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Abstract. In this paper, we study an age-structured virus dynamics model
with Beddington-DeAngelis infection function. An explicit formula for the

basic reproductive number R0 of the model is obtained. We investigate the
global behavior of the model in terms of R0: if R0 ≤ 1, then the infection-

free equilibrium is globally asymptotically stable, whereas if R0 > 1, then the

infection equilibrium is globally asymptotically stable. Finally, some special
cases, which reduce to some known HIV infection models studied by other

researchers, are considered.

1. Introduction. Various mathematical models of within-host virus dynamics with
or without delay have been studied by many authors over the past two decades
(Culshaw and Ruan[4], De Leenheer and Smith [8], Huang et al. [13], Li and Shu
[17], Nowak and Bangham [25], Nowak and May [26], Perelson and Nelson [27]).
Since age structure is an important characteristic in modeling of infectious diseases,
Kirschner and Webb [16] proposed an HIV-1 infection model that incorporated age
structure into the infected cells to account for the mechanism of AZT (zidovudine)
treatment. Nelson et al. [24] proposed an age-structured model for HIV-1 infection
with bilinear interactions between the uninfected target cells and the virus, which is
a generalization of the standard delay differential equation models previously used
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to describe HIV-1 infection. Rong et al. [28] considered two age-structured models
to study HIV-1 infection dynamics which extend the existing age-structured models
of Kirschner and Webb [16] and Nelson et al. [24] by incorporating combination
therapies. The age-related models are normally in the form of partial differential
equations (PDEs). It is difficult to investigate the global dynamical properties of
PDEs. Magal et al. [20] used Liapunov functional method to study global stabil-
ity of the endemic equilibrium for an infection-age model of disease transmission.
Motivated by this, Huang et al. [14] considered the global stability of equalibria in
Nelson et al.’s [24] age-structured model by constructing suitable Liapunov func-
tions. Recently the global dynamical properties of PDEs have also attracted some
interests in the literature (Brauer et al. [2], Browne and Pilyugin [3], Magal and
McCluskey [21], McCluskey [23]).

In modeling virus dynamics (Nowak and May [26]), the interaction between the
virus and uninfected cells is usually regarded as a consumer-resource (predator-
prey) relationship, with the virus as consumers (predators) while the uninfected
cells as the resource (prey), and is described by a linear (mass action) function or
the saturated Michaelis-Menten (Holling type II) function. The Michaelis-Menten
function was derived based on the assumption that consumers do not interference
with one another’s activities, so the only competition among consumers occurs in
the depletion of resource. To describe mutual interference among consumers, the
Beddington-DeAngelis function, depending on both the resource and consumer den-
sities, was proposed (Cosner et al. [5], Huisman and De Boer [15]) to describe the
fact that individuals from a population of more than two consumers not only allocate
time in searching for and processing their resource but also take time in encoun-
tering with other consumers. De Boer and Perelson [6] used Beddington-DeAngelis
function to model the interaction between immune cells and virus. Althaus and De
Boer [1] used a Beddington-DeAngelis function to describe the infection of unin-
fected T-cells by HIV particles. Based on these, we think that it is reasonable to
consider virus dynamics models with Beddington-DeAngelis infection function. On
the other hand, based on a delay differential equation model Culshaw and Ruan [4]
illustrated that the CD4+ T-cells and HIV populations fluctuate in the early stage
of the infection and converge to the infected equilibrium values in a longer term.
Recently, Huang et al. [11] considered a virus dynamics model with Beddington-
DeAngelis infection function and analyzed the global properties by constructing
Liapunov functions. Huang et al. [12] also considered a delay virus dynamics
model with Beddington-DeAngelis infection function and, by constructing suitable
Liapunov functionals, gave complete global stability analysis for the model.

In this paper, we aim to study the global behavior of the following age-structured
virus dynamics model with Beddington-DeAngelis infection function:

dx(t)

dt
= s− dx(t)− kx(t)v(t)

1 + α1x(t) + α2v(t)
,

∂i(t, a)

∂t
+
∂i(t, a)

∂a
= −δ(a)i(t, a),

dv(t)

dt
=

∫ ∞
0

p(a)i(t, a)da− cv(t)

(1)

with the boundary condition

i(t, 0) =
kx(t)v(t)

1 + α1x(t) + α2v(t)
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and initial conditions

x(0) = x0, i(0, a) = i0(a), and v(0) = v0.

Here, x(t), i(t, a), and v(t) represent the populations of uninfected target cells,
infected cells of infection age a, and free virus particles at time t > 0, respectively. s
is the recruitment rate of uninfected cells, d is the per capita death rate of uninfected

cells. The Beddington-DeAngelis function
kx(t)v(t)

1 + α1x(t) + α2v(t)
, where α1, α2 ≥ 0

are constants, describes the infection of healthy target cells by the free virus. δ(a)
is the age-dependent per capita death rate of infected cells. c is the clearance
rate of virus, p(a) is the viral production rate of an infected cell with age a. The
function δ(a) belongs to L∞+ ((0,+∞),R), and p(a) belongs to L∞+ ((0,+∞),R) \
{0L∞}. Moreover, there exists a δmin > 0 such that δ(a) ≥ δmin for almost every
a ≥ 0.

The paper is organized as follows. In section 2, we present some preliminary
results. In section 3, the local stabilities of the infection-free equilibrium and the
infection equilibrium are established. In section 4, we present the results about
uniform persistence. In section 5, by constructing a suitable Liapunov function, we
conclude that the global asymptotic stability of the model depends only on the basic
reproductive number. In section 6, some special cases and numerical simulations
are discussed. The papers ends with a brief discussion in section 7.

2. Preliminary results. Consider

x(t) +

∫ ∞
0

i(t, a)da,

then
d

dt

(
x(t) +

∫ ∞
0

i(t, a)da

)
≤ s− γ

(
x(t) +

∫ ∞
0

i(t, a)da

)
,

where γ = min{d, δmin}. Therefore, we have

lim sup
t→+∞

(
x(t) +

∫ ∞
0

i(t, a)da

)
≤ s

γ
.

From the third equation of system (1), we have

dv(t)

dt
≤ pmax

∫ ∞
0

i(t, a)da− cv(t),

where pmax = ess supθ∈(0,+∞) p(θ). Thus

lim sup
t→+∞

v(t) ≤ spmax

cγ
.

It is clear to show that the following set is positively invariant for system (1)

Ω =

{
(x, i, v) ∈ R+ × L1

+((0,+∞),∞)× R+

∣∣∣∣ (x(t) +

∫ ∞
0

i(t, a)da

)
≤ s

γ
,

v(t) ≤ spmax

cγ

}
.

Let

N =

∫ ∞
0

p(a)σ(a)da,
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where σ(a) = e−
∫ a
0
δ(s)ds is the probability that an infected cell survives to age a.

Here, we assume that N is finite.
Now, we consider the existence of equilibria. System (1) always has an infection-

free equilibrium E0 = (x0, 0, 0), where x0 = s/d. There may exist an infection
equilibrium E∗ = (x∗, i∗(a), v∗) satisfying the following equations

s− dx∗ − kx∗v∗

1 + α1x∗ + α2v∗
= 0,

di∗(a)

da
= −δ(a)i∗(a),∫ ∞

0

p(a)i∗(a)da− cv∗ = 0,

i∗(0) =
kx∗v∗

1 + α1x∗ + α2v∗
.

(2)

Solving the second equation of (2) yields

i∗(a) = i∗(0)e−
∫ a
0
δ(s)ds =

kx∗v∗

1 + α1x∗ + α2v∗
σ(a).

Then, from the third equation of (2), we have∫ ∞
0

p(a)i∗(a)da =
kx∗v∗

1 + α1x∗ + α2v∗
N = cv∗,

which implies that

x∗ =
c(1 + α2v

∗)

Nk − cα1
.

Substituting it into the first equation of (2), we get

v∗ =
N(sNk − c(d+ α1s))

cdNα2 + c(Nk − cα1)
.

Thus, system (1) has a unique infection equilibrium E∗ = (x∗, i∗(a), v∗) if and only
if R0 > 1, where

R0 =
sNk

c(d+ α1s)
.

According to the boundary condition and initial conditions of system (1), we
obtain

i(t, a) =


kx(t− a)v(t− a)

1 + α1x(t− a) + α2v(t− a)
σ(a), 0 ≤ a < t,

i0(a− t) σ(a)

σ(a− t)
, 0 < t ≤ a.

(3)

In the following, we use the approach introduced by Thieme [29]. Consider

X = R× R× R× L1((0,+∞),R),

X0 = R× R× {0} × L1((0,+∞),R),

X+ = R+ × R+ × R+ × L1
+((0,+∞),R),

and

X0+ = X+ ∩ X0.
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Let A : D(A) ⊂ X → X be the linear operator defined by

A


x
v(
0
i

)
 =


−dx
−cv(
−i(0)

−i′ − δ(a)i

)


with D(A) = R × R × {0} ×W 1,1((0,+∞),R). We define a non-linear map F :
X0 → X by

F


x
v(
0
i

)
 =



s− kx(t)v(t)

1 + α1x(t) + α2v(t)∫ ∞
0

p(a)i(t, a)da kx(t)v(t)

1 + α1x(t) + α2v(t)
0L1




.

Define

u(t) =


x(t)
v(t)(

0
i(t, .)

)
 ,

then we can rewrite system (1) with the boundary and initial conditions as the
following abstract Cauchy problem:

du(t)

dt
= Au(t) + F (u(t)), for t ≥ 0, with u(0) = u0 ∈ X0+. (4)

By applying the results in Hale [9], Magal [19], and Magal and Thieme [22], we
obtain the following theorem.

Theorem 2.1. System (4) generates a unique continuous semiflow {U(t)}t≥0 on
X0+ that is bounded dissipative and asymptotically smooth. Furthemore, the semi-
flow {U(t)}t≥0 has a global attractor A in X0+, which attracts the bounded sets of
X0+.

3. Local stability. In this section, we investigate the local stability of equalibria
for system (1) and have the following results.

Theorem 3.1. (i) If R0 < 1, then the infection-free equilibrium E0 of system
(1) is locally asymptotically stable; if R0 > 1, then E0 is unstable;

(ii) If R0 > 1, then the unique infection equilibrium E∗ of system (1) is locally
asymptotically stable.

Proof. First, we study the local stability of E0. Let x(t) = x1(t) + x0, i1(t, a) =
i(t, a) and v1(t) = v(t). Linearizing system (1) about E0, we obtain

dx1(t)

dt
= −dx1(t)− kx0

1 + α1x0
v1(t),

∂i1(t, a)

∂t
+
∂i1(t, a)

∂a
= −δ(a)i1(t, a),

dv1(t)

dt
=

∫ ∞
0

p(a)i1(t, a)da− cv1(t),

i1(t, 0) =
kx0

1 + α1x0
v1(t).

(5)
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Consider the exponential solutions x1(t) = x1e
λt, i1(t, a) = i1(a)eλt and v1(t) =

v1e
λt of system (5). Then, we have

(λ+ d)x1 = − kx0

1 + α1x0
v1,

i1(a) = i1(0)e−λae−
∫ a
0
δ(ω)dωda,

λv1 =

∫ ∞
0

p(a)i1(a)da− cv1,

i1(0) =
kx0

1 + α1x0
v1.

(6)

Substituting the second and fourth equations into the third equation of (6), we
obtain

λ+ c =
kx0

1 + α1x0

∫ ∞
0

p(a)e−λae−
∫ a
0
δ(ω)dωda,

which implies that

λ

c
+ 1 = R0

∫ ∞
0

p(a)σ(a)e−λada∫ ∞
0

p(a)σ(a)da

. (7)

Define

H(λ) = R0

∫ ∞
0

p(a)σ(a)e−λada∫ ∞
0

p(a)σ(a)da

− λ

c
− 1.

It is clear that lim
λ→+∞

H(λ) = −∞, H(0) = R0 − 1 and H′(λ) < 0. Hence, equation

(7) has no positive real root if R0 < 1. If all complex roots have non-negative real
parts, then the modulus of the right hand side of equation (7) is always less than 1
when R0 < 1. Then, we have shown that all roots of (7) have negative real parts
when R0 < 1.

If R0 > 1, then we have

lim
λ→+∞

H(λ) = −∞, H(0) = R0 − 1 > 0 and H′(λ) < 0.

This implies that equation (7) has at least one positive root. Hence, E0 is unstable.
To show the local stability of E∗, we take x(t) = x(t)+x∗, i1(t, a) = i(t, a)+i∗(a)

and v1(t) = v(t) + v∗. Then solutions of the linearized system in exponential form
x1(t) = x1e

λt, i1(t, a) = i1(a)eλt and v1(t) = v1e
λt yield the following equations:

(
λ+ d+

kv∗(1 + α2v
∗)

(1 + α1x∗ + α2v∗)2

)
x1 = − kx∗(1 + α1x

∗)

(1 + α1x∗ + α2v∗)2
v1,

i1(a) = i1(0)e−λae−
∫ a
0
δ(ω)dω,

λv1 =

∫ ∞
0

p(a)i1(a)da− cv1,

i1(0) =
kv∗(1 + α2v

∗)

(1 + α1x∗ + α2v∗)2
x1 +

kx∗(1 + α1x
∗)

(1 + α1x∗ + α2v∗)2
v1.

(8)
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From the first equation of (8), we have

v1 = −
λ+ d+

kv∗(1 + α2v
∗)

(1 + α1x∗ + α2v∗)2

kx∗(1 + α1x
∗)

(1 + α1x∗ + α2v∗)2

x1.

Substituting i1(a), v1 and i1(0) into the third equation, we obtain(
λ+ d+

kv∗(1 + α2v
∗)

(1 + α1x∗ + α2v∗)2

)
(λ+ c)

= (λ+ d)
kx∗(1 + α1x

∗)

(1 + α1x∗ + α2v∗)2

∫ ∞
0

p(a)σ(a)e−λada.

This implies that(
λ+ d+

kv∗(1 + α2v
∗)

(1 + α1x∗ + α2v∗)2

)(
λ

c
+ 1

)

= (λ+ d)
1 + α1x

∗

1 + α1x∗ + α2v∗

∫ ∞
0

p(a)σ(a)e−λada∫ ∞
0

p(a)σ(a)da

. (9)

For all complex roots of λ with non-negative real parts, the modulus of left hand
side of (9) is greater than the modulus of the right hand side when R0 > 1. Hence,
we conclude that all roots of (1) have negative real parts when R0 > 1.

4. Uniform persistence. In this section, we study the uniform persistence of
system (1). Define

M0 =

{
(x, v, 0, i)T ∈ X0+ : v +

∫ ∞
0

i(a)da > 0

}
and

∂M0 = X0+ \M0.

Theorem 4.1. M0 and ∂M0 are both positively invariant under the semiflow
{U(t)}t≥0 generated by system (4) on X0+. Moreover, the infection-free equilib-
rium Ē0 = (x0, 0, 0, 0L1) is globally asymptotically stable for the semiflow {U(t)}t≥0
restricted to ∂M0.

Proof. Let (x0, v0, 0, i0) ∈M0 and set κ(t) = v(t) +

∫ ∞
0

i(t, a)da. It follows that

κ′(t) ≥ −max{c, δmax}κ(t),

where δmax = ess supθ∈(0,+∞) δ(θ). That is

v(t) +

∫ ∞
0

i(t, a)da ≥ e−max{c,δmax}t
(
v0 +

∫ ∞
0

i0(a)da

)
.

This completes the fact that U(t)M0 ⊂M0.
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Now, let (x0, v0, 0, i0) ∈ ∂M0. Using (3), we easily find that v(t) = 0 for all t ≥ 0
and∫ ∞

0

i(t, a)da =

∫ t

0

kx(t− a)v(t− a)

1 + α1x(t− a) + α2v(t− a)
σ(a)da+

∫ ∞
t

i0(a− t) σ(a)

σ(a− t)
da

≤k
∫ t

0

x(t− a)v(t− a)σ(a)da+ e−δmint‖i0‖L1

=0.

Thus, U(t)∂M0 ⊂ ∂M0.
Let (x0, v0, 0, i0) ∈ ∂M0, we obtain that

dv(t)

dt
=

∫ ∞
0

p(a)i(t, a)da− cv(t),

∂i(t, a)

∂t
+
∂i(t, a)

∂a
= −δ(a)i(t, a),

i(t, 0) =
kx(t)v(t)

1 + α1x(t) + α2v(t)
,

v(0) = 0, i(0, a) = i0(a).

Since x(t) ≤ x0 as t is large enough, we have

v(t) ≤ ṽ(t) and i(t, a) ≤ ĩ(t, a), (10)

where 

dṽ(t)

dt
=

∫ ∞
0

p(a)̃i(t, a)da− cṽ(t),

∂ĩ(t, a)

∂t
+
∂ĩ(t, a)

∂a
= −δ(a)̃i(t, a),

ĩ(t, 0) = kx0ṽ(t),

ṽ(0) = 0, ĩ(0, a) = i0(a).

(11)

By the formulation (3), we have

ĩ(t, a) =


kx0ṽ(t− a)σ(a), 0 ≤ a < t,

i0(a− t) σ(a)

σ(a− t)
, 0 < t ≤ a.

(12)

Substituting (12) into the first equation of (11), we can get
dṽ(t)

dt
= kx0

∫ t

0

p(a)ṽ(t− a)σ(a)da+ Fv(t)− cṽ(t),

ṽ(0) = 0,

(13)

where

Fv(t) =

∫ +∞

t

p(a)i0(a− t) σ(a)

σ(a− t)
da.

Thus, we can obtain that Fv(t) ≡ 0. Then, equation (13) has a unique solution
ṽ(t) = 0. If 0 ≤ a ≤ t, according to (12), we have ĩ(t, a) = 0. If t < a, then we have

‖̃i(t, a)‖L1 =

∥∥∥∥i0(a− t) σ(a)

σ(a− t)

∥∥∥∥
L1

≤ e−δmint‖i0‖L1 ,
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which yields that ĩ(t, a) → 0 as t → ∞. By using (10), we obtain that i(t, a) → 0
and v(t) = 0 as t→∞. This completes the proof.

Therefore, we have the following theorem.

Theorem 4.2. Assume R0 > 1, the semiflow {U(t)}t≥0 generated by system (4) is
uniformly persistent with respect to the pair (∂M0,M0); that is, there exists ε > 0,
such that for each y ∈M0,

lim inf
t→+∞

d(U(t)y, ∂M0) ≥ ε.

Furthermore, there exists a compact subset A0 ⊂M0 which is a global attractor for
{U(t)}t≥0 in M0.

Proof. Since the infection-free equilibrium Ē0 = (x0, 0, 0, 0L1) is globally asymptot-
ically stable in ∂M0, applying Theorem 4.2 in Hale and Waltman [10], we only need
to investigate the behavior of the solution starting in M0 in some neighborhood of
Ē0. Then, we will show that

W s({Ē0}) ∩M0 = ∅,

where

W s({Ē0}) = {y ∈ X0+ : lim
t→+∞

U(t)y = Ē0}.

Assume by contradiction that there exists y ∈W s({Ē0})∩M0, it follows that there

exists t0 > 0 such that v(t0) +

∫ ∞
0

i(t0, a)da > 0. Using the same argument in the

proof of Lemma 3.6(i) in Demasse and Ducrot [7], we have that v(t) > 0 for t ≥ 0
and i(t, a) > 0 for any (t, a) ∈ [0,∞)× [0,∞). Define a function

α(a) =

∫ ∞
a

p(θ)e−
∫ θ
a
δ(s)dsdθ.

Note that α(a) is bounded and satisfies α′(a) = δ(a)α(a)−p(a) a.e. a ≥ 0. Consider
the function

Φ(t) =

∫ ∞
0

α(a)i(t, a)da+ v(t),

which satisfies
dΦ(t)

dt
= cv

(
Nkx

c(1 + α1x+ α2v)
− 1

)
.

Since y ∈ W s({Ē0}), we have that x(t) → x0 and v(t) → 0 as t → ∞. When
R0 > 1, we obtain that the function Φ(t) is not decreasing for t large enough.
Thus, there exists t0 > 0 such that Φ(t) ≥ Φ(t0) for all t ≥ t0. Since Φ(t0) > 0,
this prevents the function (v(t), i(t, a)) from converging to (0, 0L1) as t → ∞. A
contradiction with x(t)→ x0. This completes the proof.

5. Global stability. In this section, we construct suitable Liapunov functions
to investigate the global stability of the infection-free equilibrium and infection
equilibrium for system (1).

Theorem 5.1. If R0 ≤ 1, then the infection-free equilibrium E0 of system (1) is
globally asymptotically stable.
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Proof. Define a Liapunov function

V1(t) =
1

N

∫ ∞
0

α(a)i(t, a)da+
1

N
v(t).

Calculating the time derivative of V1(t) along system (1), we have

dV1(t)

dt
=

1

N

∫ ∞
0

α(a)
∂i(t, a)

∂t
da+

1

N

dv(t)

dt

= − 1

N

∫ ∞
0

α(a)

(
∂i(t, a)

∂a
+ δ(a)i(t, a)

)
da+

1

N

∫ ∞
0

p(a)i(t, a)da− c

N
v(t)

= − 1

N

∫ ∞
0

α(a)
∂i(t, a)

∂a
da+

1

N

∫ ∞
0

(p(a)− δ(a)α(a))i(t, a)da− c

N
v(t)

= − 1

N
α(a)i(t, a)|a=∞ +

kx(t)v(t)

1 + α1x(t) + α2v(t)
+

1

N

∫ ∞
0

α′(a)i(t, a)da

+
1

N

∫ ∞
0

(p(a)− α(a)δ(a))i(t, a)da− c

N
v(t).

Note that
dx(t)

dt
≤ s− dx(t) and so lim sup

t→∞
x(t) ≤ s

d
. This yields that all omega

limit points satisfy x(t) ≤ s

d
. Hence, it is sufficient to consider solutions for which

x(t) ≤ s

d
. Using R0 =

sNk

c(d+ α1s)
, we get

dV1(t)

dt
=

kx(t)v(t)

1 + α1x(t) + α2v(t)
− c

N
v(t)

=
c

N
v(t)

(
N

c

kx(t)

1 + α1x(t) + α2v(t)
− 1

)
≤ c

N
v(t)

(
sNk

c(d+ α1s)
− 1

)
≤ c

N
v(t) (R0 − 1) .

Therefore, we have that
dV1(t)

dt
= 0 implies that v(t) = 0 or R0 = 1 and x(t) =

s

d
.

It is easy to show that the largest invariant set where
dV1(t)

dt
= 0 is the singleton

{E0}. Then, by the Liapunov-LaSalle asymptotic stability theorem, the infection-
free equilibrium E0 of system (1) is globally asymptotically stable for R0 ≤ 1.

Next, we discuss the global stability of the infection equilibrium E∗ for system
(1) when R0 > 1. Denote

g(x) = x− 1− lnx.

Therefore, the function g has a global minimum at 1 and satisfies g(1) = 0.

Theorem 5.2. If R0 > 1, then lim
t→∞

U(t)u = u∗ for each u ∈ A0, where u∗ =

(x∗, v∗, 0, i∗(a))T.

Proof. From Theorem 4.2, let u(t) = {(x(t), v(t), 0, i(t, a))T}t∈R ⊂ A0 be a given
entire solution of U(t). It remains to prove that A0 = {u∗}. Similar to the proof of
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Lemma 3.6 and claim 5.3 in Demasse and Ducrot [7], we know that there exist δ1
and δ2 > 0 such that

δ1 ≤ x(t) ≤ δ2, δ1 ≤ i(t, a) ≤ δ2, δ1 ≤ v(t) ≤ δ2,

for all t ∈ R and a ≥ 0. Now let us define the following Liapunov function

V2(t) = x(t)− x∗ −
∫ x(t)

x∗

1 + α1θ + α2v
∗

1 + α1x∗ + α2v∗
x∗

θ
dθ

+
1

N

∫ ∞
0

α(a)i∗(a)g

(
i(t, a)

i∗(a)

)
da+

1

N
v∗g

(
v(t)

v∗

)
.

Using system (1) and calculating the time derivative of V2(t), we get

dV2(t)

dt
=

(
1− x∗

x(t)

1 + α1x(t) + α2v
∗

1 + α1x∗ + α2v∗

)(
s− dx(t)− kx(t)v(t)

1 + α1x(t) + α2v(t)

)
− 1

N

∫ ∞
0

α(a)

(
1− i∗(a)

i(t, a)

)
∂i(t, a)

∂a
da

− 1

N

∫ ∞
0

α(a)δ(a)i(t, a)

(
1− i∗(a)

i(t, a)

)
da

+
1

N

(
1− v∗

v(t)

)(∫ ∞
0

p(a)i(t, a)da− cv(t)

)
.

Notice that

s = dx∗ +
kx∗v∗

1 + α1x∗ + α2v∗
,

kx∗

1 + α1x∗ + α2v∗
=

c

N
.

After some computations, we obtain that

∫ ∞
0

α(a)

(
1− i∗(a)

i(t, a)

)
∂i(t, a)

∂a
da+

∫ ∞
0

α(a)δ(a)i(t, a)

(
1− i∗(a)

i(t, a)

)
da

= α(a)i∗(a)

(
i(t, a)

i∗(a)
− 1− ln

i(t, a)

i∗(a)

) ∣∣∣∣
a=∞

−N kx∗v∗

1 + α1x∗ + α2v∗

(
x(t)v(t)(1 + α1x

∗ + α2v
∗)

x∗v∗(1 + α1x(t) + α2v(t))
− 1

− ln
x(t)v(t)(1 + α1x

∗ + α2v
∗)

x∗v∗(1 + α1x(t) + α2v(t))

)
+

∫ ∞
0

p(a)i∗(a)

(
i(t, a)

i∗(a)
− 1− ln

i(t, a)

i∗(a)

)
da.



870 YU YANG, SHIGUI RUAN AND DONGMEI XIAO

Then, we have

dV2(t)

dt
= −d(1 + α2v

∗)(x(t)− x∗)2

x(t)(1 + α1x∗ + α2v∗)
− 1

N
α(a)i∗(a)g

(
i(t, a)

i∗(a)

) ∣∣∣∣
a=∞

− kx∗v∗

1 + α1x∗ + α2v∗

(
1 + α1x(t) + α2v

∗

1 + α1x∗ + α2v∗
x∗

x(t)
− 1

)
+

kx∗(1 + α1x(t) + α2v
∗)v(t)

(1 + α1x∗ + α2v∗)(1 + α1x(t) + α2v(t))
− c

N
v(t)

− kx∗v∗

1 + α1x∗ + α2v∗
ln
x(t)v(t)(1 + α1x

∗ + α2v
∗)

x∗v∗(1 + α1x(t) + α2v(t))

+
1

N

∫ ∞
0

p(a)i∗(a)

(
1 + ln

i(t, a)

i∗(a)
− v∗i(t, a)

v(t)i∗(a)

)
da

= −d(1 + α2v
∗)(x(t)− x∗)2

x(t)(1 + α1x∗ + α2v∗)
− 1

N
α(a)i∗(a)g

(
i(t, a)

i∗(a)

) ∣∣∣∣
a=∞

− kx∗v∗

1 + α1x∗ + α2v∗
g

(
1 + α1x(t) + α2v

∗

1 + α1x∗ + α2v∗
x∗

x(t)

)
− 1

N

∫ ∞
0

p(a)i∗(a)g

(
v∗i(t, a)

v(t)i∗(a)

)
da

+
kx∗(1 + α1x(t) + α2v

∗)v(t)

(1 + α1x∗ + α2v∗)(1 + α1x(t) + α2v(t))
− kx∗v∗

1 + α1x∗ + α2v∗
v(t)

v∗

− kx∗v∗

1 + α1x∗ + α2v∗
ln

1 + α1x(t) + α2v
∗

1 + α1x(t) + α2v(t)

= −d(1 + α2v
∗)(x(t)− x∗)2

x(t)(1 + α1x∗ + α2v∗)
− 1

N
α(a)i∗(a)g

(
i(t, a)

i∗(a)

) ∣∣∣∣
a=∞

− kx∗v∗

1 + α1x∗ + α2v∗
g

(
1 + α1x(t) + α2v

∗

1 + α1x∗ + α2v∗
x∗

x(t)

)
− kx∗v∗

1 + α1x∗ + α2v∗
g

(
1 + α1x(t) + α2v(t)

1 + α1x(t) + α2v∗

)
− 1

N

∫ ∞
0

p(a)i∗(a)g

(
v∗i(t, a)

v(t)i∗(a)

)
da

+
kx∗v∗

1 + α1x∗ + α2v∗

(
−1− v(t)

v∗
+

(1 + α1x(t) + α2v
∗)v(t)

(1 + α1x(t) + α2v(t))v∗

+
1 + α1x(t) + α2v(t)

1 + α1x(t) + α2v∗

)
.

Some straightforward calculations yield that

−1− v(t)

v∗
+

(1 + α1x(t) + α2v
∗)v(t)

(1 + α1x(t) + α2v(t))v∗
+

1 + α1x(t) + α2v(t)

1 + α1x(t) + α2v∗

= − α2(1 + α1x(t))

(1 + α1x(t) + α2v(t))(1 + α1x(t) + α2v∗)v∗
(v(t)− v∗)2.
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Therefore, V2(t) is a bounded and decreasing map. Arguing similarly as the end of
the proof of Theorem 2.2(i) in Demasse and Ducrot [7], we obtain that u(t) = u∗,
i.e., A0 = {u∗}. This completes the proof.

Hence, using Theorem 3.1 and Theorem 5.2, we have the following result.

Theorem 5.3. If R0 > 1, then the infection equilibrium E∗ of system (1) is globally
asymptotically stable.

6. Special cases and numerical simulations. In this section we apply the re-
sults obtained in the last two sections to some special cases of the age structured
model (1), namely, the ODE and DDE versions of the model studied by Huang et
al. [11, 12]. We also perform some numerical simulations on the ODE, DDE, and
age structured models.

Example 6.1. (ODE) Suppose that δ(a) = p and p(a) = γ for p, γ > 0. Let

y(t) =

∫ ∞
0

i(t, a)da.

Then, system (1) becomes
ẋ(t) = s− dx(t)− kx(t)v(t)

1 + α1x(t) + α2v(t)
,

ẏ(t) =
kx(t)v(t)

1 + α1x(t) + α2v(t)
− py(t),

v̇(t) = γy(t)− cv(t).

(14)

The global behavior of this system was studied by Huang et al. [11] by constructing
Liapunov functions. By Theorems 5.1 and 5.3, we have the following result.

Theorem 6.2. (i) The infection-free equilibrium E0 of system (14) is globally
asymptotically stable if R0 ≤ 1;

(ii) The infection equilibrium E∗ of system (14) is globally asymptotically stable
if R0 > 1.

We can choose some parameters values so that R0 < 1 and some other parameter
values so that R0 = 1. In both cases, the infection-free equilibrium E0 is globally
asymptotically stable (see Figures 1-2). WhenR0 > 1 for the third set of parameters
values, the infection equilibrium E∗ is globally asymptotically stable (see Figure 3).

Example 6.3. (DDE) Suppose that

δ(a) =

{
p, a ≥ τ,

0, 0 ≤ a < τ

and p(a) = γ for p, γ > 0. Let

y(t) =

∫ ∞
0

i(t, a)da.
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Figure 1. Taking s = 1, d = 0.2, k = 0.01, α1 = 0.15, α2 = 0.2,
p = 0.25, γ = 6, c = 2.4, then R0 = 0.2857 < 1, the solution
(x(t), y(t), v(t)) approaches to the infection-free equilibrium E0 =
(5, 0, 0) as t→ +∞.
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Figure 2. Taking s = 2, d = 0.1, k = 0.01, α1 = 0.15, α2 = 0.2,
p = 0.25, γ = 10, c = 2, then R0 = 1, the solution (x(t), y(t), v(t))
approaches to the infection-free equilibrium E0 = (20, 0, 0) as t→
+∞.

Then, system (1) becomes
ẋ(t) = s− dx(t)− kx(t)v(t)

1 + α1x(t) + α2v(t)
,

ẏ(t) =
kx(t− τ)v(t− τ)

1 + α1x(t− τ) + α2v(t− τ)
e−pτ − py(t),

v̇(t) = γy(t)− cv(t).

(15)

The global stability analysis for this system was completed by Huang et al. [12]
utilizing the technology of constructing Liapunov functionals. From Theorems 5.1
and 5.3, we have the following result.
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Figure 3. Taking s = 2, d = 0.1, k = 0.01, α1 = 0.15,
α2 = 0.2, p = 0.25, γ = 9, c = 1.5, then R0 = 1.2 > 1, the
solution (x(t), y(t), v(t)) approaches to the infection equilibrium
E∗ = (18.5965, 0.5614, 3.3684) as t→ +∞.

Theorem 6.4. (i) If R0 ≤ 1, then the infection-free equilibrium E0 of system
(15) is globally asymptotically stable for any time delay τ ≥ 0.

(ii) If R0 > 1, then the infection equilibrium E∗ of system (15) is globally
asymptotically stable for any time delay τ ≥ 0.

We choose s = 3, d = 0.15, k = 0.02, α1 = 0.15, α2 = 0.2, p = 0.25, γ = 8,
c = 1.6 with different τ values to simulate the asymptotic dynamics of system (15)
(see Figures 4-6).

0 50 100 150 200 250 300
0

2

4

6

8

10

12

14

16

18

20

time t

So
lut

ion
s

 

 
x(t)
y(t)
v(t)

Figure 4. When τ = 3.3, R0 = 0.8765 < 1, the infection-free
equilibrium E0 = (20, 0, 0) is globally asymptotically stable.

Example 6.5. (Age structured model) In the following, we provide some nu-
merical simulations to illustrate the global stability of the infection-free equilibrium
and the infection equilibrium for system (1). We choose parameters s = 3, d = 0.06,



874 YU YANG, SHIGUI RUAN AND DONGMEI XIAO

0 50 100 150 200 250 300
0

2

4

6

8

10

12

14

16

18

20

time t

So
lut

ion
s

 

 
x(t)
y(t)
v(t)

Figure 5. When τ = 2.7724, R0 = 1, the infection-free equilib-
rium E0 = (20, 0, 0) is globally asymptotically stable.

0 50 100 150 200 250 300
0

2

4

6

8

10

12

14

16

18

20

time t

So
lut

ion
s

 

 
x(t)
y(t)
v(t)

Figure 6. When τ = 1, R0 = 1.5576 > 1, the infection equi-
librium E∗ = (16.4529, 1.6575, 8.2874) is globally asymptotically
stable.

k = 0.1, α1 = 0.1, α2 = 0.2, c = 1, δ(a) = 0.2, and

p(a) :=

{
0.4, if a ≥ τ,

0, if a ∈ (0, τ).

Under the same initial values

x(0) = 30, i(0, a) = 6e−0.3a, v(0) = 15,

we choose τ = 5 in Figure 7 and τ = 1 in Figure 8, respectively.

7. Discussion. Due to the lack of practical tools, it is difficult to study the global
properties of age-structured models, which is in the form of PDEs. In 2010, Magal
et al. [20] constructed a Liapunov functional to investigate global stability of the en-
demic equilibrium for an infection-age model of disease transmission. In this paper,
we have considered a general class of age-structured virus dynamics models. Based
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Figure 7. We choose τ = 5, then R0 < 1. (a) Time series of x(t)
and v(t) which converge to their equilibrium values. (b) The age
distribution and time series of i(t, a).

Figure 8. We choose τ = 1, then R0 > 1. (a) Time series of x(t)
and v(t) which converge to their equilibrium values. (b) The age
distribution and time series of i(t, a).

on the biological meaning, we have incorporated Beddington-DeAngelis function in-
stead of mass action function to describe the infection rate. We have calculated the
basic reproduction number R0 and proved that the global dynamics are completely
determined by the value of R0: if R0 ≤ 1, then the infection-free equilibrium is
globally asymptotically stable; if R0 > 1, then the infection equilibrium is globally
asymptotically stable.

For a special case α1 = 0 and α2 = 0, system (1) is similar to that considered by
Nelson et al. [24] and Huang et al. [12]. For the case α1 = 0 and α2 > 0, system (1)
becomes the virus dynamics model with Holling type II infection function. Thus,
our model is a generalization of the ODE model and the DDE model studied by
Huang et al. [11, 12] and our results extended theirs to the age-structured model.

Our results further indicate that the incorporation of age-structure does not
change the global dynamics of the virus dynamics model. The reason is that our
model was based on the HIV infection models which have convergent asymptotic
dynamics in the long term. The virus dynamics model could also be improved by
further generalizing the infection rate, for example, according to Li and Shu [18].
We leave this for future work.

Acknowledgments. We would like to thank Professor Pierre Magal for his helpful
comments and suggestions.
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