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Abstract. The goal of this paper is to analyze a model of cancer-immune sys-
tem interactions from [16], and to show how the introduction of control in this

model can dramatically improve the hypothetical patient response and in effect

prevent the cancer from growing. We examine all the equilibrium points of the
model and classify them according to their stability properties. We identify an

equilibrium point corresponding to a survivable amount of cancer cells which

are exactly balanced by the immune response. This situation corresponds to
cancer dormancy. By using Lyapunov stability theory we estimate the region

of attraction of this equilibrium and propose two control laws which are able

to stabilize the system effectively, improving the results of [16]. Ultimately, the
analysis presented in this paper reveals that a slower, continuous introduction

of antibodies over a short time scale, as opposed to mere inoculation, may lead
to more efficient and safer treatments.

1. Introduction. Antibody therapy (immunotherapy) for cancer is a novel and
promising approach to treat the disease. There are currently methods of propa-
gating antibodies outside of the body, then returning them in order to boost the
immune system [20]. The delivery of antibodies to the patient has to take into
consideration two competing factors. On one hand, a large amount of antibodies
tends to keep the concentration of proliferating cancer cells low and facilitate their
transition into the quiescent state. On the other hand, the addition of too high a
concentration of antibodies may induce metastasis of tumors by initially shrinking
the tumor, resulting in potentially rapid angiogenesis, which may lead to metastasis
of the remaining tumor [1], [5]. The addition of antibodies may also cause other
adverse side effects, such as hypophysitis, enterocolitis, and hepatitis (see, e.g. the
side effects of some of the subjects in [17]). Therefore, it is important to administer
any additional antibodies very carefully. It is in fact advisable to resort, as much
as possible, to the natural response of the body.

Given a dynamical model of cancer cell-antibody interaction, a stable and non-
lethal situation for the patient corresponds to a perfect balancing of active tumor
cells, antibodies and quiescent tumor cells, with active tumor cells remaining at a
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survivable level. This is often referred to as “cancer dormancy”. Mathematically it
corresponds to an equilibrium point of the model.1 Given that this point is stable,
the body is predicted to have a natural way to return to this equilibrium, after
a small perturbation. In system theoretic terms, the perturbation does not move
the state of the system away from a region of attraction of the equilibrium point,
and the state will converge to the equilibrium naturally, as time progresses. The
pathological situation occurs when the perturbation is so large that the state exits
the region of attraction of the dormancy equilibrium point. In this case, if the
cancer is left untreated, the population of cancerous cells will grow to the point of
becoming lethal. In the spirit of this analysis, our approach is to use a small dose
of antibodies in order to control the state of the system back into the region of
attraction and then discontinue the administration of antibody therapy. Moreover,
we allow for the possibility of, in principle, continuous administration of antibodies,
perhaps through a controlled intravenous drip, as opposed to studies that analyze
the evolution of the system given an initial concentration.

Remark 1. Such an approach requires on one hand a mathematical model of the
progression of the disease and the effect of antibody therapy. On the other hand,
it requires an analysis of its equilibrium points, their stability properties as well
as physical significance, and the determination of an estimate of the region of at-
traction. Finally, it requires the design of an appropriate and physically realizable
control strategy (i.e., antibody therapy) to drive the state of the system to the
region of attraction.

Remark 2. While there are currently a number of different models describing
cancer dormancy from a mathematical perspective (see [24] for an excellent review),
we choose a particular model from [16] for its simplicity in order to demonstrate
how continuous administration of antibodies may be more effectively applied to
manipulate the system dynamics, as opposed to simple inoculation, as discussed
in [16], and because it seems to be the most realistic model presented there. This
particular choice of model additionally allows us to demonstrate a non-standard
control technique, by recognizing the form of the differential equation, solving it,
and using this solution to dictate our control scheme. This will, in effect, allow us
to choose a profile for the way the active tumor cells behave, at least for a short
time scale.

In this paper we demonstrate a system theoretic analysis of a mathematical model
of cancer dormancy and antibody therapy presented in [16], and propose control
laws (which have the meaning of therapeutic strategies) to modify the progression
of the disease to a dormant state. We shall see from analysis and simulations
that we are able to obtain a better performance than in [16]. In particular, even
when compared with the most favorable situation presented in [16], the maximum
density of cancer cells is lower with our protocols, which, on the other hand, also use
a lower concentration of antibodies. Our mathematical tools come from Lyapunov
stability theory (see, e.g., [7]) while we also take advantage of the specific form of
the equations of the model which are a combination of bilinear and Riccati type.

The paper is organized as follows. In section 2, we recall the model presented
in [16], to which we add a control function which represents our ability to increase
the concentration of antibodies as compared to the natural body response. In

1or in some models to a limit cycle, see, e.g., [24]
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section 3, we find all the equilibrium points of this model and determine their
stability properties. We single out one equilibrium point which corresponds to the
situation of a dormant balance between active tumor cells, quiescent tumor cells
and antibodies. We prove that this equilibrium point is stable. In section 4, we
find an estimate of the region of attraction for such an equilibrium point. In section
5, combining analysis and simulations, we propose control laws for this model and
give a comparison with the performance of the therapeutic approach described in
[16]. This shows a significant improvement in terms of the dynamics proposed here
both in terms of a lower maximum density of proliferating cancer cells and in terms
of a lesser use of antibodies. A discussion is presented in section 6.

2. The model. The cancer dormancy model we consider is given by

ẋ = α1zy − α3zx− λx+my, (1)

ẏ = ry(1− y/K)− α1zy − α2zy −my = ry(1− y

K
)− αzy −my (2)

ż = εz(γ(x+ y)− b) + u(t) (3)

This is the model presented in [16],2 with an extra ‘control’ term u = u(t) which
represents our ability to influence the concentration of antibodies. The density of
proliferating cancer cells is denoted by y and the density of quiescent cancer cells
is denoted by x, while the concentration of antibodies is denoted by z. Moreover
α1 is the rate of initiation of cell cycle arrest; α2 and α3 are the rates of apoptosis
induced by the antibodies; α = α1 + α2. The parameter r is the replication rate of
the proliferating cancer cells minus the antibody-independent natural death rate; λ
is the natural death rate of the quiescent cells; m is the rate of the initiation of cell
cycle arrest without antibodies; γ is the rate of production of antibodies induced by
the presence of cancer cells; b is the decay rate of the antibodies; K is the carrying
capacity of the proliferating cancer cells; ε is a time constant which describes how
quickly antibodies are created. Since we can only increase the rate of production of
antibodies we must assume u(t) ≥ 0.

A mathematical analysis of the model starts with determining and classifying the
equilibrium points. In [16] the authors do not discuss all of the equilibrium points,
and give few mathematical details about their stability analysis. They observe that
a high initial concentration of antibody results in clearance of the cancer. However,
our dynamical analysis indicates that the situation is more subtle. While a very
high initial concentration of antibodies may increase the death rate of active tumor
cells to begin with, it will not kill them all off. As a result of the sudden initial
decrease in active tumor cells, the presence of antibodies will drastically decrease,
allowing the surviving active tumor cells to proliferate to a potentially lethal level
before the necessary antibodies can be reproduced. This situation is depicted in the
simulation in Figure 1.

2.1. Parameters used. In the following, we shall compare the results of our anal-
ysis with the results of [16] (cf. in particular Figure 7 of that paper). Therefore for
convenience, we provide the model parameters used in [16].

γ = α2 = b = α3 = 1.0, m = λ = .01, r = α1 = 0.1, ε = .001 K = 10.0.
(4)

We shall refer to these values in our analysis and simulations. The authors of [16]
stress that these values are for illustration purposes only and do not specifically refer

2 The authors also present other models but this is the one deemed to be the most realistic.
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Figure 1. Using the parameter values given in (4), and initial
values of x0 = 0, y0 = 1, and z0 = 1, this simulation corresponds
to a situation where too high a concentration of antibodies has
been given in the inoculation, so that while the density of active
cancer cells (y) initially decreases and stays low for a long period
of time, it eventually increases drastically to the point of presumed
lethality (i.e. y ≥ 1.8). The horizontal axis corresponds to time,
and the vertical axis to antibody concentration, density of active
tumor cells, and density of quiescent tumor cells. x(t) is blue, y(t)
is green, z(t) is red.

to any clinical and/or experimental situation. Therefore they are not meant to be
in any particular units. The authors of [16] do however describe in their appendix
a methodology to estimate the parameters of the model in experiments with mice.
Some work in this respect has been done by V.A. Kuznetsov and co-authors who
estimated the cancer cell division rate for mice models (approximately 0.2days−1)
which gives an idea of the orders of magnitude involved.

The quantities x and y represent densities measured in number of cells per vol-
ume, under the assumption that spatial effects are unimportant, while z represents
the concentration of antibodies in the immediate environment surrounding the tu-
mor. As a consequence of equation (3) the parameters γ and b have the dimensions
of [volume] × [time]−1. The dimensions of the other parameters in equations (1)
and (2) are determined similarly. The parameter ε is an adimensional parameter
which is assumed to be small compared to the other parameters, meaning that the
dynamics of the antibodies (without the control) are slow as compared to the rate
of proliferation of cancer cells and the rate of transition of the cancer cells from pro-
liferating to quiescent. Choosing the parameter b = 1 in (4) means that we chose
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a unit of time so that the decay rate of antibodies is εb = 0.001, while b
γ has the

meaning of the concentration of cancer cells x + y at the (dormancy) equilibrium
(this is obtained by setting ż = 0 in equation (3)). Setting γ = 1 therefore means
that we have set the units of volume so that such a density is equal to 1. Having
set the units and quantities this way, the interpretation of the other values, λ, m, r,
K, α1, α2, α3, follows. For example, m = 0.01 means that the rate of initiation of
cell arrest for proliferating cancer cells is 10 times faster than the rate of decay of
antibodies, while K = 10 means that the maximum (plateau) value of proliferating
cancer cells is ten times the density of cancer cells at dormancy.3

As for the implementation of our results (as well as the results of [16]) into clin-
ical practice this requires the estimation of parameters in vivo for humans. As
observed in [24] this is one of the most important issues facing mathematical mod-
eling of cancer-immune systems in the future. From the mathematical point of
view, we believe that system theoretic techniques of parameter identification and
adaptive control (see, e.g., [19]) can be very helpful. However, the problem is not
only mathematical since technological and medical tools have to be available in or-
der to measure, in vivo, the quantities under consideration, x, y, z, or some other
quantity directly related to them. We believe that the theoretical predictions for
the model with parameters (4) are representative of models for different values of
the parameters. For instance, we will see in the next section that many properties
concerning the existence and stability of equilibrium points are valid for a large set
of values of the parameters.

3. Equilibrium points. We denote by xeq, yeq, and zeq the x, y and z coordinates,
respectively, of the equilibrium points. There are a total of five possible equilibrium
points. The first equilibrium point we will discuss occurs at xeq = yeq = zeq = 0 .
This corresponds to a total lack of both dormant and growing cancer cells, as well
as of antibodies. This would be an ideal state to achieve; however, it corresponds
to an unstable equilibrium point as the eigenvalue r−m of the associated Jacobian
is always positive.4

A second equilibrium point occurs when xeq, yeq 6= 0 ; zeq = 0. It is given by:

xeq =
mK(1− m

r )

λ
, yeq = K(1− m

r
), zeq = 0. (5)

It corresponds to cancer proliferation in the total absence of an immune response;
perhaps the immune system of the patient has been previously compromised. An
analysis of the eigenvalues of the Jacobian at this point shows the condition for
stability is

K

(
1 +m

r − λ−m
rλ

)
<
b

γ
. (6)

Under the assumption of an approximately equal rate of antibody production and
antibody decay, b

γ ≈ 1. If in addition, we assume that the rate of replication of

active cancer cells is high compared to the death rate of quiescent cells in the absence
of antibodies and the rate of initiation of cell cycle arrest, with a carrying capacity
K > 1, we have that condition (6) is not satisfied and the point is unstable. We

3 Notice that it might be never possible to measure such a value directly, even in mice experi-

ments, as the mouse might be killed well before such a value is reached.
4The condition r−m > 0 physically corresponds to ‘tumor growth in the absence of an immune

response’ (cf. pg. 315 of [16]) This situation is therefore not realistic since any perturbation, no
matter how small, will lead to an uncontrolled growth of active cancer cells.
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shall assume this to be the case. In fact, for the values of the parameters of [16]
provided above in (4), this equilibrium point is unstable.

A third equilibrium point is given by:

xeq = 0, yeq =
b

γ
= K(1− (α+ α1)m

rα1
), zeq =

m

α1
. (7)

This equilibrium point exists only in the case when b
γ = K(1 − (α+α1)m

rα1
), so for

generic values of parameters it does not exist.5 It corresponds to a complete lack
of quiescent cancer cells, with active tumor cells nonetheless proliferating and an-
tibodies seeking to remove them. If one assumes the existence of some quiescent
cancer cells as we do,6, this equilibrium point is only of mathematical interest.7

The fourth and fifth possible equilibrium points occur when xeq, yeq and zeq
are all nonzero. This may correspond to a situation in which cancer cells are still
proliferating and becoming quiescent, but the immune system is capable of keeping
the rate of cancer cell proliferation low enough through antibody production, so that
the patient survives. If we let β = α1 +α3, τ = λ+m, B = −K− Kατ

rβ −
α3b
βγ + Km

r ,

then the following are equilibrium points:

xeq =
b

γ
− yeq (8)

yeq =
−B ±

√
B2 − 4(Kα3b

βγ + Kαλb
rβγ −

α3bmK
rγβ )

2
(9)

zeq =
r(1− yeq

K )−m
α

(10)

In order for at least one of these two possible equilibrium points to exist, i.e., for
the expression under the square root to be nonnegative and xeq, yeq and zeq to be
positive, we must have:

1. mα3 6= λα1

Note that in a “real-world” scenario, this condition is likely to hold, as reason-
able parameter values imply that −B > 0, since r−m > 0, so that Km

r < K.
2. α3r < Kβ(r −m)

The carrying capacity of the cancer cells is generally assumed to be large
enough that this inequality holds. In particular, this is the case for the pa-
rameter values in (4).

3. B2 ≥ 4(Kα3b
βγ + Kαλb

rβγ −
α3bmK
rγβ )

Two equilibrium points with all coordinates non-zero exist if and only if the above
three conditions hold and also:

αλ < rα3.

5In fact, for the parameter values given in (4), the equilibrium point does not exist.
6One reason to justify the presence of quiescent cells is the existence of spatial and physical

constraints of a tumor so that not all cancer cells are allowed to proliferate.
7In a situation in which this equilibrium point exists, its stability may be determined by

using the Routh-Hurwitz criterion for asymptotic stability on the coefficients of the characteristic

polynomial of the Jacobian. If we let: d2 = α3m
α1

+λ+r− (α+α1)m
α1

, d1 = (α3m
α1

+λ)(r− (α+α1)m
α1

)−

εmb + αεmb
α1

, d0 =
αεmb(

α3m
α1

+λ+2m)

α1
− εmb(r − (α+α1)m

α1
), the characteristic polynomial of the

Jacobian is then given by cJ (t) = t3 + d2t2 + d1t + d0. This equilibrium point is then stable
provided that di ≥ 0 for i = 0, 1, 2 and d2d1 > d0.
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We can determine the stability of these points by examining the characteristic
equation of the Jacobian using the Routh-Hurwitz conditions for stability. Let:

b2 = (α3 + α)zeq +
2ryeq
K

+ τ − r (11)

b1 = (α3zeq + λ)(
2ryeq
K

+ αzeq − r +m) + εγzeq(α3xeq − (α− α1)yeq) (12)

b0 = αεγyeqzeq(βzeq + τ) + εγzeq(α3xeq − α1yeq)(
2ryeq
K

+ αzeq − r +m) (13)

The characteristic equation of the Jacobian is then given by cJ(t) = t3 + b2t
2 +

b1t+ b0. Whichever of the two equilibrium points we are analyzing (corresponding
to a choice of ‘+’ or ‘−’ in (9)) is stable provided that bi ≥ 0 for i = 0, 1, 2, and
b2b1 > b0. For the parameter values (4), the equilibrium point corresponding to a
‘−’ in (9) exists and is asymptotically stable. It is assumed that this equilibrium
point corresponds to a non-lethal situation in which the immune system of a patient
balances the cancer. Therefore, this equilibrium point corresponds to non-lethal
cancer dormancy. This, then, will be the situation to which we attempt to drive
the state of the system using a control function u = u(t). For the parameters (4), the
equilibrium point corresponding to a ‘+’ in (9) also exists; however it corresponds
to a high cancer load with yeq ≈ 11.0804, and is asymptotically unstable.

There are no more possible equilibrium points. If one attempts to find an equilib-
rium point with yeq = 0 and xeq, zeq 6= 0, then a contradiction is obtained; namely,

it is found that zeq = −λ
α3

< 0, which is impossible as the variables x, y, and z
necessarily achieve only non-negative values. For every case with any two of xeq,
yeq, or zeq taken to be zero, it is easily found that it is always necessary that the
third one also be zero, a case which has already been discussed.

3.1. Change of coordinates. Given an equilibrium point (xeq, yeq, zeq), we per-
form a shift in the coordinates (x, y, z) to transfer the equilibrium point to the
origin. By defining (x̃, ỹ, z̃) := (x − xeq, y − yeq, z − zeq), and using the fact that
each of the right hand sides of (1), (2), (3) is zero when we replace (x, y, z) with
(xeq, yeq, zeq), we obtain the differential equations for x̃, ỹ and z̃ (where we define
γ′ := εγ, b′ := εb):

dx̃

dt
= −(λ+ α3zeq)x̃+ (m+ α1zeq)ỹ + (α1yeq − α3xeq)z̃ + α1z̃ỹ. (14)

dỹ

dt
= (−m+ r − 2r

K
yeq − αzeq)ỹ − αyeq z̃ − αz̃ỹ −

r

K
ỹ2, (15)

dz̃

dt
= γ′zeq(x̃+ ỹ) + γ′z̃(x̃+ ỹ) + (−b′ + γ′(xeq + yeq))z̃ + u(t). (16)

Equations (14)-(16) simplify in an obvious way if zeq = 0. Moreover if zeq 6= 0, from
(3) we obtain γ′(xeq + yeq) = b′, which gives for (16):

dz̃

dt
= γ′zeq(x̃+ ỹ) + γ′z̃(x̃+ ỹ) + u(t). (17)

For the sake of comparison with the results in [16], we provide the system obtained
by using the parameters given above in (4) and the equilibrium point discussed
above corresponding to a ‘−’ in (9); This equilibrium point is (xeq, yeq, zeq) ≈
(.1713, .8287, .0743). The system (14), (15), (17) becomes:

dx̃

dt
= −0.0843x̃+ 0.01742ỹ − 0.0885z̃ + .1ỹz̃ (18)
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dỹ

dt
= −0.0083ỹ − 0.9115z̃ − 1.1ỹz̃ − .01ỹ2 (19)

dz̃

dt
= .00007428(x̃+ ỹ) + .001z̃(x̃+ ỹ) (20)

As this is the most interesting case, describing a dynamic situation where a nonzero
antibody population exactly balances the growing of the tumor cells at a presum-
ably survivable level, we shall concentrate on the problem of stabilization of this
equilibrium point in the following.

4. Estimate of the region of attraction. System (14), (15), (17) has the struc-
ture

d~w

dt
= F1(~w) + F2(~w), (21)

where ~w := (x̃, ỹ, z̃)T and F1 and F2 are homogeneous polynomials of degrees 1 and
2, respectively. In particular, F1(~w) = A~w. If all the eigenvalues of A have negative
real part, then the origin is asymptotically stable, i.e., there exists a connected,
simply connected [6], open set Ω ⊆ RI 3 containing the origin in its interior such
that the solution of (21) converges to the origin for every initial condition in Ω.
This region is commonly referred to as the Region of Attraction (ROA) [6],[18].

The equilibrium point we are interested in is the stable one representing the
(survivable) situation where the antibodies exactly balance the proliferating cancer
cells and keep the tumor under control. To design the control strategy, we obtain a
large enough estimate of the ROA and then use minimal control, i.e., a (continuous)
modification of rate of growth of antibodies to drive the state of the system to the
ROA. From that point on, the state will converge towards the desired equilibrium
point.

Because of the polynomial nature of the equations in (21), it is natural to use
the classical method of Zubov [25] [26] (cf. also [23] for developments and improve-
ments). The central object of the method is a Lyapunov function V (~w) solution of
the Zubov equation, which, for system (21), takes the form

d

dt
V (~w) = ∇V (~w)(F1(~w) + F2(~w)) = −φ(~w)(1− V (~w)), (22)

where φ(~w) is an arbitrary positive definite function which we will take to be qua-
dratic: φ(~w) = ~wTQ~w, for Q a positive definite matrix. In Zubov’s method the
function V is sought as a series V (~w) =

∑∞
j=2 Vj(~w), where Vj(~w) is a homogeneous

polynomial of degree j. The

(
j + 2

2

)
coefficients characterizing the function Vj(~w)

are in general computed solving the equation (cf. (22))

∞∑
j=2

∇VjF1 +

∞∑
j=2

∇VjF2 = −φ+

∞∑
j=2

φVj . (23)

This can be solved recursively by equating polynomials with the same degree on the
left and the right hand side. In particular, for polynomials of degree 2, we obtain8

∇V2F1 = −φ. (24)

8This is the equation used in the proof of asymptotic stability and leads to a Lyapunov matrix
equation (see, e.g., [8]) ATP + PA = −Q.
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In practice the method uses the partial sum of order m

Ṽm(~w) =

m∑
j=2

Vj(~w), (25)

as an approximation of the desired Lyapunov function. Consider the boundary ∂Ωm
of the set Ωm where Ωm is the largest connected neighborhood of the origin where

∇Ṽm(F1 + F2)(~w) ≤ 0. (26)

Let C∗m be the minimum of Ṽm on ∂Ω. Then the surface defined by

Ṽm(~w) = C∗m, (27)

is the boundary of a region Γm := {~w|Ṽm(~w) ≤ 0} which is included in the ROA.
Therefore, the region Γm is a (conservative) estimate of the ROA. Zubov has shown
that as m → ∞, Γm converges (although not uniformly)9 to the ROA. Therefore

a good estimate of the ROA can be obtained by calculating Ṽm for m sufficiently
large.

We have used Zubov’s method, as described above, to obtain an estimate of the
region of attraction for the system described by (18), (19), (20). We found that in
our case we do not have a significant improvement by considering polynomials of
order low but bigger than two.10 We therefore find it convenient to consider as a
Lyapunov function a polynomial of degree 2. Using φ(x̃, ỹ, z̃) = x̃+ 104ỹ + 108z̃ as
the positive definite function in (22), we compute the Lyapunov function:

V2(~w) := Ṽ2(~w) := V (x̃, ỹ, z̃) = ~wTP ~w, (28)

which gives11 P ≈ 12922.583 57069.649 14655447.234
57069.649 1202407.259 53431010.706

14655447.234 53431010.706 17343982544.476

 .
An estimate of the region of attraction is obtained by finding a value k such that
V = k is completely contained inside of the region V̇ ≤ 0. Then everything inside
of the surface V = k is in the interior of the ROA. We find that given our equation
(28), a maximal such value is k = 105. This region estimating the ROA has the
shape of a tilted ellipsoid.

5. Design and performance of the control law. In [16], the model with the
parameters (4) is assumed to predict lethality when the maximum value of y (rep-
resenting the density of proliferating cancer cells) is greater than 1.8. On the other
hand, in a situation in which the system evolves in such a way that the patient
survives, the state of the model converges towards the ‘dormant’ equilibrium point
discussed above, without hitting this maximum value. One situation where lethality
is predicted is simulated in [16] and replicated here in Figure 2, where the initial
conditions of the model are:

x0 = 0, y0 = 1, z0 = .001 (29)

We would like to design a control law u = u(t) ≥ 0, i.e., to increase the rate of
production of antibodies (cf. equation (3)), with these initial conditions so that

9Convergence here means that for every point P ∈ ROA there exists M such that P ∈ Γm, for

every m > M . However this convergence is in general not uniform, i.e., M might depend on P .
10For polynomials of high order the number of coefficients to calculate grows too large.
11Calculations were performed in MATLAB using the function ‘Lyap’.
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Figure 2. Initial conditions x0 = 0.0, y0 = 1.0, z0 = .001 and no
controls as in [16]. This situation is presumed to lead to patient
lethality.This is s replication of the model simulations shown in
Figure 7 of [16].The horizontal axis corresponds to time, and the
vertical axis to antibody concentration, density of active tumor
cells, and density of quiescent cancer cells.

lethality does not occur, and, at the same time, to drive the state into the region
of attraction of the dormancy equilibrium point.

In order to stabilize the state of the system to a given equilibrium point, the
most common technique is Lyapunov control design (see, e.g., [9]) where one uses
the Lyapunov function V itself (which we used to find the estimate of the ROA)
and design the control law so that the directional derivative along the vector field
defining the dynamics is negative (cf. equation (26)). This way, the Lyapunov
function is decreasing along the dynamics and the state will eventually enter the
region characterized by V ≤ k, which is included in the ROA. This approach for
us presents a few problems. The control function is typically given in feedback
form, i.e., u is a function of x, y, and z, which are not available for observation in
practical experiments or clinical applications. One way around this is to integrate
numerically the resulting equations and then use the result for x, y and z in u. It
is however difficult with this method to control the size of u, as we do not want
to introduce too many antibodies, the size of y that, as we have said, cannot go
over a certain threshold, and at the same time make sure that the resulting u
satisfies the condition u ≥ 0. We therefore employ a different approach which relies
more on analytic calculations and the structure of the equations (14), (15), (17) or
equivalently (1), (2), (3).

We notice that, once the profile of z is decided, equation (2) is a (time varying)
Riccati equation, whose solution can be written explicitly as

y(t) =
y0e

∫ t
0
L(s)ds

1 + ry0
K

∫ t
0
e
∫ s
0
L(ζ)dζds

, (30)



CANCER IMMUNO-THERAPY CONTROL 1047

where L(t) := r −m− αz(t) and y0 is the initial condition for y. We can therefore
decide a profile for z and from (30) obtain the corresponding profile of y or decide
a profile for y and from (2) obtain the corresponding profile for z. Once z and y are
determined, we can substitute them into (1) which becomes a linear equation in x
and therefore can be explicitly integrated. Then we may substitute x, y, and z into
(3) and obtain the control law u. With a sequence of trial and error on the initial
choice we can make sure that all the variables will evolve in such a way that the
whole state eventually enters the region of attraction and the condition u(t) ≥ 0,
∀t, is satisfied. The condition on the maximum value of y will be automatically
satisfied if our profile for y is chosen appropriately. One key feature of the model
of [16] that we explicitly use in this procedure is the fact that the x variable does
not enter the equation for ẏ, which means that the quiescent cells are assumed not
to go back to proliferating again.

Not all the functional forms of y may be imposed in (30), not only because y(0)
is fixed to y0, and y is bounded by the carrying capacity, but also because the
derivative of y at time t = 0 has to be related to z(0) = z0 by formula (2).

We have chosen a family of functions for y = y(t)

y(t) := (1− e−at)yeq + (1 + ct)e−aty0, (31)

with parameters a, and c. These functions have the property that y(0) = y0, and
limt→∞ y(t) = yeq.

Using the initial conditions, we may relate the above parameters a and c as:

a =
( 1
α (r −m− r

K )− z0 − c)y0
yeq − y0

(32)

For the parameters (4) and the initial conditions (29), we have chosen c = .185 and
a ≈ .6611. In order for a to be positive in the above equation, it is necessary that
c > .0717, and simulations indicate a good value of c is around the value we have
chosen. For values of c higher than about .2, too many antibodies are introduced,
and for values of c less than about .17, too few are introduced, and y can grow
large. Under the choice c = .185, we also obtain a control function u(t) which when
applied from t = 0 to t = 1 as in Figure 3 and then removed yields the profile given
in Figure 4.

Simulations show that this control function u(t) is non-negative over the interval
on which it is applied. Figure 5 shows what happens when a patient is inoculated
with an additional .099 concentration of antibodies, as in [16]. Under the inocula-
tion, the system is within the ROA by time t = 1700, and has a maximum value
of proliferating cancer cells at approximately 1.5. A comparison between our con-
trolled evolution (in Figure 4) with the result of [16] (in Figure 5) shows a lower
maximum y value in our case. Furthermore, our control law yields an additional

antibody concentration of
∫ 1

0
u(t)dt ≈ .03763, significantly less than the .099 inocu-

lation used in [16]. We are also in the ROA by time t = 600 since V (x, y, z) ≤ 105.
An alternative approach is to choose the function u(t) directly, then use simula-

tions to ensure that the state of the model evolves to be within our estimation of
the ROA and the maximum of y(t) is sufficiently low. This method is convenient
in that it may be possible to choose a very simple form for u(t), and, after a good
estimate of the region of attraction is obtained, simulations are relatively simple to
perform and compare.
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Figure 3. Using the same initial conditions as in Figure 2, we
apply a control u(t) obtained by solving the equation ẏ as a Riccati
equation and choosing a profile for y as in (31) . The control
is applied for 0 ≤ t ≤ 1. The total concentration of additional
antibodies applied is ≈ .03763. The horizontal axis corresponds to
time, and the vertical axis to antibody concentration, density of
active tumor cells, and density of quiescent cancer cells.

Using this method, we have chosen u(t) = t/6 for t ∈ [0, 1] and u(t) ≡ 0 otherwise.
Then, we let the system evolve until t = 1400. Simulations show that the state of
the system is inside the region of attraction at time t = 1400. Furthermore, prior to
that moment, we never obtain a lethal value of y. This is again a better result than
the vaccination presented in [16], as using the control function we have constructed,
we not only have a smaller maximum value of y(t), but we also increase the antibody

concentration by only
∫ 1

0
t
6dt ≈ .0833. See Figures 6 and 7.

6. Discussion. There are many mathematical models of cancer-immune system
dynamics and reviews are given for example in [4], [24]. A recent meeting focusing
on this topic was [27]. Not all the models use differential equations (see, e.g., [22]).
However models using differential equations are quite popular due to their flexibility,
and their clear interpretation. Moreover these models are natural candidates for the
application of control theoretic methods. For example, the models in [21], modified
with a Gompertzian law as in [14], [15], were used in [12], [13], to formulate cancer
immunotherapy as an optimal control problem where the control variables were
modeling a combined action of chemotherapy and immuno-therapy. Papers [12],
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Figure 4. After removing the control function described in 3, the
system evolves as shown. We are inside of the ROA of the ‘dor-
mant’ all non-zero fixed point by time t = 600. The horizontal axis
corresponds to time, and the vertical axis to antibody concentra-
tion, density of active tumor cells, and density of quiescent cancer
cells.

[13] are in the same spirit as this paper as far as the use of control theoretic ideas is
concerned. General models of immune systems were also formulated in [2] and in the
work of Kuznetsov and co-authors [10], [11], who also provide parameter estimates
based on experiments with mice. All these models try to capture some of the
main features observed clinically and in experiments characterizing cancer-immune
system interaction. Although the presence of dormancy is a generally accepted
fact, other aspects of tumor-antibody interaction need to be better understood and
mathematical models definitely have an important role in that. In particular, many
phenomena can be explained and controlled via a combination of experiments and
mathematical models. These include: different types of interactions with different
immune cells (e.g., innate or adaptive), the existence of an immune barrier, below
which the immune response is not activated, the mechanisms involved in escape
[3], which is the capability of tumor cells to restart proliferating after a period
of dormancy, the possibility of quiescent tumor cells to become proliferating (and
therefore a distinction between quiescent and senescent cells), and the delay between
tumor development and immune response. Models also have to take into account
spatial effects, especially for tumors, which are highly localized, as well as the effect
of the micro-environment on tumor cell development.
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Figure 5. Initial conditions x0 = 0, y0 = 1, z0 = 0.1 and no
control. This situation amounts to a vaccination, as discussed in
[16]. The total concentration of additional antibodies applied is
.099. We are inside of the ROA of the ‘dormant’ all non-zero fixed
point by time t = 1700. This also is a replication of the model sim-
ulations shown in Figure 7 of [16].The horizontal axis corresponds
to time, and the vertical axis to antibody concentration, density of
active tumor cells, and density of quiescent cancer cells.

Figure 6. Using the same initial conditions as in 2, we apply a
control u(t) = t/6 for 0 ≤ t ≤ 1. The total concentration of ad-
ditional antibodies applied is ≈ .0833. The horizontal axis corre-
sponds to time, and the vertical axis to concentration of antibodies,
density of active tumor cells, and density of quiescent cancer cells.
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Figure 7. Model simulations using the control u(t) = t/6. After
time t = 1, we set u(t) = 0. We are within the ROA of the
‘dormant’ all non-zero fixed point by time t = 1400. The horizontal
axis corresponds to time, and the vertical axis to concentration of
antibodies, density of active tumor cells, and density of quiescent
cancer cells.

The model [16] we have analyzed in this paper was originally motivated and
introduced to study the effect of vaccination in cancer immunotherapy. This model
contains several improvements as compared to the simplest Lotka-Volterra type of
models [24], e.g., the introduction of a logistic law for the growth of the proliferating
cancer cell, and the explicit introduction of quiescent cells as a compartment in the
system of equations. It is difficult to determine, at this stage, whether this model is
more realistic and whether it will be more useful in the future, as compared to other
models in the literature such as the ones reviewed in [4], [24]. However, the fact
that the authors explicitly study the effect of vaccination, which translates into the
initial condition of the antibody density, in the dynamical evolution of the tumor,
motivated the question of whether a continuous control action could improve over
the results of simple vaccination and we have seen, in this paper, that this is indeed
the case.

We have demonstrated that using control-theoretic methods, and by closely ex-
amining the equations describing the dynamical system, we can more effectively
and efficiently rescue a lethal situation. The results indicate that continuously ad-
ministering antibodies over a short time may be preferable to simply inoculating
a patient with a new initial dose of antibodies. Not only are less antibodies used
in the control functions we have constructed, but the system evolves to be in the
ROA more quickly than under an inoculation, and with a lower cancer load as well.
These results may thus be more clinically feasible.

The challenge in the future will be not only to further improve the control laws
presented here but also, and more importantly, to determine the real parameters
and improve the model to translate mathematical prediction into clinical practice.
We believe that more advanced techniques of control theory such as adaptive control
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and parameter identification [19], as well as more nuanced techniques in optimal and
Lyapunov control will play an important role in this.
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