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Abstract. A method for early diagnosis of parametric changes in intracellu-
lar protein synthesis models (e.g. the p53 protein - mdm2 inhibitor model) is
developed with the use of a nonlinear Kalman Filtering approach (Derivative-
free nonlinear Kalman Filter) and of statistical change detection methods. The
intracellular protein synthesis dynamic model is described by a set of coupled
nonlinear differential equations. It is shown that such a dynamical system sat-
isfies differential flatness properties and this allows to transform it, through
a change of variables (diffeomorphism), to the so-called linear canonical form.
For the linearized equivalent of the dynamical system, state estimation can be
performed using the Kalman Filter recursion. Moreover, by applying an inverse
transformation based on the previous diffeomorphism it becomes also possible
to obtain estimates of the state variables of the initial nonlinear model. By
comparing the output of the Kalman Filter (which is assumed to correspond
to the undistorted dynamical model) with measurements obtained from the
monitored protein synthesis system, a sequence of differences (residuals) is ob-
tained. The statistical processing of the residuals with the use of χ

2 change
detection tests, can provide indication within specific confidence intervals about
parametric changes in the considered biological system and consequently indi-
cations about the appearance of specific diseases (e.g. malignancies)
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1. Introduction. The paper studies the problem of parametric change detection in
intracellular protein synthesis models, such as the model describing the p53 protein
- mdm2 inhibitor dynamics. The P53 protein is of major importance for preventing
the development of tumors since it enhances cell-cycle arrest and apoptosis. The
concentration of the P53 protein in the cytoplasm is primarily controlled by an-
other protein, known as inhibitor protein mdm2 within a feedback loop. The raise
of the concentration of the MDM2 protein, causes the drop of the concentration
of the P53 protein (downregulation). The deactivation (dissociation) of P53 is due
to the ubiquitin molecules which the mdm2 binds to P53. Inversely, whenever the
concentration of P53 increases, a transcription (synthesis) procedure for mdm2 is
activated and consequently the levels of the MDM2 protein start to rise. By en-
hancing the concentration of mdm2, the concentration of P53 drops. This balancing
procedure takes the form of a feedback loop, while it can be shown that a fixed point
(equilibrium) for the p53-mdm2 dynamical system exists [14],[21],[25],[26], [41],[46].
A recent approach to chemotherapy has been to use drugs (such as Nutlins) that
work by annihilating the MDM2 protein and consequently by blocking the disin-
tegration effects that the MDM2 protein has on the P53 protein (ubiquitination),
[1],[7], [9],[44]. This enables in turn a raise in the levels of the P53 protein and
finally results in restraining the proliferation of the cancer cells [11],[13], [15],[24].

It has been shown that control of the levels of the concentration of the P53
protein, and in general of biological oscillators, can be succeeded by nonlinear feed-
back control schemes such as the ones based on differential flatness theory [5],
[33], [35], [36], [34]. The control input is taken to be the infusion rate of the
chemotherapy drug. In particular, about the P53 protein, its pharmacokinetics-
pharmacodynamics is described by a complicated set of nonlinear differential equa-
tions. By applying differential flatness theory it is possible to transform this compli-
cated model into the canonical Brunovsky form [3],[8], [16], [17], [22], [40], [38], [37].
In this latter form a single-input single-output description between the output (P53
protein) and the input (drug’s infusion rate) is obtained. This permits the design
of a feedback control law that can make the P53 protein concentration converge to
the desirable levels.

Moreover, through the application of nonlinear estimation (identification) meth-
ods it has become possible to obtain numerical values for the parameters of the
p53 protein - mdm2 inhibitor system [6], [19], [20], [23], [27], [43], [45], [49]. How-
ever, the parameters of such a model are subjected to uncertainties and parametric
changes. Actually, the deviation of the protein synthesis model parameters from
their nominal values is associated with deregulation of the cells population and is
likely to provoke the appearance of malignancies. To detect pathological symptoms
in the p53 protein synthesis the system’s dynamics is emulated with the use of
nonlinear Kalman Filtering. This model is parameterized with the nominal values
which are associated with the system’s normal condition [28], [29], [30]. The con-
sidered filtering approach is the Derivative-free nonlinear Kalman Filter [29], [33].
This consists of the application of the standard Kalman Filter recursion on the
linearized equivalent of the protein synthesis system which has been obtained after
applying differential flatness theory. Moreover, the filter makes use of an inverse
transformation based again on differential flatness theory, so as to obtain estimates
of the state variables of the initial nonlinear system.
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Next, two sequences of data are generated. The first sequence consists of real
measurements of the P53∗ protein concentration with are obtained at specific sam-
pling instances. The second sequence is the Kalman Filter’s output, again sampled
at the same time instances. By comparing the two signals, a residuals (estima-
tion error) sequence is obtained. The processing of the residuals with the use of
statistical decision making criteria provides an indication about the existence of
parametric changes (damages) in the p53-mdm2 protein synthesis model, which
otherwise could not have been detected [2],[32]. Thus, by applying fault detection
tests based on the χ2 distribution it can be concluded if the p53 protein-mdm2
inhibitor system remains healthy and if the nominal parameter values for its model
still hold [4],[18],[42]. Otherwise, a failure can be detected.

The structure of the paper is as follows: in Section 2 the dynamic model of the
p53 protein - mdm2 inhibitor is analyzed and the associated differential equations
are formulated. In Section 3 nonlinear feedback control of the p53 protein synthesis
model is developed with the use of differential flatness theory. In Section 4 it is
explained how parametric change detection in the aforementioned protein synthesis
model can be succeeded with the use of statistical criteria, such as the χ2 test. In
Section 5 simulation tests are performed to show how the proposed change detec-
tion test succeeds to diagnose the existence of parametric variations in the protein
synthesis model. Finally, in Section 6 concluding remarks are stated.

2. Dynamic model of the p53 protein - mdm2 inhibitor system.

2.1. Feedback control loops in the p53 protein - mdm2 inhibitor system.
Feedback control loops are widely met in intracellular protein synthesis processes
and govern cellular dynamics [39]. The associated models are described by nonlinear
differential equations, in certain cases with the appearance of time delays [10]. As
mentioned, the concentration of the P53 protein is mainly controlled by the levels
of the mdm2 protein within a negative feedback loop. The synthesis of the P53
protein is also affected by the ATM, ARF and E2F1 proteins through secondary
feedback loops. The dynamic model of the p53 protein - mdm2 inhibitor system is
described by Fig. 1. The meaning of the variables that appear in the p53 protein -
mdm2 inhibitor dynamical system is as follows [7], [14], [15], [25]:
p53: mRNA concentration of the p53 gene after transcription, P53: concentra-

tion of the P53 protein in the cytoplasm after translation, P53∗: active form of the
P53 protein that is produced after phosphorylation of P53, mdm2: mRNA concen-
tration of the inhibitor protein mdm2 after transcription, MDM2: concentration
of the MDM2 protein in the cytoplasm after translation, N : concentration of the
chemotherapeutic drug, ATM : a protein that identifies the transcription of p53 and
contributes to the phosphorylation of the P53 protein, ATM∗: concentration of the
active form of the ATM protein. It contributes both to the phosphorylation of pro-
tein P53 and of proteinMDM2, e2f1: mRNA concentration of the gene e2f1 after
transcription, E2F1: concentration of the protein E2F1 after translation, E2F1∗:
active form of the E2F1 protein, arf : mRNA concentration of the gene arf after
transcription, ARF : concentration of the ARF protein after translation.

The basic feedback loop is that of the synthesis of the P53 protein under the in-
hibitor protein MDM2. When the concentration of the MDM2 protein increases, the
concentration of the P53 protein is reduced (downregulation). This process is also
known as proteolytic degradation. The MDM2 protein binds ubiquitin molecules
to P53 which result to the dissociation of the P53 protein. On the other side, the
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Figure 1. Feedback control loop of the p53 protein - mdm2 in-
hibitor system

increase of P53 enhances the transcription procedure of mdm2 and consequently
the produced MDM2 protein will downregulate P53. In this manner the p53-mdm2
feedback loop converges to an equilibrium.

The role of the ATM protein is explained as follows: ATM is a protein that plays
a sensor-detector role in the p53 network. ATM undergoes auto-phosphorylation
which leads to its transformation to the active form ATM∗. This process can be
accelerated by the exposure of the cell to radiation. In its turn ATM∗, through
phosphorylation, contributes to the synthesis of the proteins E2F1, MDM2 and
P53. The transformation of ATM∗ through phosphorylation intoMDM2 and P53
changes the equilibrium points of the p53-mdm2 loop. In particular, it enhances the
levels of the P53 protein and attenuates the effects of MDM2 in the dissociation
of the P53 protein. With the raise of the concentration of P53 cell cycle, arrest is
also enhanced while the apoptosis rate is also increased.

Another loop, one can distinguish in the p53 network is between proteins E2F1
and ARF . As mentioned above, the ATM∗ protein through its phosphorylation
contributes to the synthesis of E2F1. In turn, the E2F1 protein contributes to
the transcription into mRNA of the arf gene and consequently to the synthesis
(translation) of the ARF protein. The increased concentration of the ARF protein
results into downregulation of E2F1 and in this manner the E2F1 − ARF loop
closes and an equilibrium is reached. Moreover, ARF results into downregulation
of the MDM2 and causes the rise of the levels of the p53 protein concentration.
This also results to improved treatment against cancer cells. It has been confirmed
that the removal of the ARF protein from human tissues is responsible for the
appearance of breast, mind and lung tumors.

There are chemotherapy drugs that work by binding the MDM2 protein and
consequently by preventing the MDM2 protein from deactivating the P53 protein
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(ubiquitination). This is based on the infusion of MDM2 antagonists (Nutlins).
By deactivating MDM2 these drugs restore the levels of concentration of the P53
protein and consequently contribute to the fighting against cancer cells. The effect of
Nutlins on theMDM2 protein (P53-inhibitor) is defined by the following dynamics:

Ṅ = λN − µNN − k6·N ·MDM2 (1)

where N is the drug’s concentration in the cytoplasm, λN is the drug’s infusion rate,
µN is the drug’s degradation rate and −k6·N ·MDM2 is the binding of the drug
by the MDM2 protein. Usually, the infusion rate λN is taken to be constant. In
the sections that follow it will be shown that the infusion rate can be controlled in
such a manner that the levels of the concentration of the P53∗ protein are made to
converge to desirable setpoints. A variable infusion rate can improve the efficiency
of chemotherapy.

2.2. State-space model of the p53 protein - mdm2 inhibitor system. The
following state variables are defined for the dynamic model of the p53 protein -
mdm2 inhibitor system

x1 = p53 x2 = P53 x3 = P53∗ x4 = mdm2 x5 =MDM2 x6 = N
x7 = e2f1 x8 = E2F1 x9 = E2F1∗ x10 = arf x11 = ARF

(2)
The system can be described using the following state-space equations [14]

ẋ1 = λp53 − µp53x1
ẋ2 = ap53x1 − µ53x2 − vp53x3 −

K1ATM∗x2

KM1+x2
− Kcatx5x2

aK13+x2

ẋ3 = K1ATM∗x2

KM1+x2
− vp53x3 −

Kcat
∗x5x3

aK13+x3

ẋ4 = λmdm2 − µmdm2x4 + φmdm2
x3(t−r1)

n1

x2(0)n1+x3(t−r1)n1

ẋ5 = aMDM2x4 − µMDM2x5 −
K2ATM∗x5

KM2+x5
−K4x11x5 −K6x6x5

ẋ6 = λN − µNx6 −K6x6x5
ẋ7 = λe2f1 − µe2f1x7
ẋ8 = aE2F1x7 − µE2F1x8 + vE2F1x9 −

K2ATM∗x8

KM3+x8

ẋ9 = K3ATM∗x8

KM3+x8
− vE2F1x9 −K5x11x9

ẋ10 = λarf − µarfx10 + φarf
x9(t−r2)

n2

x8(0)n2+x9(t−r2)n2

ẋ11 = aARFx10 − µARFx11 −K4x11x5 −K5x11x9

(3)

In matrix form, the state-space description of the system becomes









































ẋ1
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which also written in the form

ẋ = f(x) + g(x)u (5)

where u = λN is the control input, and f(x)∈R11×1, g(x)∈R11×1 are vector fields. It
will be shown that the considered model of the p53 protein - mdm2 inhibitor system
is a differentially flat one. The flat output is defined as y = [P ∗

53, N,E2F1∗, ARF ]
or y = [x3, x6, x9, x11]. Thus one has y = [y1, y2, y3, y4]

T .

3. Nonlinear feedback control of the p53 protein system using differential
flatness theory.

3.1. Definition of differentially flat systems. Differential flatness theory will
be used for implementing feedback control of the p53 protein-mdm2 inhibitor sys-
tem. The main principles of differential flatness theory are as follows [8],[37]: A
finite dimensional system is considered. This can be written in the form of an or-
dinary differential equation (ODE), i.e. Si(w, ẇ, ẅ, · · · , w

(i)), i = 1, 2, · · · , q. The
term w denotes the system variables (these variables are for instance the elements
of the system’s state vector and the control input) while w(i), i = 1, 2, · · · , q are
the associated derivatives. Such a system is said to be differentially flat if there is
a collection of m functions y = (y1, · · · , ym) of the system variables and of their
time-derivatives, i.e. yi = φ(w, ẇ, ẅ, · · · , w(αi)), i = 1, · · · ,m satisfying the follow-
ing two conditions [8],[29],[37]: 1) There does not exist any differential relation of
the form R(y, ẏ, · · · , y(β)) = 0 which implies that the derivatives of the flat output
are not coupled in the sense of an ODE, or equivalently it can be said that the flat
output is differentially independent, 2) All system variables (i.e. the elements of
the system’s state vector w and the control input) can be expressed using only the
flat output y and its time derivatives wi = ψi(y, ẏ, · · · , y

(γi)), i = 1, · · · , s.

3.2. Differential flatness of the p53 protein - mdm2 inhibitor dynamical
system. From the sixth row of Eq. (3) and by solving with respect to x5 one
obtains

x5 = ẋ6+µNx6

−K6x6
⇒x5 = ẏ2+µNy2

−K6y2
⇒

x5 = [0 1 0 0]ẏ+µN [0 1 0 0]y
−K6[0 1 0 0]y ⇒x5 = f5(y, ẏ)

(6)

From the third row of Eq. (3) and by solving with respect to x2 one obtains

KM1 ẋ3 + ẋ3x2 = K1ATM
∗x2 − vp53KM1x3 − vp53x2x3−

−KM1

K∗

catx5x3

aK13+x3
−

K∗

catx5x3

aK13+x3
x2⇒

x2 =
KM1 ẋ3−vp53KM1x3+KM1

K∗

catx5x3
aK13+x3

K1ATM∗+vp53x3+
K∗

catx5x3
aK13+x3

−ẋ3

⇒

x2 =
KM1 ẏ1−vp53KM1y1+KM1

K∗

catf5(y,ẏ)y1
aK13+y1

K1ATM∗+vp53y1+
K∗

catf5(y,ẏ)y1
aK13+y1

−ẏ1

⇒

x2 = f2(y, ẏ)

(7)

Equivalently, the second row of Eq. (3) is solved with respect to x1. This gives

x1 = ẋ2 + µp53x2 + vp53x3 +
K1ATM∗x2

KM1+x2
− Kcatx2x5

aK13+x2
⇒

x1 = f1(y, ẏ)
(8)
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The fifth row of Eq. (3) is solved with respect to x4. Thus, one obtains

x4 =
ẋ5+µMDM2x5+

K2ATM∗x5
KM2

+X5
+K4x11x5+K6x6x5

aMDM2
⇒

x4 = f4(y, ẏ)
(9)

The ninth row of Eq. (3) is solved with respect to x8. Thus one obtains

KM3 ẋ9 + ẋ9x8 = K3ATM
∗x8 − vE2F1KM3x9−

−vE2F1x8x9 −K5KM3x11x9 −K5x11x9x8⇒

x8 =
KM3 ẋ9+vE2F1KM3x3+K5KM3x11x9

K3ATM∗
−ẋ9−vE2F1x9−K9x11x9

⇒

x8 = f8(y, ẏ)

(10)

The eighth row of Eq. (3) is solved with respect to x7. Thus one obtains

x7 =
ẋ8+µE2F1x8−vE2F1x9+

K2ATM∗x8
KM3

+x8

aE2F1
⇒

x7 = f7(y, ẏ)
(11)

The eleventh row of Eq. (3) is solved with respect to x10. It holds

x10 = ẋ11+µARFx11+K4x11x5+K5x11x9

aARF
⇒

x10 = f10(y, ẏ)
(12)

Moreover, from the sixth row of Eq. (3) and using that x5 = f5(y, ẏ) and x6 = y2
one obtains about the control input u = λN

u = λN = ẋ6 + µNx6 +K6x6x5⇒
λN = fu(y, ẏ)

(13)

Thus one has that all state variables and the control input of the p53 protein
- mdm2 inhibitor system are functions of the flat output y and of its derivatives.
Consequently, the dynamical system of P53 is a differentially flat one.

3.3. Flatness-based control of the p53 protein - mdm2 inhibitor system.
It will be shown that using the differentially flat description of the p53 protein -
mdm2 inhibitor system it is possible to transform it to the canonical Brunovsky
form. It holds that y1 = x3 therefore

ẏ1 = ẋ3⇒ẏ1 = K1ATM∗x2

KM1+x2
− vP53x3 −

K∗

catx5x3

aK13+x3
(14)

Consequently, the second derivative of y1 is found to be

ÿ1 =
(K1ATM∗ẋ2)(KM1+x2)−(K1ATM∗x2)ẋ2

(KM1+x2)2
− vp53ẋ3−

−K∗

cat(ẋ5x3+x5ẋ3)(aK13+x3)−(K∗

catx5x3)ẋ3

(aK13+x3)2

(15)

After intermediate operations one obtains

ÿ1 =
K1ATM∗KM1

(KM1+x2)2
ẋ2 − vp53ẋ3

−
K∗

cataK13x5ẋ3

(aK13+x3)2
−

K∗

catx3

(aK13+x3)
ẋ5

(16)

and after substituting the derivatives of x3 and x5 one gets

ÿ1 =
K1ATM∗KM1

(KM1+x2)2
[ap53x1 − µp53x2 − vp53x3 −

K1ATM∗x2

KM1+x2
− Kcatx5x2

(aK13+x2)2
]−

−[vp53 +
K∗

cataK13x5

(aK13+x3)2
]·[K1ATM∗x2

KM1+x2
− vp53x3 −

K∗

catx5x3

(aK13+x3)
]−

−
K∗

catx3

(aK13+x3)
[aMDM2x4 − µMDM2x5 −

K2ATM∗x5

KM2+x5
−K4x11x5 −K6x6x5]

(17)
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By differentiating once more with respect to time one obtains

y
(3)
1 = f(y, ẏ) + g(y, ẏ)u (18)

where the control input u = λN is the input rate of the chemotherapy drug, while
functions f(y, ẏ) and g(y, ẏ) are defined as follows:

(i) function f(y, ẏ)

f(y, ẏ) = −

2(KM1
+x2)ẋ2K1ATMKM1
(KM1

+x2)4
[ap53ẋ1 − µp53ẋ2 − vp53ẋ3 −

K1ATM∗x2
KM1

+x2
−

−

Kcatx5x2
aK13+x2

] +
K1ATM∗KM1
(KM1

+x2)2
[ap53ẋ1 − µp53ẋ2 − vp53ẋ3−

−

K1ATMẋ2(KM1
+x2)−K1ATM∗ẋ2

(KM1
+x2)2

−

Kcat(ẋ5x2+x5ẋ2)(aK13+x2)−Kcatx5x2ẋ2

(aK13+x2)2
]−

−K∗

cataK13ẋ5(aK13+x3)
2
−K∗

cataK13x52(aK13+x3)ẋ3

(aK13+x3)4
·[K1ATM∗x2

KM1
+x2

− vp53x3 −
Kcat

∗x5x3
aK13+x3

]−

−[vp53 +
K∗

cataK13x5

(aK13+x3)2
]·[

K1ATM∗ ẋ2(KM1
+x2)−K1ATM∗x2ẋ2

KM1
+x2

2 −

−vp53ẋ3 −
K∗

cat(ẋ5x3+x5ẋ3)(aK13+x3)−K∗

catx5x3(aK13+x3)

(aK13+x3)2
]−

K∗

catẋ3(aK13+x3)−Kcat
∗x3ẋ3

(aK13+x3)2
·

[aMDM2x4 − µMDM2x5 −
K2ATM∗x5
KM2

+x5
−K4x11x5 −K6x6x5]

−

K∗

catx3

(aK13+x3)
·[aMDM2ẋ4]− µMDM2ẋ5 −

K2ATM∗x5−KM2
ATM∗x5ẋ5

KM2
+x5

2 −

−K4(ẋ11x5 + x11ẋ5)−K6x6ẋ5]−
K∗

catx3

(aK13+x3)
[−µNx6 −K6x6x5](−K6x5)

(19)
(ii) function g(y, ẏ)

g(y, ẏ) = −
K∗

catx3

aK13+x3
(−K6x5) (20)

By defining the new control input v = f(y, ẏ) + g(y, ẏ)u, the dynamics of the
active P53 protein can be written in the form

y(3) = f(y, ẏ) + g(y, ẏ)u⇒y(3) = v (21)

A suitable feedback control law for the system of Eq. (21) is

v = y
(3)
d − k1(ÿ − ÿd)− k2(ẏ − ẏd)− k3(y − yd) (22)

where the gains k1, k2 and k3 are chosen such that the characteristic polynomial of
the closed-loop system is a Hurwitz-stable one. The dynamics of the tracking error
is e = y − yd = P53∗ − P53∗d is given by

e(3) + k1ë + k2ė+ k3e = 0 (23)

finally results into limt→∞e(t) = 0. The control input that actually applied to the
p53 protein - mdm2 inhibitor system is given by

u = g(y, ẏ)−1[v − f(y, ẏ)] (24)

It is noted that the p53 protein - mdm2 inhibitor system exhibits the so-called
zero dynamics [12]. This means that the model contains internal state variables
which do not appear as outputs in the linearized equivalent of the p53-mdm2 model
given in Eq. (18). Since the internal state variables describe also proteins concen-
tration they are expected to vary within specific intervals. The boundedness of the
internal state variables implies also boundedness of the control input, thus finally
enabling state variable P53∗ to converge to the desirable setpoints.

Remark 1. First, about delays in the p53 protein - mdm2 inhibitor dynamics,
denoted as x3(t − r1) and x9(t − r2) respectively, it is pointed out that: (i) none
of these terms appears in the input-output linearized model for which control is
developed and which is finally described by Eq. (19) and Eq. (20), (ii) even if delay
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terms were present in the model of Eq. (19) and Eq. (20) these could be substituted
by their Taylor series expansions and thus the effects of time delays could be handled
as disturbances and could be easily compensated by the robustness of the control
loop [47],[48]. Second, it is noted that, the considered dynamical model is practically
decoupled and one arrives to control output y1 by one single control input which is
the drug infusion rate. Finally, it is noted that the appearance of zero dynamics in
the p53-mdm2 system does not affect the stability of the control loop, because the
state variables which constitute the zero dynamics remain bounded.

Remark 2. To identify dynamically the parameters of the p53-mdm2 state-space
model of Eq. (3), one can perform again Kalman Filtering, or can apply nonlin-
ear least squares methods such as the Levenberg-Marquardt method [28]. In the
Kalman Filter approach for unknown parameters identification, the state vector to
be estimated by the Kalman Filter is taken to be the unknown parameters vector θ,
which is assumed to be updated in time by θ(k+1) = θ(k) +w(k), where w(k) is a
noise vector of known covariance matrix. The measured variable to be used by the
Kalman Filter is the flat output y = P ∗

53, which appears as output in the linearized
dynamics of the p53-mdm2 system given in Eq. (21).

4. Detection of parametric changes with the use of statistical criteria.

4.1. State estimation using the Derivative-free nonlinear Kalman Filter.
To apply the feedback control law of Eq. (24) and Eq. (22) to the system of the
p53 protein synthesis it is possible to use measurements of the concentration of the
active P53∗ protein at the cytoplasm, however the derivatives of P53∗ with respect
to time are missing. These have to be estimated with the use of a filtering method.
To this end, the Kalman Filter recursion is used on the linearized equivalent of the
p53 protein - mdm2 inhibitor that is described by Eq. (21).

Using the transformation of the protein synthesis model given in Eq. (18) to Eq.
(21), the dynamics of the p53 protein - mdm2 inhibitor system is written in the
following canonical Brunovsky form

ż = Az +Bv
zm = Cz

(25)

or equivalently,




ż1
ż2
ż3



 =





0 1 0
0 0 1
0 0 0









z1
z2
z3



+





0
0
1



 v (26)

with measurement equation given by

zm =
(

1 0 0
)

z (27)

For the dynamics of the p53 protein - mdm2 inhibitor system that is described in
Eq. (26) and Eq. (27) it is possible to perform state estimation using the Kalman
Filter recursion. The application of Kalman Filtering on the linearized equivalent of
the system and the use of an inverse transformation based on the expression of the
initial state variables as functions of the flat output (see Eq. (6) to Eq. (10)) enables
also to obtain estimates for the state variables of the initial nonlinear dynamical
system of Eq. (4). This recursive estimation and inverse transformation procedure
constitutes the Derivative-free nonlinear Kalman Filter. The state estimator is

˙̂z = Aoẑ +Bov +K(zm − ẑm)
ẑm = Coẑ

(28)
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where Ao = A, Bo = B and Co = C. In the design of the associated disturbances’
estimator one has the dynamics defined in Eq. (28), where K∈R3×1 is the state
estimator’s gain and matrices Ao, Bo and Co have been defined in Eq. (26) to
Eq. (27). The discrete-time equivalents of matrices Ao, Bo and Co are denoted

as Ãd, B̃d and C̃d respectively, and are computed with the use of common dis-
cretization methods [29],[32]. Next, a Derivative-free nonlinear Kalman Filter can
be designed for the aforementioned representation of the system dynamics [29],[30].
The associated Kalman Filter-based disturbance estimator is given by [28],[32].

measurement update:

K(k) = P−(k)C̃T
d [C̃d·P

−(k)C̃T
d +R]−1

ẑ(k) = ẑ−(k) +K(k)[C̃dz(k)− C̃dẑ
−(k)]

P (k) = P−(k)−K(k)C̃dP
−(k)

(29)

time update:

P−(k + 1) = Ãd(k)P (k)Ã
T
d (k) +Q(k)

ẑ−(k + 1) = Ãd(k)ẑ(k) + B̃d(k)ṽ(k)
(30)

The Derivative-free nonlinear Kalman Filter is parameterized using the nominal
model of the p53 protein - mdm2 inhibitor system, that is the model that describes
the normal (healthy) condition. Next, two sequences of data are processed (see Fig.
2(a)). The first sequence consists of real measurements of the p53 protein concen-
tration which are obtained at specific sampling instances. The second sequence is
the Kalman Filter’s output, sampled again at the same time instances. By com-
paring the two signals, the residuals (estimation error) sequence is generated. The
processing of the residuals with the use of statistical decision making criteria pro-
vides an indication about the existence of parametric changes (faults) in the protein
synthesis model, which otherwise could not have been detected [2],[32]. Thus, by
applying fault detection tests based on the χ2 distribution it can be concluded if the
p53 protein-mdm2 inhibitor system remains healthy and if the nominal parameter
values for its model still hold (see Fig. 2(b)). Otherwise, a failure can be detected.

4.2. Fault detection. The residuals’ sequence (differences between the real output
of the monitored protein synthesis model and the one estimated by the Kalman
Filter) is a discrete error process ek with dimension m×1. Actually, it is a zero-
mean Gaussian white-noise process with covariance given by Ek. A conclusion can
be stated based on a measure of certainty that the parameters of the dynamic
model of the protein synthesis model remain unchanged. To this end, the following
normalized error square (NES) is defined [31]:

ǫk = eTkE
−1
k ek (31)

The normalized error square follows a χ2 distribution. An appropriate test for
the normalized error sum is to numerically show that the following condition is met
within a level of confidence (according to the properties of the χ2 distribution)

E{ǫk} = m (32)

This can be succeeded using statistical hypothesis testing, which are associated
with confidence intervals. A 95% confidence interval is frequently applied, which is
specified using 100(1− a) with a = 0.05. Actually, a two-sided probability region is
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(a) (b)

Figure 2. (a) Statistical change detection test based on the pro-
cessing of residuals, (b) Probability density function of the χ2 dis-
tribution, for various degrees of freedom p

considered cutting-off two end tails of 2.5% each. For M runs the normalized error
square that is obtained is given by

ǭk =
1

M

M
∑

i=1

ǫk(i) =
1

M

M
∑

i=1

eTk (i)E
−1
k (i)ek(i) (33)

where ǫi stands for the i-th run at time tk. Then Mǭk will follow a χ2 density
with Mm degrees of freedom. This condition can be checked using a χ2 test. The
hypothesis holds, if the following condition is satisfied

ǭk∈[ζ1, ζ2] (34)

where ζ1 and ζ2 are derived from the tail probabilities of the χ2 density. For
example, for m = 20 and M = 100 one has χ2

Mm(0.025) = 1878 and χ2
Mm(0.975) =

2126. Using that M = 100 one obtains ζ1 = χ2
Mm(0.025)/M = 18.78 and ζ2 =

χ2
Mm(0.975)/M = 21.26.

4.3. Fault isolation. By applying the statistical test into n subsystems (local
protein synthesis loops) of the aggregate protein synthesis model, it is also possible
to find out the subsystem that has deviated from normal functioning. In the case of
a single failure one has to carry out n χ2 statistical change detection tests. Actually,
out of the n χ2 statistical change detection tests, the one that exhibits the highest
score (or equivalently indicates the largest parameter deviation from the nominal
value) are those that identify the local protein synthesis loop that has been subjected
to disease (the damaged components for this local loop are the changed parameters
in its state-space description).

In the case of multiple failures one can identify the subset of local protein syn-
thesis loops that have been subjected to parametric change by applying the χ2

statistical change detection test according to a combinatorial sequence. This means
that

(

n
k

)

= n!
k!(n−k)! (35)



1028 G. G. RIGATOS, E. G. RIGATOU AND J. D. DJIDA

tests have to take place, for all sets in the protein synthesis model that comprise n,
n − 1, n − 2, · · · , 2, 1 local loops. Again the χ2 tests that give the highest scores
indicate the local loops which are most likely to have been subjected to parametric
change. This approach enables to assess the magnitude of deviation from nominal
values that the protein synthesis model has undergone and to focus on the part that
exhibits the most significant parametric change.

Remark 3. It has been shown that by applying differential flatness theory, the
input-output linearized model of Eq. (21) is obtained having as output the con-
centration of the P ∗

53 protein and as input the infusion rate of the chemotherapy
drug. The effects to this model of parametric uncertainties, external perturbations
as well as of time delays can be represented as an additive disturbance input d̃.
The redesign of the Kalman Filter as a disturbance observer enables the estima-
tion of the non-measurable state variables of the model, as well as the estimation
and compensation of the aforementioned additive disturbance input. The stability
features of flatness-based control of the p53 protein - mdm2 inhibitor model, after
the inclusion of the disturbance observer in the control loop, are similar to those
of LQG control. About, zero dynamics and due to the boundedness of the state
variables which do not appear as outputs in the linearized p53-mdm2 model, it can
be assured that in Eq. (24) functions f(y, ẏ) and g(y, ẏ) will be also bounded. This
also implies that the control signal that is computed from the feedback law of Eq.
(24) is bounded. Consequently the proposed control scheme is a feasible one and
can be implemented in practice.

5. Simulation tests. The protein concentration state variables of the p53 model
were measured in micro-Mol (µM). Indicative nominal values for the parameters of
the p53 protein synthesis model are: λp53 = 2.1(µM ·h−1), µp53 = 0.2(h−1), ap53 =
5.3(h−1), vp53 = 0.2(h−1), K1 = 2.1(h−1), K2 = 0.2(h−1), K3 = 2.3(h−1), K4 =
0.2(µM−1h−1), K5 = 0.1(µM−1h−1), K6 = 0.001(µM−1h−1), K13 = 3.2(µM),
ATMs = 0.005(µM), a = 0.001, KM1 = 0.1µM , KM2 = 0.2µM , KM3 = 0.3µM ,
Kcat = 0.31h−1, K∗

cat = 2.10(h−1), λmdmd2 = 0.4(µM ·h−1), µmdm2 = 0.6(h−1),
φmdm2 = 0.7(µ·Mh−1), aMDM2 = 0.8(h−1), µMDM2 = 0.9(h−1), µN = 0.05(h−1),
λe2f1 = 0.3(µ·Mh−1), µe2f1 = 0.4(h−1), aE2F1 = 0.5(h−1), µE2F1 = 0.6(h−1),
vE2F1 = 0.7(h−1), λarf = 0.4(µM ·h−1), µarf = 0.5(h−1), φarf = 10.6(µM ·h−1),
aARF = 0.7(h−1), µARF = 0.8(h−1).

First, an exact and fault-free dynamical model of the p53 protein - mdm2 system
was considered. The response of the p53-mdm2 protein synthesis model to nonlinear
feedback control is depicted in Fig. 3 to Fig. 5. It can be noticed that under the
proposed feedback control the concentration of the target state variable, that is
the active P53∗ proteins converges to the desirable levels. Moreover, the rest of
the model’s state variables which are implicitly affected by the control input (zero
dynamics of the system) remain also bounded.

Next, the χ2 statistical change detection criterion was used for finding parametric
changes in the protein synthesis model. The proposed fault diagnosis method was
capable of detecting the existence of parametric changes in the p53-mdm2 protein
synthesis model. The obtained results are depicted in Fig. 6 to Fig. 9. The
fault thresholds are determined by the confidence intervals of the χ2 distribution.
The χ2 distribution has d = 3 degrees of freedom. The number of iterations was
M = 2000. Thus, for an 98% confidence interval the associated upper and lower
fault thresholds are U = 2.8886 and L = 3.1136. For parameter K∗

cat the nominal
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Figure 3. Dynamical model without faults: (a) nonlinear feed-
back control of the P53∗ protein concentration (blue line) and con-
vergence to the associated setpoints (red lines), (b) infusion rate as
control input
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Figure 4. Dynamical model without faults: (a) variation of the
p53 mRNA concentration, P53 concentration in the cytoplasm
and active P53∗ concentration, (b) variation of the mdm2 mRNA
concentration, MDM2 concentration in the cytoplasm and active
MDM2∗ concentration

value was K∗

cat = 2.10 while after change the value became K∗

cat = 3.30. For
parameter K1 the nominal value was K1 = 2.1 while after change the value became
K1 = 8.1. Finally, for parameter K13 the nominal value was K13 = 3.2 while after
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Figure 5. Dynamical model without faults: (a) variation of the
e2f1 mRNA concentration, E2F1 concentration in the cytoplasm
and active E2F1∗ concentration, (b) variation of the arf mRNA
concentration, ARF concentration in the cytoplasm

change it became K13 = 5.2. It can be noticed that when the parameters of the
model of the p53 protein - mdm2 inhibitor system remained at their nominal values
the statistical change detection test returned a value that was within the upper
and lower fault thresholds. On the other hand, when deviation from the nominal
parameters values took place the result of the χ2 fault detection test exceeded clearly
the fault boundaries.

6. Conclusions. The paper has proposed a systematic method for detecting para-
metric changes in the model of the p53 protein - mdm2 inhibitor system. First,
it has been shown that the considered protein synthesis loop is differentially flat,
which means that all its state variables and the control inputs can be expressed
as functions of certain state vector elements (that constitute the flat output) and
of the associated flat output derivatives. The differential flatness property enables
to transform the nonlinear protein synthesis model into a canonical linear form for
which the design of state feedback controller becomes easier.

Next, the paper has analyzed the problem of detection of parametric changes
in the protein synthesis model. The dynamic behavior of the p53 protein in nor-
mal condition has been described with the use of nonlinear Kalman Filtering. The
considered filter, known as Derivative-free nonlinear Kalman Filter, consists of the
standard Kalman Filter recursion applied on the linearized model of the system.
It also makes use of an inverse transformation based on differential flatness theory
which enables to obtain estimates for the state vector elements of the initial non-
linear model. By comparing the filter’s output against the output of the real p53
protein - mdm2 system a sequence of error measurements (residuals) is obtained.
Further processing of the residuals with the use of a statistical change detection
criterion, that is the χ2 test, enables to diagnose if parametric changes have taken
place in the protein synthesis model.
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Figure 6. No parametric change (confidence interval 98% denoted
with red lines): (a) Individual values of the χ2 tests, (b) mean value
of the χ2 test denoted with green line
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Figure 7. Change in parameter K∗

cat (confidence interval 98% de-
noted with red lines): (a) Individual values of the χ2 tests, (b) mean
value of the χ2 test denoted with green line

Apart from protein synthesis models, the paper results can be generalized to
other health monitoring problems of biological systems, such as hormone synthesis
models and gene networks. Thus, the paper’s method can contribute to diagnosing
of deviation of the above mentioned systems from the normal condition and also
in identification of specific parametric changes which are associated with certain
diseases.
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Figure 8. Change in parameter K1 (confidence interval 98% de-
noted with red lines): (a) Individual values of the χ2 tests, (b)
mean value of the χ2 test denoted with green line
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Figure 9. Change in parameter K13 (confidence interval 98% de-
noted with red lines): (a) Individual values of the χ2 tests, (b)
mean value of the χ2 test denoted with green line
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