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Abstract. Mucociliary clearance is the first line of defense in our airway. The
purpose of this study is to identify and study key factors in the cilia motion

that influence the transport ability of the mucociliary system. Using a rod-

propel-fluid model, we examine the effects of cilia density, beating frequency,
metachronal wavelength, and the extending height of the beating cilia. We

first verify that asymmetry in the cilia motion is key to developing transport

in the mucus flow. Next, two types of asymmetries between the effective and
recovery strokes of the cilia motion are considered, the cilium beating velocity

difference and the cilium height difference. We show that the cilium height

difference is more efficient in driving the transport, and the more bend the
cilium during the recovery stroke is, the more effective the transport would be.

It is found that the transport capacity of the mucociliary system increases with
cilia density and cilia beating frequency, but saturates above by a threshold

value in both density and frequency. The metachronal wave that results from

the phase lag among cilia does not contribute much to the mucus transport,
which is consistent with the experimental observation of Sleigh (1989). We

also test the effect of mucus viscosity, whose value is found to be inversely

proportional to the transport ability. While multiple parts have to interplay
and coordinate to allow for most effective mucociliary clearance, our findings

from a simple model move us closer to understanding the effects of the cilia

motion on the efficiency of this clearance system.

1. Introduction. With breathing, the human respiratory tract is constantly in
contact with potentially infectious microorganisms and noxious substances in air.
Lung epithelium is our first line of defense against these infectious or damaging par-
ticles. On the other hand, aerosol inhalation is an effective means of drug delivery
for respiratory problems. In order to better protect ourselves from these external
harmful agents, or to design a more effective delivery device for aerosol drugs, we
will need to understand how these particles are transported. Where particles land
in the airway through the airflow is one aspect of the picture; how these parti-
cles are redistributed via the mucociliary clearance (MCC) is the other important
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aspect of the system. The epithelium lining in the airway consists of several cell
types, including the goblet cells that produce mucus and the ciliated cells that have
cilia projected from the cell surface into the airway. Mucus traps foreign particles.
The cyclic beating of the cilia drives a directional movement of the mucus layer,
transporting these particles, and eventually moves them out of the airway.

The physiology of MCC has been well documented, including the composition and
rheological properties of mucus, the structure, density and coordinated movement
of cilia [1] [11] [38] [37] [39] [41] [42]. Direct measurements of these factors are
obtained from various experimental systems. In addition, because the compositions
of cell and mucus differ at varying parts of the lung [32], one should expect the
measurements being highly variable along the ciliated airway. Table 1 lists some of
these factors, as well as their normal ranges in human and rabbit. These references
in Table 1 contain just a small portion of all experimental studies of MCC. It is
observed that the effective height change of the cilium during its cyclic motion is
important to the mucus propulsion. Impaired ciliary motion typifies a number of
human diseases [10] [24] [31] [46]. Cystic fibrosis [28] and primary ciliary dyskinesia
[34] are two primary examples of ciliary function failure, either in the cilia motion
or in the cilia-mucus interaction. However, the detailed mechanism underlying cilia
beating and mucus transport is not well understood, for example, which aspect of
a beating cilium or multiple cilia contributes most to the fluid transport? We aim
to address this question with a mathematical model.

Many mathematical models treat MCC as a problem of fluid-body interaction,
which have shed insights into the aggregated effects of the mucociliary interactions.
Barton & Raynor [3] modeled the cilium as a rigid rod, which shortened automati-
cally during the recovery stroke. They used a resistance coefficient to approximate
the impacts between the cilium and mucus flow. Blake ([4], [5]) developed the slen-
der body theory, in which the individual cilium was modeled as an array of force
singularities along the cilium centerline. Stemming from the slender body theory,
Cortez [12] introduced the method of regularized stokeslets in which the singular
force was smoothed. The method is widely applied in fluid-flexible body interactions
in stokes flow, e.g. helical swimming [13] and bacterial flagella bundling [19].

More recently, direct numerical simulations of MCC have taken into account
more detailed cilia structures and mucus hydrodynamics. One focus of these works
has been the formation of the metachronal wave in MCC. Yang, Dillon & Fauci
[47] considered the axonemal structure of the cilium and used elastic springs to
mimic the cilium microtubule filaments as well as the dyneins and nexin links.
The mucus flow is governed by the incompressible Navier-Stokes equations in the
velocity-pressure form. Their compuation demonstrates the formation of synchrony
and metachrony of cilia due to hydrodynamic couplings, and a net fluid transport
is observed. A similar model was adopted by Dillon et al. [14] to simulate sperm
flagella in a viscoelastic fluid flow. Mitran [33] used a 3D finite volume method
to study the formation of the metachronal wave in rows of pulmonary cilia. He
considered two fluid layers: mucus layer as a viscoelastic gel and the periciliary layer
as a viscous fluid. The internal microtubule structure of an individual cilium was
modeled using large-deflection, curved, finite element beams. The model has been
applied to simulate motions up to 256 cilia. Elgeti & Gompper [16] simulated 2D
cilia arrays using chains of beads in a 3D fluid flow. They found that the metachronal
wave increases fluid propulsion significantly. In these studies, the metachronal waves
emerge as a result of mucus-cilia interactions. The metachronal wave itself cannot
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be varied independently. The question “what is the key factor driving the fluid
transport” has not got a clear answer.

In this work, we propose a rod-propel-fluid model to simulate the MCC process.
This model enables us to isolate the parameters of the cilia motion and examine
their effects individually. We focus our attention on the effects of asymmetry in
the cilia motion on the transport ability of the mucus flow. At the cilium level,
we study the cilium shape change, as well as the velocity difference, between the
effective and recovery strokes. At the tissue level, we examine the cilia density and
the phase lag among cilia that is associated with the metachronal wavelength. Our
numerical results show that, contrary to some previous results, details of cilia shape
change and the metachronal wave do not matter, and that the maximum cilium
height difference between strokes is the key factor deciding the transport capability.
In the following sessions, we will describe our model and demonstrate our results
leading to this conclusion.

2. Methods.

2.1. Model setup. We start building our model with the following assumptions:

1. Our simulation is 2D, assuming that the motion of the cilia is in a plane.
In cultured human airway epithelium, the ciliary beat is found to be clearly
planar [10] [9] [41].

2. The fluid surrounding the cilium is homogeneous, incompressible and Newto-
nian. The fluid motion governed by the incompressible Navier-Stokes equa-
tions. This treatment effectively immerses the cilium in the periciliary fluid,
simulating the setting of many in vitro cilia flow experiments of the liquid-air
interface [41].

3. The cilium is modeled as a rigid rod. The extending height of the cilium varies
during effective and recovery strokes, which is modeled via changes in the rod
length. This is motivated by [3].

4. The cilium motion follows Equation (1). The numerical details are provided
together with descriptions of Figure 2.

Those four assumptions provide a basic computational frame in our simulations.
We realize that these simplifying assumptions might limit the applicability of the
results. Our intension is to start with a simplest possible model, gaining insight into
the basic principles, and then add the complexity gradually only when necessary,
including increasing the number of cilia, modifying the cilium height, prescribing a
different phase shift among cilia, and modulating the beating frequency.

Treating the cilium as a rigid rod is a significant simplification in the model.
Sanderson & Sleight [38] depicted a typical motion of the cilium in one beating
cycle (Figure 1a), based on their observations of the rabbit tracheal cilia. During
the effective stroke, the height of the cilium barely changes; during the recovery
stroke, the bending of the cilium shortens the height. We want to investigate this
asymmetry between strokes. In our model, we mimic the bending of the cilium as
the shortening of the rod length, similar to Barton & Raynor [3]. The length of the
rod is a function of its orientation θ. The lower and upper bounds of the orientation
are approximately 0.8 to 2.4 radians (40 and 140 degrees in [38]).

We measure the effective length of the cilium, Lc, as the straight distance from
its tip to the base, shown as arrow-lines in Figure 1a, and fit all measured values
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using a third order polynomial, yielding the expression below

Lc = { 0.6 effective stroke,
−0.20993θ3 + 1.21485θ2 − 2.14088θ + 1.64268 recovery stroke.

(1)
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Figure 1. (a) A schematic plot of the cilium shape in one beating
cycle (modified with permission from Sanderson & Sleigh, 1981).
Numbers from 1 to 9 show consecutive motions of the cilium during
the recovery stroke and numbers from 9 to 12 show that during
the effective stroke. Arrow-lines measure the distance between the
cilium tip and its base. (b) The rod length Lc is plotted as a
function of its orientation θ in our model, Equation (1). The rod
has the same length as that of the arrow-line in (a). The solid line
in (b) is for the rod length during effective stroke and the dash line
is for the recovery stroke.

Figure 1b plots Lc vs. θ in (1). All values in the figure are dimensionless. The
angle θ is in radian, and Lc = 0.6 corresponds to 6µm with a typical cilium length
10µm. The maximum length of the rod is Lc = Lmax = 0.6 and the minimum
is Lmin = 0.45. The motion of rods is prescribed with a given beating frequency
and phase shift. Thus, the numerical model is in fact a moving boundary problem,
where the beating rods propel the fluid flow.

2.2. Governing equation and numerical method. The fluid is assumed to
be incompressible with a constant density. The Navier-Stokes equations in the
formulation of fluid velocity u and the pressure P are used

ρ
∂u

∂t
+ ρu5 u−5P = µ52 u + f , (2a)

5 · u = 0. (2b)

Here f is the force exerted in the fluid flow, and µ is the hydrodynamic fluid viscosity.
We define the characteristic length L as the trace of the cilium tip in one beating
cycle which is about L = 32µm, since a typical length of the cilium is about 10µm
and the cilium rotates 3.2 radians in one cycle (from 0.8 to 2.4 radians, forth and
back). The characteristic time is chosen to be T = 1/15sec as 15 Hz is a typical

beating frequency (Table 1). The Reynolds number is Re = ρL2

µT = 0.0172 with

ρ = 1000kg/m3 and µ = 8.94 × 10−4Pa · sec. Here we use Reynolds number
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Re = 0.01 in computations. The effect of the Reynolds number is discussed in the
Supporting Materials.

A schematic plot of the computational domain is shown in Figure 2. The domain
is a 2D box,

Domain = {(x, y), xmin ≤ x ≤ xmax, ymin ≤ y ≤ ymax}. (3)

The bottom of the box is the epithelial cell surface where the mucus flow is assumed
no-slip; the top is a free surface with zero traction; the left and right sides are
periodic. The rigid rods projecting from the bottom of the box are our idealized
cilia. The rod has a Lagrangian representation and is parameterized by its arc
length s. The velocity of the rod is up(s, θ) = (sω cos θ, sω sin θ), where θ is the rod
orientation and ω is the rod angular velocity. For multiple rods, a uniform phase
shift φ is assigned among rods to describe the metachronal wave. The motion of
all rods are synchronized if φ = 0. In our model, φ has an upper bound set by the
number of the rods Nrod in order to avoid rods entanglement.

We consider both symmetric and non-symmetric rod motions. Two cases of
non-symmetric motions are studied. One is that the rod beating frequency varies
between the effective and recovery strokes, which can be considered as varying the
cilium beating velocity while the cilium length is fixed. The other is to fix the rod
beating frequency and vary the rod length between these two strokes. These two
cases are most obvious asymmetries observed in experiments. Other asymmetries in
2D, for example, the cilium beating velocity is a function of its orientation, could be
thought as a variation/combination of these two cases above and will not considered
here.

θ1 θ2 
Lc 

x 

y 

Figure 2. A schematic plot of the 2D domain. Two rods are
shown, and θ1 and θ2 are their orientations, respectively. The phase
shift is φ = θ2 − θ1. The angular velocity is ω = dθ/dt. The rod
length is Lc. The rod is parameterized by its arc length s with
s = 0 at the rod base and s = Lc at the rod tip.

A finite difference grid is established. The grid point is denoted by (xi, yj).
Initially, the fluid flow is quiescent with a velocity of u(z, 0) = 0, where z = (x, y).
Each rod consists of m discrete points where m = 200 for all simulations reported
in this paper. A singular force value F(s, t) is present at each point zp(s, t) along
the rod, zp(s, t) = (xp(s, t), yp(s, t)). The total force density of one rod is

f(z, t) =

∫
F(s, t)δ(z− zp(s, t))ds. (4)

We apply the projection method [8] in combination with the Marker-And-Cell
(MAC) staggered grid technique [23] to solve the Navier-Stokes equations (2). This
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combination helps to avoid the numerical instability that usually arises when eval-
uating velocity and pressure at the same grid point. A formally second order im-
mersed boundary method [25] is implemented to compute the impact of the moving
rod to the fluid flow. The immersed boundary method was first introduced by Pe-
skin [35] to simulate aspects of cardiac dynamics, which has since become a major
technique in biological fluid dynamics.

We place particles with no mass in the fluid, and they are passively transported
at the fluid velocity u. At any time, these particles in the flow serve to visualize
streaklines as may be observed in laboratory experiments. The position of the
fluid particle z is computed using dz/dt = u(z, t). In the simulation, the fluid
particle is injected at (0, 0.75). The second order explicit Adam-Bashforth scheme
[27] is applied to solve fluid particle positions based on velocities at the current
and previous time steps. The verification of our numerical methods, including the
convergence study, is in the Supporting Materials. Table 2 gives parameters for
the problem setup and Table 3 lists parameter sets that are used to describe the
rod motion, including ranges of the rod number, rod density and beating frequency.
The angular velocity ω = 3.2f . When we simulate more than one rod, all rods are
equally spaced in x = [−1, 1].

3. Results.

3.1. No net fluid transport with symmetric rod motion. We start with a
symmetric motion with one rod, and then systematically modify one parameter at
a time. By symmetric motion, we mean that the cilium shape is the same between
effective and recovery strokes, which corresponds to a constant rod length in the
model, and the beating frequency is the same between stokes.

Figure 3 groups all results of symmetric rod motion.The computational param-
eters are listed in the caption. Figure 3a shows streamlines induced by five rods
during t = [0.002, 0.066]. The angular velocity of each rod is 50rad/sec, correspond-
ing to a beating frequency of 15.625Hz. The rod motion is periodic, leading to a
periodic flow motion.

As the rod beating starts, it drives the flow into motion, immediately forming
a recirculation region near the rod tips. Figure 3a shows that the instantaneous
streamlines are dense near the rod tip, indicating a large flow speed. At the center
of the recirculation region, the fluid velocity is zero. As the rods swing from the right
to the left (t = 0.002 to 0.026), the rods drive the recirculation region in the same
direction. The center of the rotating flow initially appears close to the rod, gradually
shifts up, then sheds off from the rod tip, and eventually vanishes at the free fluid
surface (t = 0.034). Around t = 0.034, the rods reverse the beating direction.
The rods induce another small recirculation region near the rod tip, followed by a
similar process as before, with streamlines now having an opposite sign. This new
recirculation region grows in size as it moves to the right in accordance with the rod
motion, shifts upward and vanishes at the top surface. As the rod motion repeats
its cycle, the fluid motion repeats as well, with the same period as the beating rods.
In figure 3a, during t = 0 to 0.026, the rod is moving from right to left, and during
t = 0.034 to 0.066 the rod is moving from left to right. Note that the fluid close to
the rod tip moves in the same direction of the rod owing to the no slip condition at
the rod-fluid interface. When the rod number is decreased to one, similar periodic
fluid motions remain. The only difference is that the recirculation region is smaller.
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The plots of streamlines change only slightly when we add a phase shift of φ =
0.2 among these five rods (not shown). Such an out-of-phase rod motion forms a
metachronal wave of a wavelength 1. However, since the rod motion is symmetric,
the reverse strokes bring the fluid back by exactly the same amount, resulting in a
net zero displacement of the fluid particle in one complete period.
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Figure 3. (a) Streamlines induced by five rods with time indi-
cated in the plots. (b) Normalized horizontal and vertical velocities
(ux, uy)/umax during t = [0 : 0.002 : 0.1] along the vertical line of
x = 0 in the computational domain. (c) Plots of displacement D
of all fluid particles present at t = 2 as functions of tp, the time
when the particle is released into fluid. (d) Snapshots of streaklines
induced by five rods at varying times. The rod number for Figure
3(abd) are five, the rod length is Lc = 0.6, and the rod beating
frequency is f = 15.625Hz between stokes. The phase shift among
rods is φ = 0 in (a), and φ = 0.2 in (b) and (d).

Figure 3b plots the normalized horizontal ux/umax and vertical uy/umax veloc-
ities along the vertical line of x = 0 in the computational domain. umax is the
maximum flow speed, and therefore, the normalized velocities range from −1 to 1.
The velocity profiles are statistically equally distributed on two sides of the zero
line, indicating that the net velocity is almost zero. A more precise measure of the
material transport is on the displacement of material points, as indicated in Figure
3(cd).

While the streamlines cannot reveal the exact period of the flow motion and its
transport ability, the streaklines of fluid particles can. Particles are released into the
fluid continuously, and tp refers to the time when the particle is released. Figure 3d
are snapshots of streaklines and they show that these particles follow periodic paths
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as long as the rod motion is symmetric. The period in the motion of these particles
is the same as the beating rod. At each time snapshot, we display all fluid particles
that have been released in the fluid flow previously. The left column of Figure 3d
shows streaklines from t = 0 to t = 0.084 which contains a whole period of the
rod beating cycle, 0.067. Streaklines form a closed loop, suggesting that the fluid
particle comes back to its original location. The observed period of the fluid particle
motion is about 0.07, close to the period of the rod motion. The right column plots
streaklines at later times, from t = 0.1 to 1.3, showing that all fluid particles follow
periodic motions all the time, with a zero net displacement. It is worth mentioning
that the periodicity of the computational domain (periodic boundary condition in
x) means the simulation domain repeats indefinitely, eliminating the finite size effect
of the simulation domain.

We denote by D the total displacement of the particle,

D =
√
x2D + y2D, where xD = xp, yD = yp − 0.75. (5)

Here xD, yD are the displacement of the fluid particle in the x, y direction, respec-
tively. Figure 3c shows the total displacement D of all the fluid particles present
at t = 2 as a function of the tp, using one rod, five synchronized rods (φ = 0),
and five non-synchronized rods (φ = 0.2), from left to right, respectively. Results
at other times show qualitatively similar behaviors. It is seen that increasing the
rod number from Nrod = 1 to 5 helps increase the particle displacements by about
four-fold. With a phase shift of φ =0.2 among rods, the maximum D is larger than
that of φ = 0. Proportionality between the maximum value of D and φ will be
investigated in the next section.

3.2. Net fluid transport with asymmetric rod motion. Two non-symmetric
rod motions are considered in this section. One is that the cilium beating velocity
changes between the effective and recovery stokes while fixing the rod length. The
other one is to fix the beating frequency, but take into account the shape changes in
the cilium between strokes by shortening the rod length during the recovery stroke.
The net displacement of particles is in the direction of the effective stroke, or toward
the positive x axis in our simulations.

3.2.1. Cilium beating velocity difference affects the transport ability. The cilium
beating velocity is often slower in the recovery stroke [41], which is a means of
asymmetry in the cilia motion. We consider a constant cilium velocity in either the
effective or recovery stroke, but apply a velocity difference between strokes. Consid-
ering a fixed cilium length of L = 0.6 and the cilium tip velocity is always 3.2fL, we
report the results in terms of the beating frequency f for convenience. Three cases
of beating frequency difference are computed. The frequency of the effective stroke
is doubled in each case from 7.8125 to 15.625, and to 31.25Hz. The frequency of
the recovery stroke is always 7.8125Hz. These values of frequency are within the
physiologically allowable range (Table 1). A more detailed range can also be ob-
tained from Sears et al. , where velocity profiles of recovery and effective strokes
are measured. We calculate the frequency differences from these measurements as
follows: use the maximum effective tip velocity as 375µm/sec and the minimum
recovery tip velocity as 10µm/sec, thus the beating frequency would have a higher
bound of about 25Hz in the effective stroke and a lower bound of about 0.5Hz in
the recovery stroke.
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Figure 4. (a) Streaklines of fluid particles induced by five rods
at t = 2. The frequency of the effective stroke is f = 31.25 (top),
15.625 (middle), 7.8125 (bottom). The frequency of the recovery
stroke is f = 7.8125 for all. The phase shift among rods is φ = 0.
The rod length is fixed to be Lc = 0.6. (b) Displacement D of all
fluid particles present at t = 2 as functions of tp, the time when
the particle is released into fluid, for the three cases in (a), respec-
tively.

Figure 4a shows streaklines of fluid particles at t = 2 in these three cases of cil-
ium velocity asymmetry, and Figure 4b plots the corresponding displacements of all
fluid particles. A larger transport distance is seen at a higher beating velocity dif-
ference. However, the key information of this figure is that, an exponential increase
in velocity difference does not guarantee an equal increase in the transport. One
might also notice that the particles have slightly displacements in the y direction as
well. The displacement in y is far less than that in the x direction, thus one could
expect that D is approximately the same as xD. Nevertheless, one will see soon in
the next figure that the transport distance induced by the cilium beating velocity
asymmetry is lower than those induced by cilium height differences between strokes.

3.2.2. Cilium height difference between strokes is key to transport capability. The
cilium bends during the recovery stroke (Figure 1a), which is mimicked by shorten-
ing the rod length in the simulation. Figure 5a shows streamlines with five beating
rods with the rod length changing as in (1) or Figure 1b. In Figure 5a, from t = 0.26
and 0.66, two rotating regions are present and the small recirculation region at the
left is well defined; at t = 0.34, there is only one dominant recirculation region.

Figure 5b shows the resulting streaklines at a sequence of times, which reveal
marked differences from the symmetric case (Figure 3d). In Figure 5b, a clear
preferred direction of these particles is seen, which is along the positive x axis. We
also observe a slight displacement in the y direction, suggesting that particles move
toward the epithelial surface. This downward movement is due to the different
boundary conditions at above (free surface) and below (no slip).

As the asymmetry in the cilium height between effective and recovery strokes can
have such a drastic effect on the particle transport, we carefully examine the rod
length function that depicts such an asymmetry. Figure 5c compares different rod
length functions. Figure 5(c1) plots the rod length Lc vs. θ in seven cases. Curves 1
to 5 have different lowest values in the rod length, Lmin = 0.4, 0.425, 0.45, 0.475, 0.5,
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Figure 5. (a) Streamlines induced by five rods at a sequence of
times, as indicated in the plots. The rod length shortens, following
(1) or Figure 1b. (b) Streaklines of fluid particles at a sequence
of times. (c1) Seven cases of the rod length Lc are plotted as a
function of its orientation θ. The solid line is the length for the
effective stroke, and the dash lines are for the recovery stroke. (c2)
Compare the fluid particle displacements D of curves 1 to 5 in (c1).
(c3) Compare the fluid particle displacements D of curves 3, 6 and
7 in (c1). The displacement D is plotted as a function of tp, the
time when the particle is released into fluid. For all plots of Figure
5, the number of rods Nrod = 5, the beating frequency is the same
between strokes, f = 15.625Hz, and the phase shift among rods is
φ = 0.2.

respectively. Curves 3, 6, and 7 have the same maximum and minimum rod lengths,
although the rod has a different shortening path in each case.

Figure 5(c2) compares the particle displacement D of curves 1 to 5, elucidating
the effects of the cilium height difference, Lmax − Lmin. In the figure, five different
values of Lmin are considered, 0.4, 0.425, 0.45, 0.475, 0.5, and Lmax is 0.6 for all.
These five curves are expressed in terms of third-order polynomials. Recall that
four conditions are required to determine their function expressions, and they are
Lc = 0.6 at θ = 0.8 and 2.4, Lc = Lmin and dLc/dθ = 0 at θ = 1.36. The arrow line
in the figure indicates results with a decreasing Lmin. The observed trend shows
that a decreasing value of Lmin contributes to an increasing value of D. Figure 5(c3)
compares D of curves 3, 6 and 7, for these three functions having the same height
difference, Lmax−Lmin. Displacements of all particles in these three cases are almost
identical, which suggests that how the cilium changes its height does not play an
important roll on the mucus transport, instead, what seems to be important is its
maximum height difference between the effective and recovery strokes, Lmax−Lmin.



MUCOCILIARY CLEARANCE: A NUMERICAL STUDY 1117

0 0.2 0.4
0

1

2

3

x 10−3

1

2

3 4

5

6, 7

m
ax

(D
)

Lmax−Lmin

(a1) 
(a2) 

(a3) 

Figure 6. Comparison of the maximum displacement max(D) due
to cilium beating velocity and height differences between the effec-
tive and recovery strokes, respectively. In the figure, three data
points (a1, a2, a3) at Lmax −Lmin = 0 correspond to those in Fig-
ure 4b; the data points (1, 2, 3, · · · , 7) correspond to the 7 cases of
cilium height difference in Figure 5(c2,c3).

For a better illustration, we compare in Figure 6 the maximum particle displace-
ments due to the cilium beating velocity difference and the cilium height difference
between strokes. The comparison is meaningful since parameters in these computa-
tions are around the physiological values. The particle displacement resulting from
the cilium height asymmetry is a few folds larger than that of the cilium beating
velocity asymmetry, suggesting that the former is a more effective mechanism for
driving the mucus transport.

3.2.3. Transport capability increases and saturates as rod density or beating fre-
quency increases. In order to examine the transport capability of the MCC as a
function of the tissue level parameters, we systematically vary three parameters in
our model, the rod number Nrod, the rod beating frequency f , and the phase shift
φ among rods, with their values listed in Table 3. The rod length follows (1) for all
computations in the following sections. Figure 7 shows results of max(D) at t = 2
as functions of the rod number Nrod at four beating frequencies, as indicated in the
plot. The phase shift is fixed to be φ = 0 in order to avoid rod tangling. Figure
7(ab) visualize the same data in two different ways, providing different aspects of
the results. Figure 7a plots max(D) vs. Nrod, and Figure 7b plots max(D) vs. the
beating frequency f . In Figure 7a, max(D) increases as the rod number increases
at all beating frequencies and then saturates at Nrod = 9. Meanwhile, when the rod
number is fixed, the faster they beat the more they move the fluid. Alternatively,
in Figure 7b, it is interesting to see the saturation in the maximum displacement
max(D), when the value of frequency f is greater than 25Hz and the rod number
is less than 5.

3.2.4. Phase shift between rods has no effect on transport capability. To study the
effect of the phase shift in the metachronal wave on the transport efficiency, we fix
the rod number Nrod = 5, and examine the joint results of the beating frequency and
the phase shift. Figure 8 shows max(D) vs. f at various values of the phase shift,
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Figure 7. The maximum displacement max(D) of fluid particles
present at t = 2 is shown as functions of (a) the rod number Nrod

in the semi-log scale and (b) the beating frequency f in the log-
log scale at four beating frequencies, f = 7.8125, 15.625, 25 and
31.25Hz. The phase shift among rods is φ = 0. The rod length
changes during recovery stroke, following (1) or Figure 1b.
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Figure 8. The maximum displacement of fluid particles present
at t = 2, max(D) is shown as a function of the beating frequency
f at various phase shifts, φ = 0, 0.05, 0.1, 0.15, 0.2, 0.25 and 0.3.
A dash-dot line of slope 3/2 is for visual guide. The number of
rods is always Nrod = 5. Four beating frequencies are considered,
f = 7.8125, 15.625, 25 and 31.25Hz. The rod length changes during
recovery stroke, following (1) or Figure 1b.

φ = 0, 0.05, 0.1, 0.15, 0.2, 0.25 and 0.3. In the figure, max(D) is proportional to the
beating frequency, and it follows a uniform scale of 3/2, independent of all values of
φ. As the f increases from 25 to 31.25Hz, saturation in max(D) is observed which
is also independent of the phase shift.

4. Discussion. From arsenical cobalt that destroyed miners’ lung in sixteenth cen-
tury Europe, to automobile fumes that hurt us in our everyday life, and to anthrax
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spores as potential bio-weapons, environmental aerosol particles have long been rec-
ognized as a potential threat to our health. Meanwhile, medication in the aerosol
form can be delivered painlessly from the airway using inhalers. Examples include
the most commonly used pressurized metered-dose inhaler for asthma medication
and the dry powder inhaler for delivering insulin to diabetic patients. Where par-
ticles come in contact with the epithelial cells and how they spread on the tissue
surface are crucial to understanding both the initiation of damage and the effi-
ciency of these inhalers. The mucociliary system on the lung epithelial cells is the
last barrier before these particles reach the tissue surface. It is important for both
protecting our airway health and treating ailments to understand how the cilia
beating drives the fluid motion and distributes particles.

Our study attempts to isolate the effects of major influencing parameters of the
beating cilia in order to provide an insight into basic bio-mechanical mechanisms of
particle transport in mucus. Such a methodology of isolating each parameter is dif-
ficult, if not impossible, in the wet-lab experiments because of the inter-dependence
among parameters. For example, as one attempts to control the cilia beating fre-
quency via changing the calcium concentration, the coordinated motion of the cilia
changes as well [40]. Experimental images have captured the height difference of a
beating cilium and the cilia synchronization [17] [38]. However, only a few studies
have tried to quantify their effects [30] [41] mainly because of the intrinsic messiness
of cilia motions in the airway. The facts that the cilia are short, densely packed,
and fast moving, all make it difficult to quantify the exact shape of a beating cil-
ium and “convert these ciliary shape changes into forms that are useful for testing
theoretical models of ciliary function” [41]. The fluid in reality, however, is more
complex. Mucus is a gel-like mesh-work of large molecules and behaves viscoelastic.
With mucus sitting on top of the periciliary fluid, the multiphase flow is not as
simple as the Stokes flow. A recent gel-on-brush proposal [6] suggests that mucin
macromolecules form dense mesh-work near cilia tips with each cilium acting like a
brush, which further complicates the fluid flow picture.

We use a rod-propel-fluid model to mimic the the beating cilia driving the mucus
flow. Our model simplifications are motivated by in vitro human airway epithelial
cultures, where the cilium motion is seen to be planar and the cilia are at the air-
liquid interface [41]. With such simplifications, this model enables us to take full
control of the cilia motion and capture the qualitative behaviors of the system to
a large extend. Our model confirms that the asymmetry is the key to achieve the
net transport in a fluid flow at a low Reynolds number, which is a well-received
fact since Purcell [36]. This test also serves as a verification that our model works
properly.

Conventional belief has been that “Airway cilia depend on precise changes in
shape to transport the mucus gel overlying mucosal surfaces” [41]. Numerically,
we have applied different functions to mimic the orbit of the cilium tip. It is
interesting that our results suggest the key factor contributing to the magnitude of
the net transport is the maximum cilium height difference between strokes, despite
all the complexity involved in the MCC. In other words, the precise shape of the
cilium does not matter; only the height difference, from the base to the tip of
the cilium, between effective and recovery strokes, affects the transport efficiency.
Similar conclusions are observed in [26] which studied shortened airway cilia due to
smoking. This finding is surprising, but is easy to understand if we consider the oar-
like motion [2]: because the cilium does not bend much during the effective stroke,
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it pushes the fluid motion more effectively than during the recovery stroke, while
the bending of the cilium reduces its interaction with the fluid. On the other hand,
Sears et al. [41] showed that the beating cilium of in vitro human airway epithelium
does not change height by much between strokes; they suggested that the cilium
velocity difference between strokes be the main mechanism for transporting fluid.
Our simulations agree that the rate difference between strokes alone can generate a
net fluid transport. We further showed that the cilium height asymmetry is more
effective in fluid transport than cilium velocity asymmetry.

If we carry on the oar analogy, the effects of cilium beating frequency and cilia
density are easier to understand. It is expected that the faster the oar rolls or more
oars there are, the faster the boat will travel. Thus it comes with no surprise that
our numerical study suggests that higher cilia beating frequency and denser cilia
array both help to increase the mucus transport. However, it is found that there
exists an upper bound in the cilia density and frequency above which the transport
ability ceases to increase. This observation implies a tolerance in cilia density which
helps explain the fact that the transport capacity does not differ at varying parts
of the airway where cilia density varies at these places. It also suggests that minor
damages of the ciliated cells will not significantly affect the transport capacity,
unless too many ciliated cells are killed such that the density drops significantly.

Braiman & Priel [7] expected the propelling velocity of the mucus is linearly
related to the cilia beating frequency. Numerically, we also observe the positive re-
lation between the cilia beating frequency and the maximum fluid particle displace-
ment. However, it is worth pointing out that we found the relation is exponential
(Figure 8). This implies that in order to increase the transport efficiency substan-
tially, one does not have to give the beating frequency an equally substantial rise.
A scaling of 3/2 is observed in the maximum displacement of fluid particles as a
function of the beating frequency. So far, we do not know of an appropriate way to
explain such a scaling. However, we did not exclude that this scaling might be an
artifact owing to the simplified assumptions in our numerical method.

The formation of metachronal waves via hydrodynamic interactions between the
cilia and mucus has been the focus of some recent studies [33] [47]. In particular,
Elgeti & Gompper [16] showed that the metachronal wave could drastically increase
the propulsion velocity and transport efficiency. However, in their models, it was
hard to vary the metachronal wave alone while fixing other parameters, thus a quan-
titative examination of the metachronism is difficult. In our model, the metachronal
wavelength is prescribed, and this enables us to study its effects on the mucus trans-
port directly. Our numerical results show that, on the contrary, the magnitude of
fluid particle displacements does not depend on the phase lag among cilia or the
existence of metachronal wave in the cilia array. This finding agrees with Sleigh
[43] who found that the propulsion of the mucus does not require strong ciliary
coordination. In addition, the empirical observations that metachronal waves are
much shorter and less well organized in human explants than e.g. in vitro frog [17]
but still transport mucus fine [41], also suggest that the details of the metachronal
waves play a less significant role in the transport.

In cystic fibrosis, the mucus viscosity increases due to the airway surface de-
hydration, leading to significant malfunction of mucociliary clearance (Donaldson
et al. 2006 [15]). The mucus viscosity is related to the Reynolds number in our
problem. If the typical length and velocity of the problem are fixed, a larger value
of mucus viscosity implies a smaller value of Reynolds number. In computations, as
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we reduce the Reynolds number from 0.01 to 0.005 (results are shown in Supporting
Materials), the magnitude of the net transport D is brought down by approximately
one fold.

In summary, our simple rod-propel-fluid model reveals some new findings regard-
ing the essential effects of cilia motion on the mucocilairy clearance. These new find-
ings moves us closer to understanding the complex dynamical system, which may
indicate ways to improve biological or physiological experiments, and potentially
help the design of artificial fluid-particle transport systems.

Acknowledgments. We would like to thank the anonymous reviewers for helpful
suggestions. We also thank Patrick Sears for many useful discussions.

Parameter Values References
Cilium length 5− 7µm Sanderson & Sleigh [38]
Cilium density 6− 8µm−2 Sleigh et al. [42]
Beating
frequency

13− 29Hz Sanderson & Sleigh [38]

14Hz Low et al. [29]
15.6Hz Marino & Aiello [30]
11− 15Hz (human nasal
cilia without mucus)

Chilvers & Challaghan [9]

Tracheal Mucus
Velocity

5.5mm/min−1 Foster et al. [19]

6.7− 11.4mm/min−1 Friedman et al. [21]

Table 1: Experimental measurements of the cilium length, cilia
density, beating frequency and tracheal mucus velocity in rabbit or
human.

[0, Tend] ∆t [xmin, xmax] [ymin, ymax] Nx ×Ny
[0, 2] 5× 10−5 [−5, 5] [0, 4] 100× 40

Table 2: Parameters used in computations: starting/ending times
[0, Tend], the time step ∆t, the size of the computational domain
[xmin, xmax]× [ymin, ymax], and the number of grid points Nx ×Ny
in x and y directions.

Rod number Nrod 1 3 5 9 17 33
Phase shift φ 0 0.2 0, 0.05, 0.1, · · · , 0.25, 0.3 0.2
Beating frequency f 7.8125, 15.625, 25, 31.25
Angular velocity ω 25, 50, 80, 100

Table 3. Parameters used to control the rod motion: the number of rods
Nrod, the phase shift φ between rods, and the beating frequency of the rod f .
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5. Supporting Materials.

5.1. Code Verification. We are computing two problems as the code verification.
One is the infinite swimming sheet, in which we show both convergence study and
comparison with analytic asymptotic solutions. The second is the convergence study
of the mucociliary computation.

5.1.1. Infinite swimming sheet with Re=2.5. The infinite swimming sheet is one
dimensional, with a location function of y = b sin(κx − ωt). Both Taylor [44] and
Tuck [45] have derived an analytic solution of this problem in terms of U/V with a
zero Reynolds number at a small amplitude b. Here, V is the phase speed, V = ω/κ.
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U is the mean traveling speed, computed by averaging the horizontal velocity of the
swimming sheet in the domain over one time period. Similar comparisons are used
by Fauci and Peskin [18] in the study of aquatic animal locomotion.

The asymptotic solution of Taylor [44] is

U

V
=

1

2
b2κ2

(
1− 19

16
b2κ2

)
, (6)

and the solution of Tuck [45] is

U

V
=

1

4
b2κ2

(
1 +

1

F (Re)

)
, F (Re) =

[
1 +
√

1 +Re2

2

]1/2
. (7)

The Reynolds number is calculated as Re = ρω/µκ2. Parameters in the verification
are chosen to be the same as that in Fauci and Peskin. For convenience, we list
their values in the table below.

Symbol Units Values
x cm−1 10π
ω sec−1 8pi
ρ gm/cm3 1
µ gm/cm · sec 0.01
Re - 2.5

Table 4. Values of Parameters

Figure 9a shows the computation domain and location of the swimming sheet.
Figure 9b shows the convergence of both normalized horizontal and vertical veloc-
ities along x = 0.1 in the domain. It is seen that velocities converge. Figure 10
compares U/V among our simulation results (labeled as Computed), and Taylor
and Tuck’s asymptotic analytic solutions.
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Figure 9. (a) Computational domain and location of the sheet
at t = 0. (b) Convergence study of the relative horizontal and
vertical velocities, ux/umax and uy/umax, respectively, along the
vertical line of x = 0.1. The time is at t = 20 at which the result
is already steady state. The mesh size h is indicated in the figure
legend. umax is the maximum velocity magnitude over the whole
computational domain.



MUCOCILIARY CLEARANCE: A NUMERICAL STUDY 1125

0 0.002 0.004 0.006 0.008 0.010

0.01

0.02

0.03

0.04

0.05

Amplitude

U
/V

 

 

Taylor
Tuck
Computed

Figure 10. Comparisons of our computed results with the asymp-
totic analytic solutions. The amplitude is b as in y = b sin(κx−ωt)

5.1.2. Mucociliary computation. The problem setup of the mucociliary model is de-
scribed in great details in the paper and will not be reiterated here. The convergence
study of the velocity field is performed at t = 1 with five beating cilia (rods). Figure
11a plots the streamlines at t = 1. The length of the rod is always Lc = 0.6, the
beating frequency is 15.625Hz, and the phase shift among cilia is φ = 0.2. Figure
11b is the convergence study of the normalized horizontal and vertical velocities
along x = 0 in the domain.
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Figure 11. (a) Streamlines at t = 1. (b) Convergence study of
the relative velocity ux/umax and uy/umax in the x direction and
y direction respectively, along a vertical line of x = 0. The mesh
size in (a) is h = 0.1.

5.2. Computations with Re = 0.005. All computations shown in the paper are
using Re = 0.01, Here, a set of computations are performed with Re = 0.005, which
aims to elucidate the effect of the mucus viscosity. The mucus viscosity is related

to the Reynolds number in our problem via the formulation of Re = ρL2

µT . If the

typical length (L) and time (T ) are fixed, a larger value of mucus viscosity µ implies
a smaller value of Reynolds number Re.

Figure 12 shows the total displacements D of all the fluid particles present at
t = 2 as a function of tp, It is seen that increasing the rod number from Nrod = 1
to 5 helps increase the particle displacements almost by four-fold. Similar results
are observed at Re = 0.01 (Figure 3 in the paper).

Figure 13a plots two functions of rod length Lc against the rod orientation, and
Figure 13b shows the displacements of all fluid particles present at t = 2 using
these two functions. It is seen that the transport ability is still identical as long as
the difference in the maximum cilium height difference stays the same during the
effective and recovery stokes.
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Figure 12. Plots of displacement D of all fluid particles present
at t = 2 as functions of tp. The results are for symmetric motions
of (a) one rod, (b) five synchronized rods. The beating frequency
for all is f = 15.625Hz. The rod length is fixed to be Lc = 0.6.
The Reynolds number is Re = 0.005.
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Figure 13. (a) Two functions of the rod length Lc vs. its orienta-
tion θ. The solid line is the length for the effective stroke, and the
dash lines are for the recovery stroke. (b) Compare the fluid par-
ticle displacements D of curves 1 and 2 in Figure 13a.The beating
frequency for both is f = 15.625Hz, the number of rods Nrod = 5
and the phase shift φ = 0.2. The terminal time is t = 2. The
Reynolds number is Re = 0.005.
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