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Abstract. In this paper, we analyze a general predator-prey model with state

feedback impulsive harvesting strategies in which the prey species displays
a strong Allee effect. We firstly show the existence of order-1 heteroclinic

cycle and order-1 positive periodic solutions by using the geometric theory

of differential equations for the unperturbed system. Based on the theory of
rotated vector fields, the order-1 positive periodic solutions and heteroclinic

bifurcation are studied for the perturbed system. Finally, some numerical

simulations are provided to illustrate our main results. All the results indicate
that the harvesting rate should be maintained at a reasonable range to keep

the sustainable development of ecological systems.

1. Introduction. It is known that many evolution processes are characterized by
the fact that at certain moments of time some species experience abrupt changes
of states. It is natural to assume that these perturbations act instantaneously, that
is, in the form of impulses. Moreover, in some real world problems such as pest
integrated management, fish harvesting and wildlife management, the correspond-
ing control strategies which cause the perturbations will only be implemented if the
density of a population reaches a threshold value rather than impulses occurring
at certain fixed moments of time. This leads to impulsive state feedback control
strategies (see [6, 9, 10, 11, 12, 15, 16, 17, 19, 20, 21, 23] and references therein).
What’s more, the predator-prey interaction is ubiquitous in nature and it has al-
ways been a key issue in mathematical modeling of ecological processes since the
pioneering work of Lotka and Volterra.

Through experimental studies, Warder Clyde Allee, an American ecologist, dem-
onstrated that goldfish grow more rapidly when there are more individuals within
the tank [1]. This led him to conclude that aggregation can improve the survival
rate of individuals and that cooperation may be crucial in the overall evolution of
social structures. Such a biological phenomenon is referred to as an Allee effect.
Generally speaking, a population is said to have an Allee effect if the growth rate
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per capita is initially an increasing function for the low density. Moreover it is
called a strong Allee effect if the per capita growth rate in the limit of low density
is negative, and a weak Allee effect if the per capita growth rate is positive at zero
density. Allee effect may occur under several mechanisms, such as difficulties in
finding mates when the population density is low [8, 13], social dysfunction at small
population sizes and increased predation risk due to failing flocking or schooling
behavior [4]. What’s more, analysis of systems involving Allee effect has gained lots
of concerns in many fields such as conservation biology [5], sustainable harvesting
[14], biological invasions [3], meta population dynamics [25] and interacting species
[24].

Here, we introduce a general impulsive harvesting predator-prey system by in-
corporating the influence of the relative speed of the predator population growth
to the growth rate of its prey, where the prey species displays a strong Allee effect.
Let x(t) and y(t) denote the population densities of the prey and predator species,
respectively; K > 0 is the carrying capacity of the prey and d > 0 is the death rate
of the predator. The species interactions with the state feedback control strategy
are modeled by the following predator-prey system:

x′(t) = g(x)(f(x)− y) + δy(g(x)− d),
y′(t) = y(g(x)− d).

}
y < τ,

∆x = −px,
∆y = −qy.

}
y = τ,

x(0+) = x0, y(0+) = y0 < τ,

(1)

where x(0+) and y(0+) denote the initial densities of the prey and predator pop-
ulations, respectively. The initial condition of system (1) can be any point in the
non-negative plane R2

+ = {(x, y) ∈ R2 : x ≥ 0, y ≥ 0}. Throughout this paper
we assume that the initial density of the predator population is always less than
τ . Otherwise, the initial values are taken after an impulsive harvesting application.
What’s more, we assume that f, g and τ satisfy

(A1): f ∈ C1(R+,R), f(K) = 0; there exists an m ∈ (0,K) such that f(m) = 0;
f(x) > 0 for m < x < K and f(x) < 0 for x < m; there exists an n ∈ (m,K)
such that f ′(x) > 0 on [m,n) and f ′(x) < 0 on (n,K];

(A2): g ∈ C1(R+,R), g(0) = 0, g(x) > 0, g′(x) > 0 for x ∈ (0,K]; there exists
a λ ∈ (m,K) such that g(λ) = d;

(A3): 0 < τ < f(λ).

In system (1), g(x) is the so called predator functional response, and g(x)f(x) is
the net growth rate of the prey when δ = 0. δ > 0 represents the influence of the
relative speed of the predator population growth to the growth rate of the prey. ∆x
and ∆y are discontinuous changes in, respectively, x and y as a consequence of the
impulsive harvesting, and p, q ∈ [0, 1) are the harvesting rates for species x and y,
respectively. Here, we assume that the density of the predator species is observable.
In the absence of predation, the prey has a strong Allee effect which can be gained
from the assumption (A1) and m is the Allee effect threshold value. The condition
(A2) exhibits the commonly used functional responses: Holling type I, Holling type
II, Holling type III, Ivlev type and some other equivalent forms. From the point of
view of biology, we only restrict our attention to system (1) in R2

+. For system (1),
in the absence of the impulsive harvesting and δ = 0, authors of [18] gave a global
bifurcation analysis and proved the existence/uniqueness and the nonexistence of
limit cycles for appropriate ranges of parameters.
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The remaining of this paper is organized as follows. Firstly, some preliminaries
are given in the coming section. Then in Section 3, the existence of order-1 positive
periodic solutions and heteroclinic bifurcation with respect to p are proved for the
unperturbed system (i.e., system (1) with δ = 0). Followed in Section 4, when p is
fixed and δ > 0, the order-1 positive periodic solutions and heteroclinic bifurcation
about δ associated with system (1) are presented. The results are summarized and
supported with numerical simulations in Section 5, followed by some conclusions.

2. Preliminaries. For the convenience of statements in this paper, we introduce
the following definitions and lemmas.

Definition 2.1. [2] Consider the state-dependent impulsive differential equations{
x′(t) = P̂ (x, y), y′(t) = Q̂(x, y), (x, y) /∈M{x, y},
∆x = α(x, y), ∆y = β(x, y), (x, y) ∈M{x, y}. (2)

We define the dynamical system consisting of the solution mapping of system (2)

as a semicontinuous dynamical system, denoted as (Ω, f̂ , ϕ,M). We require that
the initial point P of the system (2) should not be in the impulsive set M{x, y},
that is P ∈ Ω = R2

+ \M{x, y}. For any P ∈ Ω, the function f̂P : R+ → Ω defined

by f̂P (t) = f̂(P, t) is continuous and we call f̂P (t) the trajectory of P . Here ϕ is
a continuous mapping satisfying ϕ(M) = N and we call ϕ the impulsive mapping
and N{x, y} the impulsive range. M{x, y} and N{x, y} represent the straight lines
or curves in the plane R2

+.

Definition 2.2. [2] A trajectory f̂(P, t) is called an order-1 periodic solution with

period T if there exist P ∈ N and T ∈ (0,∞) such that f̂(P, T ) = Q ∈ M with

ϕ(Q) = P and f̂(P, t) /∈ M for 0 < t < T . The trajectory {f̂(P, t)|t ∈ (0, T ]}
together with the impulsive line QP is called an order-1 cycle. If the order-1 cycle
has a singularity, then it is called an order-1 singular cycle. Furthermore, if the
order-1 cycle has only one singularity and it is a saddle, then the order-1 singular
cycle is called an order-1 homoclinic cycle; if the order-1 cycle has two singularities
and they are saddles, then the order-1 singular cycle is called an order-1 heteroclinic
cycle.

Notice that when the impulsive set M and the impulsive range N of system (2)
are straight lines, a coordinate system can be well defined in the impulsive range N .
Let A ∈ N be a point, and let its coordinate be a. Assume that the trajectory from
the point A intersects the impulse set M at a point A′, and, after the impulsive
effect, the point A′ is mapped to the point A1 ∈ N with the coordinate a1. Then
we define the successor point and the successor function as follows.

Definition 2.3. [2] The point A1 is called the successor point of A, and the function
ĝ(A) = a1 − a is called the successor function of the point A.

Lemma 2.4. [2] The successor function ĝ(A) is continuous.

Lemma 2.5. [2] For system (2), if there exist Ã, Ā ∈ N satisfying ĝ(Ã)ĝ(Ā) < 0,
then the system possesses at least one order-1 periodic solution.

Notice that system (1) can be considered as a perturbed system with parameter
δ changing from δ = 0 to δ > 0. Therefore, we give some properties about the
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general perturbed system of system (2), which is given by{
x′(t) = P̃ (x, y, δ), y′(t) = Q̃(x, y, δ), (x, y) /∈M{x, y},
∆x = α(x, y), ∆y = β(x, y), (x, y) ∈M{x, y}. (3)

Let ∆ =

∣∣∣∣∣ P̃ Q̃
∂P̃
∂δ

∂Q̃
∂δ

∣∣∣∣∣. We have the following definition and lemma.

Definition 2.6. [22] For any often point on the trajectory of system (3), if ∆ > 0,
then system (3) constitutes positive rotated vector fields concerning the parameter
δ; if ∆ < 0, then system (3) constitutes negative rotated vector fields.

Lemma 2.7. [22] In the positive (negative) rotated vector fields of system (3), the
rotated direction of vector fields is counterclockwise (clockwise) when parameter δ
changes from δ = 0 to δ > 0.

3. The existence of order-1 positive periodic solutions and heteroclinic
bifurcation for system (1) with δ = 0. When δ = 0, system (1) degenerates
into the following system:

x′(t) = g(x)(f(x)− y),
y′(t) = y(g(x)− d).

}
y < τ,

∆x = −px,
∆y = −qy.

}
y = τ,

x(0+) = x0, y(0+) = y0 < τ,

(4)

where the assumptions (A1)-(A3) are also satisfied. We call system (4) as the
unperturbed system.

It is typical for predator-prey systems that the x- and y-axes and the interior of
the first quadrant are all invariant under system (4) with the assumptions (A1) and
(A2) satisfied and thus the solutions with positive initial conditions are positive for
all time t. In the following we investigate the long-term behavior of system (4).

Theorem 3.1. All the solutions of system (4) with the positive initial condition

(x0, y0) are uniformly ultimately bounded by a region Ω̂, where

Ω̂ = {(x, y) : 0 < x ≤ K, y ≥ 0, x+ y ≤ f(n)g(K)

d
+K}.

Proof. Denote l1 : x = K. Calculating the time derivative of l1 along the trajectories
of system (4) yields that

dl1
dt

=
dx

dt
|x=K = g(K)(f(K)− y) = −g(K)y < 0.

Thus, the trajectory of system (4) is from the right of l1 through l1 into the left.

Denote l2 : V (x, y) = x + y −
(
f(n)g(K)

d +K
)

= 0. By a direct calculation, we

have

dl2
dt

=

(
dx

dt
+
dy

dt

)
|V (x,y)=0 = f(x)g(x)− f(n)g(K) + d(x−K) < 0.

Thus, l2 : V = 0 is non-tangent and the trajectory of system (4) is from the upper
right of l2 through l2 into the lower left. Hence, system (4) is uniformly ultimately

bounded by {(x, y) : 0 < x ≤ K, y ≥ 0, x + y ≤ f(n)g(K)
d + K}. This leads to the

conclusion of the theorem.
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Theorem 3.2. For system (4), there always exist one trivial equilibrium S0 = (0, 0),
two boundary equilibria S1 = (m, 0) and S2 = (K, 0) and a positive equilibrium
S+ = (λ, f(λ)). The trivial equilibrium S0 is a stable node; S1 is a saddle point with
the stable manifold entering S1 from the region above the prey nullcline y = f(x)
and its unstable manifold given by {(x, 0) : x > 0}; S2 is a saddle point with the
stable manifold given by {(x, 0) : x > 0} and its unstable manifold entering the
region {(x, y) ∈ R2

+ : y > f(x)} from S2; S+ = (λ, f(λ)) is unstable for λ ∈ (m,n)
and stable otherwise.

Proof. Followed by the assumptions (A1) and (A2), it is easy to see that system
(4) has four fixed points given by

(x, y) = (0, 0), (m, 0), (K, 0), (λ, f(λ)),

where S0 = (0, 0) is a trivial equilibrium, S1 = (m, 0) and S2 = (K, 0) are boundary
equilibria and S+ = (λ, f(λ)) is the positive equilibrium. The stability of the
equilibrium state is determined by the nature of eigenvalues of the Jacobian matrix

J(x, y) =

(
g′(x)f(x) + g(x)f ′(x)− g′(x)y −g(x)

yg′(x) g(x)− d

)
.

The Jacobian matrix J(x, y) evaluated at the trivial equilibrium point S0 takes the
form

J(x, y)|S0 =

(
g′(0)f(0) 0

0 g(0)− d

)
.

Using (A1) and (A2) we can conclude that the eigenvalues λ1 = g′(0)f(0) < 0 and
λ2 = g(0)− d < 0. Hence, (0,0) is a stable node.

At the boundary equilibrium point S1 Jacobian matrix J(x, y) is given by

J(x, y)|S1
=

(
g(m)f ′(m) −g(m)

0 g(m)− d

)
.

Then the eigenvalues are λ1 = g(m)f ′(m) > 0 and λ2 = g(m) − d < g(λ) − d = 0.
So S1 is a saddle with the unstable manifold {(x, 0) : x > 0}. Now, we show
that the stable manifold of the fixed point S1 (denoted by W s(S1)) approaches S1

asymptotically as t→ +∞ from the region {(x, y) ∈ R2
+ : y > f(x)}. Obviously, an

eigenvector of J(x, y)|S1
corresponding to the eigenvalue λ2 is

(xS1
, yS1

)T =

(
g(m)

g(m)f ′(m)− (g(m)− d)
, 1

)T
.

Hence the tangential direction of W s(S1) at S1 is kS1
= g(m)f ′(m)−(g(m)−d)

g(m) =

f ′(m) − g(m)−d
g(m) = f ′(m) − λ2

g(m) > f ′(m), which implies that W s(S1) is above the

prey-nullcline y = f(x).
The Jacobian matrix J(x, y) at the equilibrium S2 is given by

J(x, y)|S2
=

(
g(K)f ′(K) −g(K)

0 g(K)− d

)
.

It follows that the eigenvalues λ1 = g(K)f ′(K) < 0 and λ2 = g(K)−d > g(λ)−d =
0. Hence, S2 is a saddle with the stable manifold {(x, 0) : x > 0}. An eigenvector
corresponding to the eigenvalue λ2 is

(xS2
, yS2

)T =

(
g(K)

g(K)f ′(K)− (g(K)− d)
, 1

)T
.
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Thus, the tangential direction of the unstable manifold of S2 (denoted by Wu(S2))

at S2 is kS2
= g(K)f ′(K)−(g(K)−d)

g(K) = f ′(K)− g(K)−d
g(K) = f ′(K)− λ2

g(K) < f ′(K), which

implies that Wu(S2) is above the prey-nullcline y = f(x).
We can calculate the Jacobian matrix at the positive equilibrium S+ as follows

J(x, y)|S+
=

(
g(λ)f ′(λ) −g(λ)
f(λ)g′(λ) 0

)
.

Then the eigenvalues λ1 and λ2 satisfy λ1+λ2 = g(λ)f ′(λ) and λ1λ2 = f(λ)g(λ)g′(λ)
> 0 and thus S+ is stable if λ ∈ (n,K) and unstable if λ ∈ (m,n).

Now, we mainly discuss the existence of positive periodic solutions and hetero-
clinic cycles for system (4) via the geometric theory of differential equations. We
always assume that λ ∈ (n,K) holds in the following. For system (4), M{x, y} =
{(x, y) : x ∈ R+, y = τ}, N{x, y} = {(x, y) : x ∈ R+, y = (1− q)τ}.

Suppose that the stable manifold W s(S1) intersects y = τ and y = (1 − q)τ
respectively at points A and B, the unstable manifold Wu(S2) intersects y = τ
and y = (1 − q)τ respectively at points A1 and B1 and the predator-nullcline
x = λ intersects y = (1 − q)τ at the point C. Obviously, the impulsive function
ϕ(x) = (1− p)x, x ∈ (0,K]. Let

p∗ = 1− xB
xA1

, p0 = 1− xC
xA1

. (5)

(i) if p0 < p < p∗, then xB < ϕ(xA1
) < xC . We claim that there exists a unique

order-1 positive periodic solution for system (4). In fact, for given p ∈ (p0, p∗),
assume that A1 is mapped into D due to the impulsive effect, then D is between B
and C. Suppose that the trajectory starting from the point D intersects y = τ at
the point D1. Note that any two trajectories cannot intersect. Hence, xD1 < xA1 .
Based on the impulsive effect, D1 jumps to the point D+

1 . Then

xD+
1

= ϕ(xD1
) = (1− p)xD1

< (1− p)xA1
= ϕ(xA1

) = xD,

which implies that the successor function satisfies

ĝ(D) = xD+
1
− xD < 0.

On the other hand, take a point Bε such that xB < xBε < xD+
1

. Assume that

the trajectory with the initial point Bε intersects y = τ at the point Bε1, then
xD1

< xBε1 < xA1
. Due to the impulsive effect, Bε1 is mapped into the point B+

ε1.
Then

xB+
ε1

= (1− p)xBε1 > (1− p)xD1
= xD+

1
.

Thus

ĝ(Bε) = xB+
ε1
− xBε > xD+

1
− xBε > 0.

It follows from Lemma 2.4 and Lemma 2.5 that there exists at least one order-1
positive periodic solution with the initial point between Bε and D. See Fig. 1 for a
graph illustration.

Next we discuss the uniqueness of the order-1 positive periodic solution. Let
E and F be any two points on the line segment BεD with xE < xF and the
corresponding trajectories be

E → E1 → E+
1 ;

F → F1 → F+
1 .
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D1

D+
1
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Bε1
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ε1

Figure 1. Illustration of the order-1 positive periodic solution in (4).

If xE < xF , then xF1
< xE1

. Thus,

xF+
1

= (1− p)xF1
< (1− p)xE1

= xE+
1
.

It follows that

ĝ(E)− ĝ(F ) = xE+
1
− xE − (xF+

1
− xF ) = (xF − xE) + (xE+

1
− xF+

1
) > 0,

which means that ĝ(·) is a monotone decreasing function for any point in BεD.
Therefore, there exists a unique H such that ĝ(H) = 0. Fig. 2 gives a geometrical
interpretation of the monotonicity of the successor function.

x

y

ẋ = 0ẏ = 0O

A

B

A1

B1

S1 S2

M

NBε E F

E1F1

DF+
1

E+
1

Figure 2. Geometry associated with the monotonicity of the suc-
cessor function.

(ii) if p = p∗, then ϕ(xA1) = xB . Thus, B̃S1, S1S2, S̃2A1 together with the
impulsive line A1B constitute a heteroclinic cycle for system (4) (see Fig. 3).

(iii) if p > p∗, then ϕ(xA1
) < xB . Notice that y0 < τ < f(λ). Therefore,

the trajectory with the initial condition (x0, y0) associated with system (4) will
ultimately approach the origin, which implies that both the prey and predator
populations will go extinct.

Summarizing the above, we have the following theorem:
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ẋ = 0ẏ = 0O

A

B

A1

B1

S1 S2

M

N

Figure 3. The illustration of the order-1 heteroclinic cycle in (4)

Theorem 3.3. For system (4), there exist p∗, p0 satisfying (5), such that for any
p ∈ (p0, p∗), system (4) has a unique order-1 positive periodic solution; if p = p∗,
then the positive periodic solution disappears and bifurcates an order-1 heteroclinic
cycle; if p > p∗, then system (4) has no periodic solutions and the trajectories will
ultimately approach the origin.

4. Heteroclinic bifurcation for system (1) with δ > 0 . In practical ecology,
people always think that the growth rate of the prey is affected not only by the
predator population density but also the relative speed of the predator population
growth to a certain extent [7]. Therefore, in this section we consider the perturbed
system (1).

In the following, we always suppose p = p∗. Choosing δ as a control parameter,
we discuss the heteroclinic bifurcation for system (1) by using the theory of rotated
vector fields. It must be borne in mind that the location and the index of the
singular points of system (1) remain unchanged and M{x, y} and N{x, y} have
same forms as the system (4).

For system (1), we have P̃ (x, y, δ) = g(x)(f(x)− y) + δy(g(x)− d), Q̃(x, y, δ) =
y(g(x)− d). Then

∆ =

∣∣∣∣∣ P̃ Q̃
∂P̃
∂δ

∂Q̃
∂δ

∣∣∣∣∣ = −y2(g(x)− d)2 < 0.

It follows from Lemma 2.7 that the rotated direction of vector fields of system (1)
is clockwise.

For the perturbed system (1), suppose that the stable manifold of S1 intersects
y = τ and y = (1−q)τ respectively at points Aδ and Bδ, and the unstable manifold
of S2 intersects y = τ and y = (1− q)τ respectively at points A1δ and B1δ. In view
of the rotated direction of vector fields of system (1), it is easy to see that xBδ > xB
and xA1δ

> xA1 when parameter δ changes from δ = 0 to δ > 0. Assume that A1δ

is mapped into A+
1δ, we have the following three situations:

• if xA+
1δ
< xBδ , then system (1) doesn’t possess periodic solutions and both

species become extinct;
• if xA+

1δ
= xBδ , then system (1) has an order-1 heterocline cycle which is formed

by B̃δS1, S1S2, S̃2A1δ together with the impulsive line A1δBδ;
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• if xA+
1δ
> xBδ , we claim that there exists a unique order-1 positive periodic

solution for the system (1). In fact, suppose that the trajectory starting from
the point A+

1δ firstly intersects y = τ at the point A2δ and then jumps into

A+
2δ due to the impulsive effect. Since different trajectories cannot intersect,

we get xA+
2δ
< xA+

1δ
. Therefore, the successor function satisfies

ĝ(A+
1δ) = xA+

2δ
− xA+

1δ
< 0. (6)

On the other hand, take a point Bδη such that xBδ < xBδη < xA+
2δ

and assume

that Bδη → Bδη1 → B+
δη1. By the same arguments as in Section 3, we get

Bδη1 is between A1δ and A2δ and xA+
2δ
< xB+

δη1
< xA+

1δ
. Therefore

ĝ(Bδη) = xB+
δη1
− xBδη > xA+

2δ
− xBδη > 0. (7)

Using the inequalities (6) and (7), we can conclude that there exists an
order-1 positive periodic solution with the initial point between Bδη and A+

1δ.
Fig. 4 is referred to as a geometrical interpretation of the existence of the
positive periodic solution. Similarly as the before, we can prove that the
order-1 positive periodic solution is unique.

x

y

ẋ = 0ẏ = 0O

A Aδ

B

A1

A1δ

B1
B1δ

S1 S2

M

N

A+
1δ

A2δ

A+
2δ

Bδ Bδη

Bδη1

B+
δη1

Figure 4. Geometry associated with the existence of the order-1
positive periodic solution for the perturbed system (1).

Summarizing the above, we have the following theorem.

Theorem 4.1. For p = p∗, if xA+
1δ
> xBδ , then system (1) possesses a unique order-

1 positive periodic solution; if xA+
1δ

= xBδ , then the order-1 positive periodic solution

breaks and system (1) undergoes an order-1 heteroclinic bifurcation; if xA+
1δ
< xBδ ,

then the trajectories of system (1) will ultimately approach the origin.

Remark 1. Theorem 3.3 shows that the unperturbed system (4) (i.e., system
(1) with δ = 0) possesses an order-1 heteroclinic cycle when p = p∗. However,
Theorem 4.1 implies that the dynamical behaviors of the original system (4) will
be changed if the perturbation appears (i.e., δ > 0 in system (1)).

5. Summary and discussion. Based on the geometric theory of differential equa-
tions and the method of the successor function, we discuss a general predator-prey
system with the state feedback control strategy in which the prey species displays
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a strong Allee effect. The relation between the harvest rate p and the dynam-
ics of system (4) is presented (see Theorem 3.3). If the harvest rate p satisfies
p0 < p < p∗, then a unique order-1 positive periodic solution to system (4) exists.
When p increases and attains p∗, the positive periodic solution breaks and bifurcates
an order-1 heteroclinic cycle. If p keeps on increasing, then the order-1 heteroclinic
cycle disappears and both species tend to become extinct, in which case the system
will collapse. Considering the influence of the relative speed of the predator pop-
ulation growth to the growth rate of the prey and assuming p = p∗, we study the
existence of order-1 positive periodic solutions and heteroclinic bifurcation for the
perturbed system (1). Using the theory of rotated vector fields, we get that system
(1) possesses a unique order-1 positive periodic solution if xA+

1δ
> xBδ . In the case

of xA+
1δ

= xBδ , system (1) undergoes an order-1 heteroclinic bifurcation. Otherwise,

system (1) will collapse.
To testify the effectiveness of these theoretical results, concrete examples are

performed. In these numerical tests, we take the functional response as Holling
type I (g(x) = x (0 < x ≤ K)), Holling type II (g(x) = 2x

1+x ), Holling type III

(g(x) = 2x2

1+x2 ), and Ivlev type (g(x) = 1 − e−2x), respectively. f(x) is chosen to

satisfy g(x)f(x) = x(1 − x)(x − 0.2), that is, both the intrinsic growth rate and
the carrying capacity for the prey species are normalized to 1 and the strong Allee
threshold value m equals to 0.2. Other parameters are d = 0.8, q = 0.6, τ = 0.1.
Obviously, the saddle points are (0.2, 1) and (1, 0). The results of Theorem 3.3
are shown in Figs. 5-8, where p∗ equals to 0.758, 0.746, 0.766, 0.743, respectively.
For system (1) with δ = 0.022, as is shown in Figs. 9 and 10, there exist order-1
heteroclinic cycles for Holling type I and III functional responses, but no periodic
solutions for Holling type II and Ivlev type.

For a general predator-prey interaction system with state impulsive harvesting
strategies for both populations and a fixed harvesting rate for the predator, we
conclude that the harvesting rate for the prey should be maintained at a reasonable
range from above results. Otherwise, both species will be driven to extinction
and the sustainable development of the ecological system will be disrupted. Once
the perturbation for the system appears, both the parameter perturbation and the
predator-prey interaction effect play important roles in keeping the balance of the
ecology. Moreover, with the economic factor of harvesting the predator and prey
species in mind, optimal harvesting strategy should be put forward. Certainly, other
kinds of state feedback control, such as the harvesting strategy which is implemented
when the total amount of the two species reach a threshold value, can also be
considered. These will be included in our further studies.
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