC is effectively turned off.

The results for the kpg = 0.52 and kpg = 0.6 cases on the whole appear quite
comparable across all three simulation groups. However, in the case of an aggres-
sively growing pathogen (kpg = 0.8), there is a dramatic increase in the number
of patients rescued in Groups (ii) and (iii) compared to Group (i) which does not
update the pathogen state. See the first row of entries in Table 1 for the kpg = 0.8
columns. Although Groups (ii) and (iii) show comparable results in terms of num-
ber of patients rescued in the kpg = 0.8 category, there is a dramatic decrease in the
number of patients harmed in Group (iii) which uses the particle filter (2 harmed)
versus Group (ii) which uses the ad hoc pathogen update routine (16 harmed). In
other words, 14 less virtual patients who would have been healthy without treat-
ment (i.e. had a healthy placebo outcome) were pushed to an unhealthy state by
the administration of therapy when the ad hoc updating routine was used to update
the pathogen state instead of the particle filter. See the second to last row of Table
1 for the kpg = 0.8 columns.

Hence, the ability to estimate the crucial but difficult-to-measure pathogen state
is essential to the successful performance of the NMPC, especially when the pathogen
state plays a strong role in driving the system dynamics like in the case when
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Figure 1. Patient outcome results (number of patients out of 620)
from three different NMPC simulation groups, Column (i) - (iii),
and for the case in which no therapy is given, Placebo. All simu-
lations included measurement noise for the two measurable states,
N∗ and CA. Using the convention in [5], each simulation group-
ing shows results over three different kpg values for the underlying
predictive model: 0.52, 0.6, and 0.8. Column (i): Results using no
updating strategy for the unmeasurable states, pathogen (P ) and
damage (D). Column (ii): Results based on the ad hoc pathogen
updating mechanism from [5]. Column (iii): Results using a par-
ticle filter to perform state estimation for all the system states, in
particular D and P , in place of the mechanism used in the simula-
tions for Column (ii).

kpg = 0.8. The particle filter strategy provides the means to gain access to this
state from the measurements of other states. Through additional simulation stud-
ies in which no pathogen updating/estimation strategy was used, it was seen that,
for this particular system, an apparently effective dosing strategy is a strong initial
pro-inflammatory boost (achieved by setting the initial value of P in the predictive
model to a higher value than used in the simulations described above). However,
this can come at the cost of harming more patients compared to the results in
which the initial pro-inflammatory input was less, but where some form of updat-
ing/estimation strategy is used (results not shown).

Although we demonstrated that the model exhibits a strong local accessibility
property, this is not the same as exhibiting local controllability. Toy models in
the literature can easily demonstrate that accessibility may very well allow control
along certain directions and not along others. Furthermore, controllability is of-
ten framed using general controls meeting certain integrability conditions, such as
L1
loc, which are often unrealistic. Under the current setup, we assumed impulse-

like controls to simulate instantaneous injections, each separated by whole hour
increments. Additionally, biological demands also insisted on nonnegative control
inputs and certain constraints to guard against excessive dosing, as described in [5].
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Furthermore, the objective function formulated for the NMPC algorithm (equation
(3)) considers both minimizing pathogen as well as damage as a part of the goal;
yet, the chosen therapies have opposite effects on each of these, creating a tug-
of-war effect: implementing the inflammatory therapy, while helping to minimize
pathogen, works against the goal to minimize damage since it is a direct cause of
damage; likewise, implementing the anti-inflammatory therapy, while helping to
minimize damage, may work contrary to the goal of minimizing pathogen since it
suppresses the response against it. This work again highlights the importance of
obtaining accurate state estimation early on in the process to ensure more effective
control and unfortunately speaks to the complexity of treating patients under many
constraints. Consequently, it eludes to the fact that sometimes success might just
not be possible under certain given circumstances.

However, the particle filter is an effective state estimator for this highly non-
linear system, since we see in our simulations that convergence occurs for every
state, even for the unmeasurable ones. Time to convergence can vary, however,
and this needs to be taken into consideration regarding the effects this may have
on the performance of the NMPC to find successful therapeutic control strategies.
Overall, though, we demonstrate that the particle filter is capable of estimating
pathogen levels well enough to eliminate the need for the type of ad hoc pathogen
update routine that was previously critical for course corrections related to mis-
match in this variable in [5], as discussed in section 3.3. Implementation. This
is a key insight, in that the ability to have access to this state through the avail-
able measurements of other variables defers the need to get a direct measurement.
Thus, in general, a combination of dynamical modeling of a process, incorporation
of data measurements, and state estimation techniques offers a possible approach
for inferring information about other clinically relevant states that are difficult or
impossible to measure but could provide critical feedback for therapeutic decision
making.
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Appendix A - Acute inflammatory model. The underlying patient and pre-
dictive model, as presented in [10].

dP

dt
= kpgP

(
1− P

P∞

)
− kpmsmP

µm + kmpP
− kpnf(N∗)P

dN∗

dt
=

snrR(P,N∗, D)

µnr +R(P,N∗, D)
− µnN∗

dD

dt
= kdn

f(N∗)6

x6dn + f(N∗)6
− µdD

dCA
dt

= sc + kcn
f(N∗ + kcndD)

1 + f(N∗ + kcndD)
− µcCA

and where

f(x) =
x

1 +
(
CA

c∞

)2 , and

R(P,N∗, D) = f(knpP + knnN
∗ + kndD).

Detailed explanations of each parameter, the ranges for their values, and the sources
upon which the values were estimated are published elsewhere (see Table 1 in [10]).

Appendix B - Kalman-type rank condition. As a differential equation in R4

with affine control vectors g1(y) = [0 1 0 0]T and g2(y) = [0 0 0 1]T , we recall the
form of a general Lie bracket as

[f1, f2] =
∂f2
∂x
· f1 −

∂f1
∂x
· f2.

We are concerned, as in the Nijmeijer and van der Schaft Theorem [9] provided
in the text, with showing that the Lie algebra C0(x0) = R4 for all x0 in the positive
octant. Since C0(x0) is spanned by the control vectors and iterated Lie brackets with

the vector field F =
[
dP
dt

dN∗

dt
dD
dt

dCA

dt

]T
, we can translate the condition C0(x0) =

R4 into a condition on the rank of sub-matrices of what we now refer to as the
strong accessibility matrix.

S =
[
g1 g2 [F, g1] [F, g2] [F [F, g1]] . . .

]

http://www.ams.org/mathscinet-getitem?mr=MR2266740&return=pdf
http://dx.doi.org/10.1016/j.jtbi.2006.02.016
http://dx.doi.org/10.1016/j.jtbi.2006.02.016
http://dx.doi.org/10.1016/j.jtbi.2006.02.016
http://dx.doi.org/10.1002/0470045345
http://www.ams.org/mathscinet-getitem?mr=MR2442549&return=pdf
http://www.ams.org/mathscinet-getitem?mr=MR1193920&return=pdf
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Showing that for any point in the positive octant, we can find a 4×4 sub-matrix
of S that achieves full rank when evaluated at the point will satisfy the conditions
of the theorem. Truncating the matrix to the first four terms, we have

S(4) =



0 0 − ∂F1

∂N∗ − ∂F1

∂CA

1 0 − ∂F2

∂N∗ − ∂F2

∂CA

0 0 − ∂F3

∂N∗ − ∂F3

∂CA

0 1 − ∂F4

∂N∗ − ∂F4

∂CA



=



0 0 kpnf(1)P 0

1 0 − µnrsnrknnf(1)

(µnr+R(P,N∗,D))2
+ µn − µnrsnrkndf(1)

(µnr+R(P,N∗,D))2

0 0 − 6x6
dnkdnf(1)f(N

∗)5

(x6
dn+f(N

∗)6)
2 µd

0 1 − kcnf(1)

(1+f(N∗+kcndD))2
− kcnkcndf(1)

(1+f(N∗+kcndD))2


Using MapleTM ( c© Maplesoft), under standard parameters given by [10] this

matrix was confirmed to be nonsingular for all (P,N∗, D,CA) > (0, 0, 0, 0).

Appendix C - Virtual patient parameters. The following table provides the
parameters which have differing values between virtual patients and the predictive
model, chosen within the ranges given.

Parameter Patient Parameter Range

P0 0.0 - 1.0
CA,0 0.0938 - 0.1563
kpg 0.3 - 0.6
kcn 0.03 - 0.05
knd 0.015 - 0.025
knp 0.075 - 0.125 (Co-varies with knd)
kcnd 36.0 - 60.0 (Co-varies with knd)
knn 0.0075 - 0.0125 (Co-varies with knd)
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